Jump to content

NASA’s Stennis Space Center Employees Receive NASA Honor Awards


Recommended Posts

  • Publishers
Posted

NASA Stennis Space Center Director John Bailey and NASA Associate Administrator for Space Operations Kenneth Bowersox presented NASA Honor Awards to Stennis employees during an onsite ceremony May 15.

Prior to presenting NASA Honor Awards to Stennis employees, Bailey received the Meritorious Senior Executive Presidential Rank Award. The award from the President of the United States is one of the highest awards given to career Senior Executive Service employees.

Since joining NASA in 1999, Bailey has served in various management and leadership roles. He was named NASA Stennis center director in April. As director, Bailey is responsible for implementing NASA’s mission in rocket propulsion testing and developing and maintaining NASA’s world-class rocket propulsion test facilities. He has provided leadership and managed critical rocket propulsion test assets exceeding $2 billion in replacement value and managed projects over $221 million.

One NASA Stennis employee received NASA’s Outstanding Leadership Medal. The medal is awarded to government employees for notable leadership accomplishments that have significantly influenced the NASA mission.

NASA Honor Awards Recipients

MIchael Tubbs
MIchael Tubbs
NASA/Stennis

Michael Tubbs of Diamondhead, Mississippi, received the NASA Outstanding Leadership Medal for his work as deputy director of the Office of Strategic Infrastructure within the Center Operations Directorate at NASA Stennis. The Yorktown, Virginia, native ushered in improvements and new initiatives that have helped achieve a cultural transformation and millions in cost-saving measures. His accomplishments also include leading the efforts to complete lease agreements between NASA and Rocket Lab of America for use of the A-3 Test Stand and between NASA and Relativity Space for use of the A-2 Test Stand.

Five NASA Stennis employees received NASA’s Exceptional Service Medal. The medal is awarded to government employees for sustained performance that embodies multiple contributions to NASA projects, programs, or initiatives.

David Lorance
David Lorance
NASA/Stennis

David Lorance of Slidell, Louisiana, received the NASA Exceptional Service Medal for his efforts in furthering the NASA mission through leadership of the Environmental and Health Services Office Division in the Center Operations Directorate at NASA Stennis. Lorance has been responsible for ensuring compliance with numerous environmental programs, managing resources to ensure requirements are met with no impact to mission projects, managing hundreds of regulatory reports for submission on time, and ensuring environmental permits are maintained.

Bradley Messer
Bradley Messer
NASA/Stennis

Brad Messer of Santa Rosa Beach, Florida, received the NASA Exceptional Service Medal for more than 32 years of service to NASA. Since joining NASA in 1991, Messer has contributed to a variety of propulsion test and engineering projects. As assistant director of the NASA Stennis Engineering and Test Directorate in charge of the Office of Project Management, Planning and Control, he has been responsible for the day-to-day business operations and project activities across the test complex. Messer has also made significant contributions to the strategic planning and execution of activities essential to the future state of the test complex.

Kevin Power
Kevin Power
NASA/Stennis

Kevin Power of Mandeville, Louisiana, received the NASA Exceptional Service Medal for more than 34 years of service to NASA. As deputy assistant director for the Office of Project Management, Planning and Control in the Engineering and Test Directorate at NASA Stennis, the Port Sulphur, Louisiana, native has consistently delivered support to the NASA Stennis vision and mission. He has helped accomplish center, NASA, and national goals by providing management and engineering leadership, expertise, resources, and guidance to multiple NASA and commercial propulsion test projects, including some of the center’s most critical test infrastructure efforts.

Cecile Saltzman
Cecile Saltzman
NASA/Stennis

Cecile Saltzman of Pass Christian, Mississippi, received the NASA Exceptional Service Medal for more than 20 years of service to the NASA Stennis Engineering and Test Directorate. Saltzman’s work has included management of the directorate document process control function, ensuring NASA Stennis test complex assets and support facilities are operated, utilized, and continually improved in providing premier testing services to NASA and commercial customers. The Thibodaux, Louisiana, native has consistently exceeded the agency’s timeline for editing fiscal year accomplishments of all NASA Stennis senior executive service and senior level personnel.

John Stealey
John Stealey
NASA/Stennis

John Stealey of Diamondhead, Mississippi, received the NASA Exceptional Service Medal for more than 35 years of service to NASA, including 26 years at NASA Stennis. The Granville, Tennessee, native has contributed to a range of agency and center projects. Among his accomplishments, Stealey has assisted in overseeing strategic planning for NASA Stennis propulsion test facilities and workforce. He has served in various center roles, including as deputy of the Safety and Mission Assurance Directorate and assistant director of the Engineering and Test Directorate. He also served on the agency-level Exploration System Directorate Standing Review Board, providing expert advice on systems engineering and project management.

One NASA Stennis employee received NASA’s Exceptional Public Service Medal. The medal is awarded to non-government individuals or to an individual who was not a government employee during the period in which the service was performed for sustained performance that embodies multiple contributions on NASA projects, programs, or initiatives.

Rodney King
Rodney King
NASA/Stennis

Rodney King of Picayune, Mississippi, received the NASA Exceptional Public Service Medal for efforts as the facility maintenance supervisor on the Synergy-Achieving Consolidated Operations and Maintenance contract at NASA Stennis. In that role, King has been responsible for electrical and high voltage work at the site. King’s service-centered approach has rendered him successful in technical work activities and how he relates to customers, management, peers, and direct reports. He has been recognized by organizations throughout the NASA Stennis federal city for his quick response to outages or calls within their facilities.

Four NASA Stennis employees received NASA’s Exceptional Bravery Medal. The medal is awarded to both government and non-government individuals for exemplary and courageous handling of an emergency by an individual who, independent of personal danger, has acted to prevent the loss of human life and/or government property.

Barry Hoda
Barry Hoda
NASA/Stennis

Barry Hoda of Kiln, Mississippi, received the NASA Exceptional Bravery Medal for exemplary and courageous actions while responding to a medical emergency at NASA Stennis to prevent the loss of human life on Dec. 7, 2022. An officer with Chenega Global Protection, Hoda noted the employee was unresponsive, and no pulse or respiration were detected. Hoda immediately began cardiopulmonary resuscitation (CPR) and then synchronized CPR chest compressions with other respondents, ensuring a continuous, uninterrupted blood supply to the employee’s brain. The rapid response and coordinated effort were directly responsible for saving a life.

Leeanna Dunigan of Diamondhead, Mississippi, received the NASA Exceptional Bravery Medal for exemplary and courageous actions while responding to a medical emergency at NASA Stennis to prevent the loss of human life on Dec. 7, 2022. A captain with Chenega Global Protection, Dunigan helped provide cardiopulmonary resuscitation (CPR) to the employee in distress by synchronizing CPR chest compressions with other respondents, ensuring a continuous, uninterrupted blood supply to the employee’s brain. The rapid response and coordinated effort were directly responsible for saving a life.

Brenden Burns of Gulfport, Mississippi, received the NASA Exceptional Bravery Medal for exemplary and courageous actions while responding to a medical emergency at NASA Stennis to prevent the loss of human life on Dec. 7, 2022. An officer with Chenega Global Protection, Burns utilized an automated external defibrillator on an employee in distress. The rapid response and coordinated effort with others were directly responsible for saving a life.

Issac Delancey
Issac Delancey
NASA/Stennis

Issac Delancey of Picayune, Mississippi, received the NASA Exceptional Bravery Medal for exemplary and courageous actions while responding to a medical emergency at NASA Stennis to prevent the loss of human life on Dec. 7, 2022. An officer with Chenega Global Protection, Delancey provided the automated external defibrillator while responding to an incident of an employee in distress. Upon arrival, Delancey provided the employee with artificial respiration and coordinated effort with others to maximize the effect of chest compressions. The rapid response and coordinated effort were directly responsible for saving a life.

One NASA Stennis employee received the NASA Exceptional Technology Achievement Medal. The medal is awarded to government or non-government individuals for exceptional technology contributions.

Richard Smith
Richard Smith
NASA/Stennis

Richard Smith of Picayune, Mississippi, received NASA’s Exceptional Technology Achievement Medal for efforts that led to significant advances to the data acquisition and thrust vector control systems that provide critical support to propulsion testing onsite. Among his contributions, Smith, a contractor on the operations and maintenance contract at NASA Stennis, was the primary software system architect for the thrust vector control work to enable rocket engine gimbal testing. He also worked to ensure safe hydraulic operation of the system. His efforts enabled the NASA Stennis test team to perform successful certification testing of the new RS-25 production engine.

Four NASA Stennis employees received the NASA Exceptional Achievement Medal. The medal is awarded to any government employee for a significant specific achievement or substantial improvement in operations, efficiency, service, financial savings, science, or technology which contributes to the mission of NASA.

John Boffenmyer
John Boffenmyer
NASA/Stennis

John Boffenmyer of Slidell, Louisiana, received NASA’s Exceptional Achievement Medal for maintaining the highest levels of performance in his remediation responsibilities within the NASA Stennis Center Operations Directorate, resulting in substantial benefits to the agency. As NASA Remediation Program manager for NASA Stennis, Boffenmyer’s work is integral to the Environmental and Health Services Office achieving the NASA Stennis and NASA missions. In conjunction with management of field operations, the Pottsville, Pennsylvania, native has demonstrated outstanding program management, with all audits of the NASA Stennis program proving successful.

Thomas Meredith
Thomas Meredith
NASA/Stennis

Thomas Meredith of Slidell, Louisiana, received NASA’s Exceptional Achievement Medal for his efforts as deputy chief engineer at NASA Stennis. During his tenure, the Enterprise, Alabama native has made substantial improvements to the management of test facility hardware in support of the center’s rocket propulsion test operations. Meredith’s leadership and dedication in the management of rocket propulsion test hardware have contributed to two areas of agency emphasis, the sustainment and modernization of mission-critical facilities and the employment of digital technologies to change and improve a process, product, or capability.

Kris Mobbs
Kris Mobbs

Kris Mobbs of Woolmarket, Mississippi, received NASA’s Exceptional Achievement Medal for his efforts as software engineer in the NASA Stennis Engineering and Test Directorate to lead development of the NASA Data Acquisition Software suite for the acquisition, displaying, and recording of critical data during daily and test activities. Mobbs has led in identifying and implementing new capabilities of the software suite and in development of software packages to help increase the reliability of test data and performance of the test team. As a direct outcome of his leadership, use of the software has expanded to all the NASA Stennis-operated test facilities.

Ryan Seals
Ryan Seals
NASA/Stennis

Ryan Seals of Carriere, Mississippi, received NASA’s Exceptional Achievement Medal for his contributions to the NASA Stennis propulsion test mission. Since beginning his career with NASA in 2016, the Poplarville, Mississippi, native has proven his expertise regarding test stand components and systems, contributing to the team responsible for testing the RS-25 engine that powers NASA’s SLS (Space Launch System) rocket. Seals also provided depth for the Thad Cochran Test Stand (B-2) team in preparation for hot fire testing of the SLS core stage. He also has supported commercial partner testing at the E Test Complex.

Four NASA Stennis employees received NASA’s Early Career Achievement Medal. The medal is awarded to government employees for unusual and significant performance during the first 10 years of an individual’s career in support of the agency.

Huy Nguyen
Huy Nguyen
NASA/Stennis

Huy Nguyen of Slidell, Louisana, received the NASA Early Career Achievement Medal for his contributions as the facility controls engineer in the Electrical Test Operations Branch in the NASA Stennis Engineering and Test Directorate. In that role, Nguyen has supported the daily operations of the High Pressure Gas Facility and High Pressure Industrial Water Facility, which provide critical support to test complex propulsion activities. Among his contributions, Nguyen was instrumental to the success of upgrades, analysis, and practice runs to mitigate any risks during Green Run testing of the SLS (Space Launch System) core stage at NASA Stennis.

Kevin Oramous
Kevin Oramous
NASA/Stennis

Kevin Oramous of Slidell, Louisiana, received the NASA Early Career Achievement Medal for his contributions to propulsion test activities and support facilities to directly advance NASA’s rocket propulsion test mission. The New Orleans native began his career at NASA Stennis in 2019 in the Mechanical Operations Branch of the NASA Stennis engineering and Test Directorate, working in the site’s E Test Complex and High Pressure Gas Facility, using his expertise to support operation and systems projects and activities. Oramous also has supported RS-25 testing, propellant and commodity management, and the Thad Cochran Test Stand (B-2) during the SLS (Space Launch System) core stage testing.

Jason Richard
Jason Richard
NASA/Stennis

Jason Richard of Mandeville, Louisiana, received the NASA Early Career Achievement Medal for contributions to NASA’s support of commercial propulsion test partners at NASA Stennis. As project engineer at the E-1 Test Facility, Richard ensured completion of facility design, construction, and activation phases for the Relativity Space Aeon-R Thrust Chamber Assembly test project, while maintaining rigorous quality and safety standards. Working with the NASA Stennis Strategic Business Development Office, Richard has helped bridge the propulsion testing and business development teams and worked to implement the office’s information technology strategy.

Bradley Tyree
Bradley Tyree
NASA/Stennis

Bradley Tyree of Picayune, Mississippi, received the NASA Early Career Achievement Medal for his work in the Mechanical Operations Branch in the NASA Stennis Engineering and Test Directorate. Tyree has provided leadership and technical expertise to key projects, including E Test Complex support of SLS (Space Launch System) core stage testing at NASA Stennis. Since being assigned to support RS-25 testing, his knowledge of propellant handling techniques, technical system maintenance, and test processes have proved invaluable and enabled his progression as a propellant transfer engineer and RS-25 test conductor.

One NASA Stennis employee received NASA’s Silver Achievement Medal. The medal is awarded to any government or non-government employee for a stellar achievement that supports one or more of NASA’s core values, when it is deemed to be extraordinarily important and appropriate to recognize such achievement in a timely and personalized manner.

Gregg De Felicibus
Gregg De Felicibus
NASA/Stennis

Gregg De Felicibus of Pass Christian, Mississippi, received the NASA Silver Achievement Medal for displaying NASA’s core values of safety, integrity, teamwork, excellence, and inclusion while carrying out his work as a contracting officer in the Office of Procurement in support of advancing Space Exploration and NASA’s strategic goals. He has been responsible for the award and management of five critical services contracts valued at over $18.6 million. He has served as an advisor and mentor, has supported the NASA Stennis Small Business Office in achieving its socio-economic goals, has administered over $43 million in contracts, and has negotiated over $5.7 million in cost savings.

For information about NASA’s Stennis Space Center, visit:

Stennis Space Center – NASA

Share

Details

Last Updated
Jun 03, 2024
Editor
NASA Stennis Communications
Contact
C. Lacy Thompson
Location
Stennis Space Center

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      From left to right, NASA’s Carruthers Geocorona Observatory, IMAP (Interstellar Mapping and Acceleration Probe), and the National Oceanic and Atmospheric Administration’s (NOAA) Space Weather Follow On-Lagrange 1 (SWFO-L1) missions will map our Sun’s influence across the solar system in new ways. Credit: NASA NASA will provide live coverage of prelaunch and launch activities for an observatory designed to study space weather and explore and map the boundaries of our solar neighborhood.
      Launching with IMAP (Interstellar Mapping and Acceleration Probe) are two rideshare missions, NASA’s Carruthers Geocorona Observatory and the National Oceanic and Atmospheric Administration’s (NOAA) Space Weather Follow On-Lagrange 1 (SWFO-L1), both of which will provide insight into space weather and its impacts at Earth and across the solar system.
      Liftoff of the missions on a SpaceX Falcon 9 rocket is targeted for 7:32 a.m. EDT, Tuesday, Sept. 23, from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Watch coverage beginning at 6:40 a.m. on NASA+, Amazon Prime, and more. Learn how to watch NASA content through a variety of platforms, including social media.
      The IMAP spacecraft will study how the Sun’s energy and particles interact with the heliosphere — an enormous protective bubble of space around our solar system — to enhance our understanding of space weather, cosmic radiation, and their impacts on Earth and human and robotic space explorers. The spacecraft and its two rideshares will orbit approximately one million miles from Earth, positioned toward the Sun at a location known as Lagrange Point 1.
      NASA’s Carruthers Geocorona Observatory is a small satellite that will observe Earth’s outermost atmospheric layer, the exosphere. It will image the faint glow of ultraviolet light from this region, called the geocorona, to better understand how space weather impacts our planet. The Carruthers mission continues the legacy of the Apollo era, expanding on measurements first taken during Apollo 16.
      The SWFO-L1 spacecraft will monitor space weather and detect solar storms in advance, serving as an early warning beacon for potentially disruptive space weather, helping safeguard Earth’s critical infrastructure and technological-dependent industries. The SWFO-L1 spacecraft is the first NOAA observatory designed specifically for and fully dedicated to continuous, operational space weather observations.
      Media accreditation for in-person coverage of this launch has passed. NASA’s media credentialing policy is available online. For questions about media accreditation, please email: ksc-media-accreditat@mail.nasa.gov.
      NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations):
      Sunday, Sept. 21
      2:30 p.m. – NASA Prelaunch News Conference on New Space Weather Missions
      Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters in Washington Brad Williams, IMAP program executive, NASA Headquarters Irene Parker, deputy assistant administrator for Systems at NOAA’s National Environmental Satellite, Data, and Information Service Denton Gibson, launch director, NASA’s Launch Services Program, NASA Kennedy Julianna Scheiman, director, NASA Science Missions, SpaceX Arlena Moses, launch weather officer, 45th Weather Squadron, U.S. Space Force Watch the briefing on the agency’s website or NASA’s YouTube channel.
      Media may ask questions in person or via phone. Limited auditorium space will be available for in-person participation for previously credentialed media. For the dial-in number and passcode, media should contact the NASA Kennedy newsroom no later than one hour before the start of the event at ksc-newsroom@mail.nasa.gov.
      3:45 p.m. – NASA, NOAA Science News Conference on New Space Weather Missions
      Joe Westlake, director, Heliophysics Division, NASA Headquarters David McComas, IMAP principal investigator, Princeton University Lara Waldrop, Carruthers Geocorona Observatory principal investigator, University of Illinois Urbana-Champaign Jamie Favors, director, Space Weather Program, Heliophysics Division, NASA Headquarters Clinton Wallace, director, NOAA Space Weather Prediction Center James Spann, senior scientist, NOAA Office of Space Weather Observations Watch the briefing on the agency’s website or NASA’s YouTube channel.
      Media may ask questions in person and via phone. Limited auditorium space will be available for in-person participation. For the dial-in number and passcode, media should contact the NASA Kennedy newsroom no later than one hour before the start of the event at ksc-newsroom@mail.nasa.gov. Members of the public may ask questions on social media using the hashtag #AskNASA.
      Monday, Sept. 22
      11:30 a.m. – In-person media one-on-one interviews with the following:
      Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters Kieran Hegarty, IMAP project manager, Johns Hopkins University Applied Physics Lab Jamie Rankin, IMAP instrument lead for Solar Wind and Pickup Ion, Princeton University John Clarke, Carruthers deputy principal investigator, Boston University Dimitrios Vassiliadis, SWFO-L1 program scientist, NOAA Brent Gordon, deputy director, NOAA Space Weather Prediction Center Remote media may request a one-on-one video interview online by 3 p.m. on Thursday, Sept. 18.
      Tuesday, Sept. 23
      6:40 a.m. – Launch coverage begins on NASA+,  Amazon Prime and more. NASA’s Spanish launch coverage begins on NASA+, and the agency’s Spanish-language YouTube channel.
      7:32 a.m. – Launch
      Audio-Only Coverage
      Audio-only of the launch coverage will be carried on the NASA “V” circuits, which may be accessed by dialing 321-867-1220, or -1240. On launch day, “mission audio,” countdown activities without NASA+ media launch commentary, will be carried on 321-867-7135.
      NASA Website Launch Coverage
      Launch day coverage of the mission will be available on the agency’s website. Coverage will include links to live streaming and blog updates beginning no earlier than 6 a.m., Sept. 23, as the countdown milestones occur. Streaming video and photos of the launch will be accessible on demand shortly after liftoff. Follow countdown coverage on the IMAP blog.
      For questions about countdown coverage, contact the NASA Kennedy newsroom at 321-867-2468.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con María-José Viñas: maria-jose.vinasgarcia@nasa.gov.
      Attend Launch Virtually
      Members of the public can register to attend this launch virtually. NASA’s virtual guest program for this mission also includes curated launch resources, notifications about related opportunities or changes, and a stamp for the NASA virtual guest passport following launch.
      Watch, Engage on Social Media
      Let people know you’re watching the mission on X, Facebook, and Instagram by following and tagging these accounts:


      X: @NASA, @NASAKennedy, @NASASolarSystem, @NOAASatellies
      Facebook: NASA, NASA Kennedy, NASA Solar System, NOAA Satellites
      Instagram: @NASA, @NASAKennedy, @NASASolarSystem, @NOAASatellites
      For more information about these missions, visit:
      https://www.nasa.gov/sun
      -end-
      Abbey Interrante
      Headquarters, Washington
      301-201-0124
      abbey.a.interrante@nasa.gov
      Sarah Frazier
      Goddard Space Flight Center, Greenbelt, Md.
      202-853-7191
      sarah.frazier@nasa.gov
      Leejay Lockhart
      Kennedy Space Center, Fla.
      321-747-8310
      leejay.lockhart@nasa.gov
      John Jones-Bateman
      NOAA’s Satellite and Information Service, Silver Spring, Md.
      202-242-0929
      john.jones-bateman@noaa.gov
      Share
      Details
      Last Updated Sep 15, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Heliophysics Division Carruthers Geocorona Observatory (GLIDE) Goddard Space Flight Center Heliophysics IMAP (Interstellar Mapping and Acceleration Probe) Kennedy Space Center Science Mission Directorate View the full article
    • By NASA
      Credit: NASA NASA has selected Bastion Technologies Inc. of Houston to provide safety and mission assurance services for the agency’s Marshall Space Flight Center in Huntsville, Alabama.
      The Safety and Mission Assurance II (SMAS II) award is a performance-based, indefinite-delivery/indefinite-quantity contract with a maximum potential value of $400 million. A phase-in period begins Monday, followed by a base ordering period of four years with options to extend services through March 2034.
      Under the contract, Bastion will provide services for a wide range of activities including system safety, reliability, maintainability, software assurance, quality engineering and assurance, independent assessment, institutional safety, and pressure systems.
      The work will support various spaceflight and science missions, research and development projects, hardware fabrication and testing, and other activities at NASA Marshall, Michoud Assembly Facility in New Orleans, and Stennis Space Center in Bay St. Louis, Mississippi. Tasks also will be performed at NASA’s Kennedy Space Center in Florida, contractor facilities, and other sites supported by Marshall’s Safety and Mission Assurance Directorate.
      The SMAS II contract is a small business set-aside, which levels the playing field for qualified small businesses to compete for and win federal contracts.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Molly Porter
      Marshall Space Flight Center, Huntsville, Ala.
      256-424-5158
      molly.a.porter@nasa.gov
      Share
      Details
      Last Updated Sep 15, 2025 LocationNASA Headquarters Related Terms
      Marshall Space Flight Center Kennedy Space Center Michoud Assembly Facility NASA Centers & Facilities Stennis Space Center View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      On Sept. 9, 2025, NASA’s Solar Dynamics Observatory captured this image of the Sun.NASA/GSFC/Solar Dynamics Observatory It looked like the Sun was heading toward a historic lull in activity. That trend flipped in 2008, according to new research.
      The Sun has become increasingly active since 2008, a new NASA study shows. Solar activity is known to fluctuate in cycles of 11 years, but there are longer-term variations that can last decades. Case in point: Since the 1980s, the amount of solar activity had been steadily decreasing all the way up to 2008, when solar activity was the weakest on record. At that point, scientists expected the Sun to be entering a period of historically low activity.
      But then the Sun reversed course and started to become increasingly active, as documented in the study, which appears in The Astrophysical Journal Letters. It’s a trend that researchers said could lead to an uptick in space weather events, such as solar storms, flares, and coronal mass ejections.
      “All signs were pointing to the Sun going into a prolonged phase of low activity,” said Jamie Jasinski of NASA’s Jet Propulsion Laboratory in Southern California, lead author of the new study. “So it was a surprise to see that trend reversed. The Sun is slowly waking up.”
      The earliest recorded tracking of solar activity began in the early 1600s, when astronomers, including Galileo, counted sunspots and documented their changes. Sunspots are cooler, darker regions on the Sun’s surface that are produced by a concentration of magnetic field lines. Areas with sunspots are often associated with higher solar activity, such as solar flares, which are intense bursts of radiation, and coronal mass ejections, which are huge bubbles of plasma that erupt from the Sun’s surface and streak across the solar system.
      NASA scientists track these space weather events because they can affect spacecraft, astronauts’ safety, radio communications, GPS, and even power grids on Earth. Space weather predictions are critical for supporting the spacecraft and astronauts of NASA’s Artemis campaign, as understanding the space environment is a vital part of mitigating astronaut exposure to space radiation.
      Launching no earlier than Sept. 23, NASA’s IMAP (Interstellar Mapping and Acceleration Probe) and Carruthers Geocorona Observatory missions, as well as the National Oceanic and Atmospheric Administration’s SWFO-L1 (Space Weather Follow On-Lagrange 1) mission, will provide new space weather research and observations that will help to drive future efforts at the Moon, Mars, and beyond.
      Solar activity affects the magnetic fields of planets throughout the solar system. As the solar wind — a stream of charged particles flowing from the Sun — and other solar activity increase, the Sun’s influence expands and compresses magnetospheres, which serve as protective bubbles of planets with magnetic cores and magnetic fields, including Earth. These protective bubbles are important for shielding planets from the jets of plasma that stream out from the Sun in the solar wind.
      Over the centuries that people have been studying solar activity, the quietest times were a three-decade stretch from 1645 to 1715 and a four-decade stretch from 1790 to 1830. “We don’t really know why the Sun went through a 40-year minimum starting in 1790,” Jasinski said. “The longer-term trends are a lot less predictable and are something we don’t completely understand yet.”
      In the two-and-a-half decades leading up to 2008, sunspots and the solar wind decreased so much that researchers expected the “deep solar minimum” of 2008 to mark the start of a new historic low-activity time in the Sun’s recent history.
      “But then the trend of declining solar wind ended, and since then plasma and magnetic field parameters have steadily been increasing,” said Jasinski, who led the analysis of heliospheric data publicly available in a platform called OMNIWeb Plus, run by NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      The data Jasinski and colleagues mined for the study came from a broad collection of NASA missions. Two primary sources — ACE (Advanced Composition Explorer) and the Wind mission — launched in the 1990s and have been providing data on solar activity like plasma and energetic particles flowing from the Sun toward Earth. The spacecraft belong to a fleet of NASA Heliophysics Division missions designed to study the Sun’s influence on space, Earth, and other planets.
      News Media Contacts
      Gretchen McCartney
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-287-4115
      gretchen.p.mccartney@jpl.nasa.gov 
      Karen Fox / Abbey Interrante
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / abbey.a.interrante@nasa.gov
      2025-118
      Share
      Details
      Last Updated Sep 15, 2025 Related Terms
      Heliophysics Jet Propulsion Laboratory The Solar System Explore More
      3 min read Weird Ways to Observe the Moon
      International Observe the Moon Night is on October 4, 2025, this year– but you can observe…
      Article 8 hours ago 5 min read NASA’s GUARDIAN Tsunami Detection Tech Catches Wave in Real Time
      Article 3 days ago 5 min read New U.S.-European Sea Level Satellite Will Help Safeguard Ships at Sea
      Article 4 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      One of the challenges many teachers face year after year is a sense of working alone. Despite the constant interaction with students many questions often linger: Did the lesson stick? Will students carry this knowledge with them? Will it shape how they see and engage with the world? What can be easy to overlook is that teaching does not happen in isolation. Each classroom, or any other educational setting, is part of a much larger journey that learners travel. This journey extends through a network of educators, where each experience can build on the last. These interconnected networks, known as Connected Learning Ecosystems (CLEs), exist wherever learning happens. At their core, CLEs are the collective of people who contribute to a young person’s growth and education over time.
      Educators at the August 2025 Connected Learning Ecosystems Gathering in Orono, ME engaged in discussion around using NASA data in their learning contexts. Recognizing this, NASA’s Science Activation Program launched the Learning Ecosystems Northeast (LENE) project to strengthen and connect regional educator networks across Maine and the broader Northeast. With a shared focus on Science, Technology, Engineering, and Mathematics (STEM), LENE brings together teachers, librarians, 4-H mentors, land trust educators, and many others committed to expanding scientific understanding, deepening data literacy, and preparing youth to navigate a changing planet. To support this work, LENE hosts biannual Connected Learning Ecosystem Gatherings. These multi-day events bring educators together to share progress, celebrate achievements, and plan future collaborations. More than networking, these gatherings reinforce the collective impact educators have, ensuring that their efforts resonate far beyond individual classrooms and enrich the lives of the learners they guide.
      “I am inspired by the GMRI staff and participants. I never expected to get to do climate resilience-related work in my current job as a children’s librarian. I am excited to do meaningful and impactful work with what I gain from being part of this the LENE community. This was a very well-run event! Thank you to all!” -anonymous


      This year’s Gathering took place August 12 and 13, 2025, in Orono, ME at the University of Maine (a LENE project partner). Nearly 70 educators from across the northeast came together for two amazingly energized days of connection, learning, and future planning. While each event is special, this summer’s Gathering was even more remarkable due to the fact that for, the first time, each workshop was led by an established LENE educator. Either by self-nomination or request from leadership (requiring little convincing), every learning experience shared over the conference days was guided by the thoughtful investigation and real life application of LENE Project Partners, CLE Lead Educators, and community collaborators.
      Brian Fitzgerald and Jackie Bellefontaine from the Mount Washington Observatory in New Hampshire, a LENE Project Partner, led the group through a hands-on activity using NASA data and local examples to observe extreme weather. Librarian Kara Reiman guided everyone through the creation and use of a newly established Severe Weather Disaster Prep Kit, including games and tools to manage climate anxiety. Katrina Heimbach, a long time CLE constituent from Western Maine taught how to interpret local data using a creative and fun weaving technique. Because of the established relationship between Learning Ecosystems Northeast and the University of Maine, attendees to the Gathering were able to experience a guided tour through the Advanced Structures and Composites Center and one of its creations, the BioHome3D – the world’s first 3D printed house made entirely with forest-derived, recyclable materials.
      Two full days of teachers leading teachers left the entire group feeling energized and encouraged, connected, and centered. The increased confidence in their practices gained by sustained support from their peers allowed these educators to step up and share – embodying the role of Subject Matter Expert. Seeing their colleagues take center stage makes it easier for other educators to envision themselves in similar roles and provides clear guidance on how to take those steps themselves. One educator shared their thoughts following the experience:
      “This was my first time attending the LENE conference, and I was immediately welcomed and made to feel ‘part of it all’. I made connections with many of the educators who were present, as well as the LENE staff and facilitators. I hope to connect with my new CLE mates in the near future!” Another participant reported, “I am inspired by the … staff and participants. I never expected to get to do climate resilience-related work in my current job as a children’s librarian. I am excited to do meaningful and impactful work with what I gain from being part of the LENE community. This was a very well-run event! Thank you to all!”
      Even with the backing of regional groups, many educators, especially those in rural communities, still struggle with a sense of isolation. The biannual gatherings play an important role in countering that, highlighting the fact that this work is unfolding across the state. Through Connected Learning Ecosystems, educators are able to build and reinforce networks that help close the gaps created by distance and geography.
      These Gatherings are part of ongoing programming organized by Learning Ecosystems Northeast, based at the Gulf of Maine Research Institute, that fosters peer communities across the Northeast, through which teachers, librarians, and out-of-school educators can collaborate to expand opportunities for youth to engage in data-driven investigations and integrate in- and out-of-school learning. Learn more about Learning Ecosystems Northeast’s efforts to empower the next generation of environmental stewards: https://www.learningecosystemsnortheast.org.
      The Learning Ecosystems Northeast project is supported by NASA under cooperative agreement award number NNX16AB94A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn/about-science-activation/.
      Share








      Details
      Last Updated Sep 15, 2025 Related Terms
      Earth Science Science Activation Explore More
      13 min read The Earth Observer Editor’s Corner: July–September 2025


      Article


      5 days ago
      21 min read Summary of the 11th ABoVE Science Team Meeting


      Article


      5 days ago
      5 min read From NASA Citizen Scientist to Astronaut Training: An Interview with Benedetta Facini


      Article


      3 weeks ago
      View the full article
    • By NASA
      A SpaceX Falcon 9 rocket carrying Northrop Grumman’s Cygnus XL spacecraft is launched on NASA’s Northrop Grumman Commercial Resupply Services 23 mission to the International Space Station on Sunday, Sept. 14, 2025.Credit: NASA NASA is sending more science, technology demonstrations, and crew supplies to the International Space Station following the successful launch of the agency’s Northrop Grumman Commercial Resupply Services 23 mission, or Northrop Grumman CRS-23.
      The company’s Cygnus XL spacecraft, carrying more than 11,000 pounds of cargo to the orbiting laboratory, lifted off at 6:11 p.m. EDT Sunday on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. This mission is the first flight of the larger, more cargo-capable version of the solar-powered spacecraft. 
      Cygnus XL is scheduled to be captured at 6:35 a.m. on Wednesday, Sept. 17, by the Canadarm2 robotic arm, which NASA astronaut Jonny Kim will operate with assistance from NASA astronaut Zena Cardman. Following capture, the spacecraft will be installed to the Unity module’s Earth-facing port for cargo unloading.
      The resupply mission is carrying dozens of research experiments that will be conducted during Expedition 73, including materials to produce semiconductor crystals in space and equipment to develop improvements for cryogenic fuel tanks. The spacecraft also will deliver a specialized UV light system to prevent the growth of microbe communities that form in water systems and supplies to produce pharmaceutical crystals that could treat cancer and other diseases.
      These are just a sample of the hundreds of scientific investigations conducted aboard the station in the areas of biology and biotechnology, Earth and space science, physical sciences, as well as technology development and demonstrations. For nearly 25 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, where astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including Artemis missions to the Moon and American astronaut missions to Mars.
      NASA’s arrival, capture, and installation coverage are as follows (all times Eastern and subject to change based on real-time operations):
      Wednesday, Sept. 17
      5 a.m. – Arrival coverage begins on NASA+, Amazon Prime, and more.
      6:35 a.m. – Capture of Cygnus XL with the space station’s robotic arm.
      8 a.m. – Installation coverage begins on NASA+, Amazon Prime, and more.
      All coverage times are estimates and could be adjusted based on operations after launch. Follow the space station blog for the most up-to-date information.
      Cygnus XL is scheduled to remain at the orbiting laboratory until March 2026, before it departs and disposes of several thousand pounds of trash through its re-entry into Earth’s atmosphere, where it will harmlessly burn up. The spacecraft is named the S.S. William “Willie” C. McCool, in honor of the NASA astronaut who perished in 2003 during the space shuttle Columbia accident.
      Learn more about this NASA commercial resupply mission at:
      https://www.nasa.gov/mission/nasas-northrop-grumman-crs-23/
      -end-
      Josh Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Steven Siceloff
      Kennedy Space Center, Fla.
      321-876-2468
      steven.p.siceloff@nasa.gov
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Sep 14, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Commercial Resupply ISS Research Johnson Space Center Northrop Grumman Commercial Resupply View the full article
  • Check out these Videos

×
×
  • Create New...