Members Can Post Anonymously On This Site
Swarm helps discover Steve's long-lost twin
-
Similar Topics
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Test flights help airplane and drone manufacturers identify which parts of the aircraft are creating the most noise. Using hundreds of wired microphones makes it an expensive and time-consuming process to improve the design to meet noise requirements. Credit: NASA Airplane manufacturers running noise tests on new aircraft now have a much cheaper option than traditional wired microphone arrays. It’s also sensitive enough to help farmers with pest problems. A commercial wireless microphone array recently created with help from NASA can locate crop-threatening insects by listening for the sounds they make in fields.
Since releasing its first commercial product in 2017, a sensor for wind tunnel testing developed with extensive help from NASA (Spinoff 2020), Interdisciplinary Consulting Corporation (IC2) has doubled its staff and moved to a larger lab and office space to produce its new WirelessArray product. Interested in making its own flight tests more affordable, NASA’s Langley Research Center in Hampton, Virginia, supported this project with Small Business Innovation Research contracts and expert consulting.
Airplanes go through noise testing and require certification that they don’t exceed the noise level set for their body type by the Federal Aviation Administration. When an airplane flies directly overhead, the array collects noise data to build a two-dimensional map of the sound pressure and its source. A custom software package translates that information for the end user.
For previous NASA noise testing, multiple semi-trucks hauled all the sensors, wires, power generators, racks of servers, and other equipment required for one flight test. The setup and teardown took six people three days. By contrast, two people can pack the WirelessArray into a minivan and set it up in a day.
IC2 is working with an entomologist to use acoustic data to listen for high-frequency insect sounds in agricultural settings. Discovering where insects feed on crops will make it possible for farmers to intervene before they do too much damage while limiting pesticide use to those areas. Whether it’s helping planes in the sky meet noise requirements or keeping harmful insects away from crops, NASA technology is finding sound-based solutions for the benefit of all.
Read More Share
Details
Last Updated Mar 14, 2025 Related Terms
Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
2 min read What is a NASA Spinoff? We Asked a NASA Expert: Episode 53
Article 1 week ago 3 min read NASA Partners with US Patent and Trademark Office to Advance Technology Transfer
Article 3 months ago 3 min read NASA Gives The World a Brake
Article 3 months ago Keep Exploring Discover Related Topics
Langley Expertise and Facilities
Humans in Space
Technology Transfer & Spinoffs
Solar System
View the full article
-
By NASA
NICER (left) is shown mounted to the International Space Station, and LEXI (right) is shown attached to the top of Firefly Aerospace’s Blue Ghost in an artist’s rendering.NASA/Firefly Aerospace The International Space Station supports a wide range of scientific activities from looking out at our universe to breakthroughs in medical research, and is an active proving ground for technology for future Moon exploration missions and beyond. Firefly Aerospace’s Blue Ghost Mission-1 landed on the Moon on March 2, 2025, kicking off science and technology operations on the surface, including three experiments either tested on or enabled by space station research. These projects are helping scientists study space weather, navigation, and computer performance in space— knowledge crucial for future Moon missions.
One of the experiments, the Lunar Environment Heliospheric X-ray Imager (LEXI), is a small telescope designed to study the Earth’s magnetic environment and its interaction with the solar wind. Like the Neutron star Interior Composition Explorer (NICER) telescope mounted outside of the space station, LEXI observes X-ray sources. LEXI and NICER observed the same X-ray star to calibrate LEXI’s instrument and better analyze the X-rays emitted from Earth’s upper atmosphere, which is LEXI’s primary target. LEXI’s study of the interaction between the solar wind and Earth’s protective magnetosphere could help researchers develop methods to safeguard future space infrastructure and understand how this boundary responds to space weather.
Other researchers sent the Radiation Tolerant Computer System (RadPC) to the Moon to test how computers can recover from radiation-related faults. Before RadPC flew on Blue Ghost, researchers tested a radiation tolerant computer on the space station and developed an algorithm to detect potential hardware faults and prevent critical failures. RadPC aims to demonstrate computer resilience in the Moon’s radiation environment. The computer can gauge its own health in real time, and RadPC can identify a faulty location and repair it in the background as needed. Insights from this investigation could improve computer hardware for future deep-space missions.
In addition, the Lunar Global Navigation Satellite System (GNSS) Receiver Experiment (LuGRE) located on the lunar surface has officially received a GNSS signal at the farthest distance from Earth, the same signals that on Earth are used for navigation on everything from smartphones to airplanes. Aboard the International Space Station, Navigation and Communication Testbed (NAVCOM) has been testing a backup system to Earth’s GNSS using ground stations as an alternative method for lunar navigation where GNSS signals may have limitations. Bridging existing systems with emerging lunar-specific navigation solutions could help shape how spacecraft navigate the Moon on future missions.
The International Space Station serves as an important testbed for research conducted on missions like Blue Ghost and continues to lay the foundation for technologies of the future.
Keep Exploring Discover More Topics From NASA
International Space Station News
Space Station Research and Technology Tools and Information
Commercial Lunar Payload Services (CLPS)
The goal of the CLPS project is to enable rapid, frequent, and affordable access to the lunar surface by helping…
Space Station Research Results
View the full article
-
By NASA
“People are excited and happy about working at Goddard,” said optics engineer Margaret Dominguez. “Most people are willing to put in the extra effort if needed. It makes work stimulating and exciting. Management really cares and the employees feel that too.”Credits: Courtesy of Margaret Dominguez Name: Margaret Dominguez
Formal Job Classification: Optical engineer
Organization: Code 551, Optics Branch, Instrument Systems and Technology Division, Engineering Directorate
What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission?
I build space telescopes. I am currently working on building one of the components for the Wide Field Instrument for the Roman Space Telescope. The component is called “Grism.” A grism is a combination of a grating and a prism.
What is unique about your childhood?
I went to high school in Tecamachalco in Puebla, Mexico, which is inland and south of Mexico City. My father raised pigs, chickens, rabbits, and cows. I am the oldest of four girls and two still live on the farm.
Why did you become a physicist?
I was always curious and had a lot of questions and thought that physics helped me answer some of these questions. I was good at math and loved it. When I told my dad I wanted to study physics, he said that I would be able to answer any question in the universe. He thought it was very cool.
What is your educational background? How an internship help you come to Goddard?
I went to the Universidad de las Americas Puebla college in Puebla and got an undergraduate degree in physics. I was very active in extracurricular activities and helped organize a physics conference. We invited Dr. Johnathan Gardner, a Goddard astronomer, who came to speak at the conference. Afterwards I spoke with him and he asked me if I was interested in doing an internship at NASA. I said I had not considered it and would be interested in applying. I applied that same spring of 2008 and got a summer internship in the Optics Branch, where I am still working today.
My branch head at Goddard was a University of Arizona alumnus. He suggested that I apply to the University of Arizona for their excellent optics program. I did, and the university gave me a full fellowship for a master’s and a Ph.D. in optical sciences.
In 2014, I began working full time at Goddard while completing my Ph.D. I graduated in May 2019.
What makes Goddard special?
Goddard has a university campus feel. It’s a place where you can work and also just hang out and socialize. Goddard has many clubs, a gym, cafeterias, and a health clinic.
People are really nice here. They are often excited and happy about working at Goddard. Most people are willing to put in the extra effort if needed. It makes work stimulating and exciting. Management really cares and the employees feel that too.
What are some of the major projects you have worked on?
Early on, I did a little bit of work on Hubble and later on, NASA’s James Webb Space Telescope. Since 2014, I have exclusively been working on Roman. We are building the grism, a slitless spectrograph, which will measure galaxy redshifts to study dark energy.
Presently we are building different grism prototypes. We work with outside vendors to build these prototypes. When we make a prototype, we test it for months. After, we use the results to build an improved prototype. We just finished making the third prototype. We are going to build a flight instrument of which the grism is a component.
What is it like to work in the clean room?
It’s exciting – it likely means I am working on flight hardware. However, because clean rooms must be kept at about 68 degrees Fahrenheit, it can feel chilly in there!
Who are your mentors? What are the most important lessons they have taught you?
Ray Ohl, the head of the Optics Branch, is a mentor to me. He is always encouraging me to get outside my comfort zone. He presents other opportunities to me so that I can grow and listens to my feedback.
Cathy Marx, one of the Roman optical leads, is also a mentor to me. She created a support network for me and is a sounding board for troubleshooting any kind of work-related issues.
What is your role a member of the Hispanic Advisory Committee (HACE)?
I joined HACE in 2010 while I was an intern. It’s a great opportunity to network with other Hispanics and gives us a platform to celebrate specific events like Hispanic Heritage Month. I really enjoy participating in HACE’s events.
What outreach do you do? Why is doing outreach so important to you?
I do educational outreach to teach people about optics. I mainly collaborate with elementary and middle schools.
I think we need more future engineers and scientists. I want to help recruit them. I specifically focus on recruiting minorities and Hispanics. I can make a special connection with women and Hispanics.
Who is your science hero?
It would probably be Marie Curie. She’s the first woman to win a Nobel Prize, and she is the only woman to win two Nobel Prizes and she had to overcome a lot of challenges to achieve that.
What is your “six-word memoir”? A six-word memoir describes something in just six words.
Disciplined. Organized. Diligent. Passionate. Curious. Family-oriented.
Is there something surprising about your hobbies outside of work that people do not generally know?
I am a certified Jazzercise instructor – I normally teach two to three times a week. I can even teach virtually if need be. It is an hour-long exercise class combining strength training and cardio through choreographed dancing. We also use weights and mats.
I also enjoy going for walks with my husband, James Corsetti, who is also an engineer in the Optics Branch.
By Elizabeth M. Jarrell
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
View the full article
-
By NASA
3 min read
NASA’s Cloud-based Confluence Software Helps Hydrologists Study Rivers on a Global Scale
The Paraná River in northern Argentina. Confluence, which is open-source and free to use, allows researchers to estimate river discharge and suspended sediment levels in Earth’s rivers at a global scale. NASA/ISS Rivers and streams wrap around Earth in complex networks millions of miles long, driving trade, nurturing ecosystems, and stocking critical reserves of freshwater.
But the hydrologists who dedicate their professional lives to studying this immense web of waterways do so with a relatively limited set of tools. Around the world, a patchwork of just 3,000 or so river gauge stations supply regular, reliable data, making it difficult for hydrologists to detect global trends.
“The best way to study a river,” said Colin Gleason, Armstrong Professional Development Professor of Civil and Environmental Engineering at the University of Massachusetts, Amherst, “is to get your feet wet and visit it yourself. The second best way to study a river is to use a river gauge.”
Now, thanks to Gleason and a team of more than 30 researchers, there’s another option: ‘Confluence,’ an analytic collaborative framework that leverages data from NASA’s Surface Water and Ocean Topography (SWOT) mission and the Harmonized Landsat Sentinel-2 archive (HLS) to estimate river discharge and suspended sediment levels in every river on Earth wider than 50 meters. NASA’s Physical Oceanography Distributed Active Archive Center (PO.DAAC) hosts the software, making it open-source and free for users around the world.
By incorporating both altimetry data from SWOT which informs discharge estimates, and optical data from HLS, which informs estimates of suspended sediment data, Confluence marks the first time hydrologists can create timely models of river size and water quality at a global scale. Compared to existing workflows for estimating suspended sediment using HLS data, Confluence is faster by a factor of 30.
I can’t do global satellite hydrology without this system. Or, I could, but it would be extremely time consuming and expensive.
Colin Gleason
Nikki Tebaldi, a Cloud Adoption Engineer at NASA’s Jet Propulsion Laboratory (JPL) and Co-Investigator for Confluence, was the lead developer on this project. She said that while the individual components of Confluence have been around for decades, bringing them together within a single, cloud-based processing pipeline was a significant challenge.
“I’m really proud that we’ve pieced together all of these different algorithms, got them into the cloud, and we have them all executing commands and working,” said Tebaldi.
Suresh Vannan, former manager of PO.DAAC and a Co-Investigator for Confluence, said this new ability to produce timely, global estimates of river discharge and quality will have a huge impact on hydrological models assessing everything from the health of river ecosystems to snowmelt.
“There are a bunch of science applications that river discharge can be used for, because it’s pretty much taking a snapshot of what the river looks like, how it behaves. Producing that snapshot on a global scale is a game changer,” said Vannan.
While the Confluence team is still working with PO.DAAC to complete their software package, users can currently access the Confluence source code here. For tutorials, manuals, and other user guides, visit the PO.DAAC webpage here.
All of these improvements to the original Confluence algorithms developed for SWOT were made possible by NASA’s Advanced Intelligent Systems Technology (AIST) program, a part of the agency’s Earth Science Technology Office (ESTO), in collaboration with SWOT and PO.DAAC.
To learn more about opportunities to develop next-generation technologies for studying Earth from outer space, visit ESTO’s solicitation page here.
Project Lead: Colin Gleason / University of Massachusetts, Amherst
Sponsoring Organization: Advanced Intelligent Systems Technology program, within NASA’s Earth Science Technology Office
Share
Details
Last Updated Feb 04, 2025 Related Terms
Science-enabling Technology Earth Science Oceanography SWOT (Surface Water and Ocean Topography) Explore More
15 min read Summary of the 53rd U.S.–Japan ASTER Science Team Meeting
Article
2 weeks ago
23 min read Summary of the 2024 Quadrennial Ozone Symposium
Article
2 weeks ago
2 min read An Introduction to NASA Citizen Science for Service Members, Veterans and their Families
Article
2 weeks ago
View the full article
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA Glenn employees donated 11 boxes of new, unwrapped gifts to the Toys for Tots program. Credit: NASA/Sara Lowthian-Hanna NASA’s Glenn Research Center continued a decades-long tradition of participating in the Marine Corps Reserve Toys for Tots program during the 2024 holiday season. On Dec. 9, members of the Marine Corps Reserve (3rd Battalion, 25th Marines) picked up 11 boxes of toys donated by employees from NASA Glenn’s facilities in Cleveland and Sandusky, Ohio.
Marine Corps representatives stand at far left and far right of NASA Glenn’s Associate Director Larry Sivic, left, Center Director Dr. Jimmy Kenyon, center, and Acting Deputy Director Dr. Wanda Peters. Credit: NASA/Sara Lowthian-Hanna The Glenn Veterans Employee Resource Group led the donation drive. The Toys for Tots campaign collects and distributes new, unwrapped toys to less fortunate children in the area for Christmas.
Return to Newsletter Explore More
1 min read NASA Faces of Technology: Meet Lauren Best Ameen
Article 7 mins ago 2 min read NASA Glenn Trains Instructors for After-School STEM Program
Article 7 mins ago 4 min read NASA Sets Sights on Mars Terrain with Revolutionary Tire Tech
Article 24 hours ago View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.