Jump to content

Recommended Posts

  • Publishers
Posted
ksc-20240528-ph-kls02-0025orig.jpg?w=204
Technicians inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida prepare to rotate the agency’s largest planetary mission spacecraft, Europa Clipper, to a vertical position on Tuesday, May 28, 2024, as part of prelaunch processing.
Photo credit: NASA/Kim Shiflett

Crews rotated to vertical then lifted NASA’s Europa Clipper spacecraft from its protective shipping container after it arrived at the Payload Hazardous Servicing Facility (PHSF) at the agency’s Kennedy Space Center in Florida on May 28.

The spacecraft, which will collect data to help scientists determine if Jupiter’s icy moon Europa could support life, arrived in a United States Air Force C-17 Globemaster III cargo plane at Kennedy’s Launch and Landing Facility on May 23. The hardware traveled more than 2,500 miles from NASA’s Jet Propulsion Lab in Southern California where it was assembled. The team transported Europa Clipper to the PHSF and will perform a number of activities to prepare it for launch, including attaching the high gain antenna, affixing solar arrays to power the spacecraft, and loading propellants that will help guide the spacecraft to its destination.

On board are nine science instruments to gather detailed measurements while Europa Clipper performs approximately 50 close flybys of the Jovian moon. Research suggests an ocean twice the volume of all the Earth’s oceans exists under Europa’s icy crust.

The Europa Clipper spacecraft will launch on a SpaceX Falcon Heavy rocket from NASA Kennedy’s Launch Complex 39A. The launch period opens Thursday, Oct. 10.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      An artist’s concept of NASA’s Europa Clipper shows the spacecraft in silhouette against Europa’s surface, with the magnetometer boom fully deployed at top and the antennas for the radar instrument extending out from the solar arrays.NASA/JPL-Caltech Headed to Jupiter’s moon Europa, the spacecraft is operating without a hitch and will reach Mars in just three months for a gravity assist.
      NASA’s Europa Clipper, which launched Oct. 14 on a journey to Jupiter’s moon Europa, is already 13 million miles (20 million kilometers) from Earth. Two science instruments have deployed hardware that will remain at attention, extending out from the spacecraft, for the next decade — through the cruise to Jupiter and the entire prime mission.
      A SpaceX Falcon Heavy rocket launched it away from Earth’s gravity, and now the spacecraft is zooming along at 22 miles per second (35 kilometers per second) relative to the Sun.
      Europa Clipper is the largest spacecraft NASA has ever developed for a planetary mission. It will travel 1.8 billion miles (2.9 billion kilometers) to arrive at Jupiter in 2030 and in 2031 will begin a series of 49 flybys, using a suite of instruments to gather data that will tell scientists if the icy moon and its internal ocean have the conditions needed to harbor life.
      For now, the information mission teams are receiving from the spacecraft is strictly engineering data (the science will come later), telling them how the hardware is operating. Things are looking good. The team has a checklist of actions the spacecraft needs to take as it travels deeper into space. Here’s a peek:
      Boom Times
      Shortly after launch, the spacecraft deployed its massive solar arrays, which extend the length of a basketball court. Next on the list was the magnetometer’s boom, which uncoiled from a canister mounted on the spacecraft body, extending a full 28 feet (8.5 meters).
      To confirm that all went well with the boom deployment, the team relied on data from the magnetometer’s three sensors. Once the spacecraft is at Jupiter, these sensors will measure the magnetic field around Europa, both confirming the presence of the ocean thought to be under the moon’s icy crust and telling scientists about its depth and salinity.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      This animation shows how the boom of Europa Clipper’s magnetometer deployed — while the spacecraft was in flight — to its full length of 28 feet (8.5 meters). NASA/JPL-Caltech On the Radar
      After the magnetometer, the spacecraft deployed several antennas for the radar instrument. Now extending crosswise from the solar arrays, the four high-frequency antennas form what look like two long poles, each measuring 57.7 feet (17.6 meters) long. Eight rectangular very-high-frequency antennas, each 9 feet (2.76 meters) long, were also deployed — two on the two solar arrays.
      “It’s an exciting time on the spacecraft, getting these key deployments done,” said Europa Clipper project manager Jordan Evans of NASA’s Jet Propulsion Laboratory in Southern California. “Most of what the team is focusing on now is understanding the small, interesting things in the data that help them understand the behavior of the spacecraft on a deeper level. That’s really good to see.”
      Instrument Checkout
      The remaining seven instruments will be powered on and off through December and January so that engineers can check their health. Several instruments, including the visible imager and the gas and dust mass spectrometers, will keep their protective covers closed for the next three or so years to guard against potential damage from the Sun during Europa Clipper’s time in the inner solar system.
      Mars-Bound
      Once all the instruments and engineering subsystems have been checked out, mission teams will shift their focus to Mars. On March 1, 2025, Europa Clipper will reach Mars’ orbit and begin to loop around the Red Planet, using the planet’s gravity to gain speed. (This effect is similar to how a ball thrown at a moving train will bounce off the train in another direction at a higher speed.) Mission navigators already have completed one trajectory correction maneuver, as planned, to get the spacecraft on the precise course.
      At Mars, scientists plan to turn on the spacecraft’s thermal imager to capture multicolored images of Mars as a test operation. They also plan to collect data with the radar instrument so engineers can be sure it’s operating as expected.
      The spacecraft will perform another gravity assist in December 2026, swooping by Earth before making the remainder of the long journey to the Jupiter system. At that time, the magnetometer will measure Earth’s magnetic field, calibrating the instrument.
      More About Europa Clipper
      Europa Clipper’s three main science objectives are to determine the thickness of the moon’s icy shell and its interactions with the ocean below, to investigate its composition, and to characterize its geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet.
      Managed by Caltech in Pasadena, California, JPL leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, for NASA’s Science Mission Directorate in Washington. APL designed the main spacecraft body in collaboration with JPL and NASA’s Goddard Space Flight Center in Greenbelt, Maryland, NASA’s Marshall Space Flight Center in Huntsville, Alabama, and Langley Research Center in Hampton, Virginia. The Planetary Missions Program Office at Marshall executes program management of the Europa Clipper mission. NASA’s Launch Services Program, based at Kennedy, managed the launch service for the Europa Clipper spacecraft.
      Find more information about Europa Clipper here:
      https://science.nasa.gov/mission/europa-clipper
      8 Things to Know About Europa Clipper Europa Clipper Teachable Moment NASA’s Europa Clipper Gets Its Giant Solar Arrays Kids Can Explore Europa With NASA’s Space Place News Media Contacts
      Gretchen McCartney
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-287-4115
      gretchen.p.mccartney@jpl.nasa.gov 
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov  
      2024-163
      Share
      Details
      Last Updated Nov 25, 2024 Related Terms
      Europa Clipper Europa Jet Propulsion Laboratory Explore More
      5 min read NASA Ocean World Explorers Have to Swim Before They Can Fly
      Article 5 days ago 5 min read NASA’s Curiosity Mars Rover Takes a Last Look at Mysterious Sulfur
      Article 7 days ago 4 min read Precision Pointing Goes the Distance on NASA Experiment
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Earth Observer Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 22 min read
      NASA’s BlueFlux Campaign Supports Blue Carbon Management in South Florida
      Photo 1. A Mangrove stand lines the bank of Shark River, an Everglades distributary that carries water into the Gulf of Mexico’s Ponce De Leon Bay. Photo credit: Nathan Marder/NASA’s Goddard Space Flight Center (GSFC) Introduction
      Along the southernmost rim of the Florida Peninsula, the arching prop roots or “knees” of red mangroves (Rhizophora mangle) line the coast – see Photo 1. Where they dip below the water’s surface, fish lay their eggs, enjoying the protection from predators that the trees provide. Among their branches, wading birds, such as the great blue heron and the roseate spoonbill establish rookeries to rear their young. The tangled matrix of roots collects organic matter and ocean-bound sediments, adding little-by-little to the coastline and shielding inland biology from the erosive force of the sea. In these ways, mangroves are equal parts products and engineers of their environment, but their ecological value extends far beyond this local sphere of influence.
      Mangroves are an important carbon dioxide (CO2) sink – responsible for removing CO2 from the atmosphere with impressive efficiency. Current estimates suggest mangroves sequester CO2 10 times faster and store up to 5 times more carbon than rainforests and old-growth forests. But as part of the ever-changing line between land and sea, they’re exceptionally vulnerable to climate disturbances such as sea level rise, hurricanes, and changes in ocean salinity. As these threats intensify, Florida’s sub-tropical wetlands – and their role as a critical sink of CO2 – face an uncertain future.  
      NASA’s BlueFlux Campaign, a three-year (2021–2024), $1.5-million project operating under the agency’s Carbon Monitoring System, used field, aircraft, and satellite data to study the impact of both natural and anthropogenic pressures on South Florida’s coastal ecology. BlueFlux consists of a series of ground-based and airborne fieldwork campaigns, providing a framework for the development of a satellite-based data product that will estimate daily rates of surface-atmosphere gas transfer or gaseous flux across coastal ecosystems in Florida and the Caribbean. “The goal is to enhance our understanding of how blue-carbon ecosystems fit into the global carbon market,” said Ben Poulter [NASA’s Goddard Space Flight Center (GSFC)—Project Lead]. “BlueFlux will ultimately answer scientific questions and provide policy-related solutions on the role that coastal wetlands play in reducing atmospheric greenhouse gas (GHG) concentrations.”
      This article provides an overview of BlueFlux fieldwork operations – see Figure 1 – and outlines how the project might help refine global GHG budgets and support the restoration of Florida’s wetland ecology.
      Figure 1. A map of South Florida overlaying a true-color image captured by the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on board NASA’s Terra satellite. Red triangles mark locations of primary ground-based fieldwork operations described in this article. Figure Credit: NASA’s Goddard Space Flight Center (GSFC) BlueFlux Ground-based Fieldwork
      Across the street from the Flamingo Visitors center, at the base of the Everglades National Park, there was once a thriving mangrove population. Now, the skeletal remains of the trees form one of the Everglades’ largest ghost forests – see Photo 2. When Hurricane Irma made landfall in September 2017, violent winds battered the shore and a storm surge swept across the coast, decimating large swaths of the mangrove forest. Most of Florida’s mangroves recovered swiftly. But seven years later, this site and others like it have seen little to no growth.
      “At this point, I doubt they’ll ever recover,” said David Lagomasino [East Carolina University].
      Photo 2. A mangrove ghost forest is all that remains of a once-thriving mangrove stand, preserving an image of Hurricane Irma’s lasting impact on South Florida’s wetland ecology. Most of the ghost forests in the region are a product of natural depressions in the landscape that collect saltwater following severe storms. Photo credit: Nathan Marder/NASA’s Goddard Space Flight Center (GSFC) Lagomasino was in the Everglades this summer conducting research as part of the fifth leg of BlueFlux fieldwork – see Photo 3. His team focused on measuring how changes in wetland ecology affect the sequestration and emission rates of both CO2 and methane (CH4). In areas where vegetative health is severely degraded, like in ghost forests, a general decline in CO2 uptake is accompanied by an increase in CH4 production, the net effect of which could dramatically amplify the atmosphere’s ability to trap heat. Ghost forests offer an example at one end of an extreme, but defining the way more subtle gradients among wetland variables – such as changes in water level, tree height, canopy coverage, ocean salinity, or mangrove species distribution – might influence flux is harder to tease out of the limited data available. 
      Photo 3. Assistant professor David Lagomasino and Ph.D. candidate Daystar Babanawo [both from East Carolina University] explore the lower Everglades by boat. Due to the relative inaccessibility of the region, measurements of flux in wetland ecosystems are limited. The plant life here consists almost entirely of Florida’s three Mangrove species (red, black, and white), which are among the only vegetation that can withstand the brackish waters characteristic of coastal wetlands. Photo credit: Nathan Marder/NASA’s Goddard Space Flight Center (GSFC) In the Everglades, flux measurements are confined to a handful of eddy covariance towers – or flux towers – constructed as part of the National Science Foundation’s (NSF) Long-Term Ecological Research (LTER) Network. 
      The first flux tower in this network, erected in June 2003, stands near the edge of Shark River at a research site called SRS-6, short for Shark River Slough site 6. A short walk from the riverbank, across a snaking path of rain-weathered, wooden planks, sits a small platform where the flux tower is anchored to the forest floor – see Photo 4. About 20 m (65 feet) above the platform, the tower breaches the canopy, where a suite of instruments continuously measures wind velocity, temperature, humidity, and the vertical movement of trace atmospheric gases, such as water vapor (H2Ov), CO2, and CH4. It’s these measurements collectively that are used to calculate flux. 
      Photo 4. At SRS-6, an eddy covariance tower measures C02 and CH4 flux among a dense grove of red, black, and white mangroves. The term eddy covariance refers to the statistical technique used to calculate gaseous flux based on the meteorological and scalar atmospheric data collected by the flux towers. Photo credit: Nathan Marder/NASA’s Goddard Space Flight Center (GSFC) “Hundreds of research papers have come from this site,” said Lagomasino. The abundance of research generated from the data captured at SRS-6 speaks in part to the value of the measurements that the tower makes. It also points to the gaps that exist just beyond each tower’s reach. A significant goal of the BlueFlux campaign is to explain flux on a scale that isn’t covered by existing data – to fill in the gaps between the towers.
      One way to do that is by gathering data by hand.
      On Lagomasino’s boat is a broad, black case carrying a tool called a Russian peat auger. The instrument is designed to extract core samples from soft soils – see Photo 5.
      Everglades peat, which is made almost entirely of the partially decomposed roots, stems, and leaves of the surrounding mangroves, offers a perfect study subject. Each thin, half-cylinder sample gets sealed and shipped back to the lab, where it will be sliced into flat discs. The discs will be analyzed for their age and carbon content by Lagomasino’s team and partners at Yale University. These cores are like biomass time capsules. In Florida’s mangrove forests, a 1-m (3-ft) core might represent more than 300 years of carbon accumulation. On average, a 1 to 3 mm (0.04 to 0.12 in) layer of matter is added to the forest floor each year, building up over time like sand filling an hourglass.
      Photo 5. David Lagomasino holds a Russian peat auger containing a sample of Everglades peat. The primary source of the soil’s elevated carbon content – evident from its coarse, fibrous texture – is the partially decayed plant tissue of the surrounding mangroves. Photo credit: Nathan Marder/NASA’s Goddard Space Flight Center (GSFC) Although coastal wetlands account for less than 2% of the planet’s land-surface area, they house a disproportionate amount of blue carbon – carbon stored in marine and coastal environments. In the Everglades, the source of this immense accumulation of organic material is the quick-growing vegetation – see Photo 6.
      When a CO2 molecule finds its way through one of the many small, porous openings on a mangrove leaf ­– called stomata – its next step is one of creation, where it plays a part in the miraculous transformation of inorganic matter into living tissue. Inside the leaf’s chloroplasts, energy from stored sunlight kickstarts a long chain of chemical reactions that will ultimately divide CO2 into its constituent parts. Oxygen atoms are returned to the atmosphere as the byproduct of photosynthesis, but the carbon stays behind to help build the sugar molecules that will fuel new plant growth. In short, the same carbon that once flowed through the atmosphere defines the molecular structure of all wetland vegetation. When a plant dies or a gust of wind pulls a leaf to the forest floor, this carbon-based matter finds its way into the soil, where it can stay locked in place for thousands of years thanks to a critical wetland ingredient: water.
      The inundated, anoxic – an environment deficient or absent of oxygen – peat soils characteristic of wetlands host microbial populations that are uniquely adapted to their environment. In these low- to no-oxygen conditions, the prevailing microbiota consumes organic material slowly, leading to an accumulation of carbon in the soil. As wetland conditions change, the soil’s microbial balance shifts. For example, a decline in water level, which can increase the oxygen-content of the soil, produces conditions favorable to aerobic bacteria. These oxygen-breathing lifeforms consume organic matter far more rapidly than their anaerobic counterparts – and release more CO2 into the atmosphere as a result.
      Water level isn’t the only environmental condition that influences rates of carbon sequestration. The soil cores collected during the campaign will be analyzed alongside records of interrelated variables such as water salinity, sea surface height, and temperature to understand not just the timescales associated with blue carbon development in mangrove forests but how and why rates of soil deposition change in response to specific environmental pressures. In many parts of the Everglades, accumulated peat can reach depths of up to 3 m (9.8 feet) – holding thousands of years’ worth of insights that would otherwise be lost to time.
      Photo 6. Mangroves are viviparous plants. Their propagules – or seedlings – germinate while still attached to their parent tree. Propagules that fall to the forest floor are primed to begin life as soon as they hit the ground. But even those that fall into bodies of water and are carried out to sea can float for months before finding a suitable place to lay their roots. The high growth rate of mangroves contributes to the efficiency with which mangrove forests remove CO2 from the atmosphere. Photo credit: Nathan Marder/NASA’s Goddard Space Flight Center (GSFC) Lola Fatoyinbo [NASA’s Goddard Space Flight Center (GSFC), Biospheric Sciences Lab] and Peter Raymond [Yale University’s School of the Environment] led additional fieldwork teams tasked with collecting forest inventory data in locations where vegetation was dead, regenerating, or recently disturbed by severe weather events. A terrestrial laser system was used to obtain three-dimensional (3D) images of mangrove forest structure, which provided maps of stem density, vertical distributions of biomass, and stand volume surface area. Spectroradiometers were also used to acquire visible, near infrared, and shortwave infrared spectra, delivering detailed information about species composition, vegetative health, water levels, and soil properties.
      To tie these variables to flux, the researchers made measurements using chambers – see Figure 2 – designed to adhere neatly to points where significant rates of gas exchange occur, (i.e., mangrove lenticels—cell-sized breathing pores found on tree bark and root systems— and the forest floor). As an example, black mangroves (Avicennia germinans) possess unique aerial roots called pneumatophores that, similar to the prop roots of red mangroves, provide them with access to atmospheric oxygen. Pneumatophores sprout vertically from the forest floor and line up like matchsticks around the base of each tree. The team used cylindrical chambers to measure the transfer of gas between a single pneumatophore and the atmosphere – see Figure 2a.
      These observations are archived in NASA’s Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC) and publicly available to researchers who wish to monitor and identify trends in the data. After nearly three years of field work, these data have already given scientists a more detailed picture of how Florida’s wetlands are responding to environmental pressures.
      Research based on data from early BlueFlux fieldwork deployments confirms that aerobic, methanogenic microbes living in flooded, wetland soils naturally release a significant amount of CH4 as a byproduct of the process by which they create their own energy.
      “We’re especially interested in this methane part,” said Fatoyinbo. “It’s the least understood, and there’s a lot more of it than we previously thought.” Fatoyinbo also noted a “significant difference in CO2 and CH4 fluxes between healthy mangroves and degraded ones.” In areas where mangrove health is in decline, due to reduced freshwater levels or as the result of damage sustained during severe weather events, “you can end up with more ‘bad’ gases in the atmosphere,” she said. Since CH4 is roughly 80 times more potent than CO2 over 100-year period, these emissions can undermine some of the net benefits that blue carbon ecosystems provide as a sink of atmospheric carbon.
      Figure 2. To directly measure the emission and sequestration rates of CO2 and CH4 in mangrove forests, chambers were designed to adhere to specific targets where gas exchange occurs (i.e. mangrove lenticles, root systems, and the forest floor). Credit: GSFC Airborne Research Teams Measure GHG Flux from Above 
      Florida’s mangrove forests blanket roughly 966 km2 (600 mi2) of coastal terrain. Even with over 20 years of tower data and the extensive measurements from ground-based fieldwork operations, making comprehensive inferences about the entire ecosystem is tenuous work. To provide flux data at scale – and help quantify the atmospheric influence that Florida’s coastal wetlands carry as a whole – NASA’s BlueFlux campaign relies on a relatively new, airborne technique for measuring flux – see Photo 7.
      Photo 7. At the Miami Executive Airfield, members of NASA’s BlueFlux airborne science team stand in front of the Beechcraft 200 King Air before the final flight of the fieldwork campaign. Photo credit: Nathan Marder/NASA’s Goddard Space Flight Center (GSFC) Between 2022 and 2024, over 5 deployments, the team conducted more than 34 carefully planned flights – see Figure 3 – collecting flux data over Florida’s wetlands by plane. Each flight is equipped with a payload known colloquially as “CARAFE,” short for the CARbon Airborne Flux Experiment, which is the airborne campaign’s primary means of data collection. “This is one of the first times an instrument like this has flown over a mangrove forest anywhere in the world,” said Fatoyinbo. “So, it’s really just kind of groundbreaking.”
      Figure 3. An example of flight paths from eight BlueFlux airborne deployments flown in April 2023. The flight paths are highlighted in blue. The legs of each flight where flux measurements were taken are highlighted in green. Accurate flux calculations rely on stable measurements of the aircraft’s speed and orientation, which is why the flux legs of each flight are flown in straight lines. Credit: GSFC In the air, GHG concentrations are measured using a well-established technique called cavity ringdown spectroscopy, which involves firing a laser into a small cavity where it will ping back and forth between two highly reflective mirrors. Most gas-phase molecules absorb light at specific wavelengths, depending on their atomic makeup. Since the target molecules in this case are CO2 and CH4, the laser is configured to emit light at a wavelength that only these molecules will absorb. As the laser bounces between the mirrors, a fraction of the light is absorbed by any molecules present in the chamber. The rate of the light’s decay is used to estimate CO2 and CH4 concentrations, generating a time series with continuous readings of gas concentrations, measured in parts per million – see Photo 8. This information is combined with measurements of vertical wind velocity to calculate a corresponding time series of fluxes along the flight track. While these measurements are important on their own, a priority for the airborne team is understanding GHG fluxes in relation to what’s happening on the ground. 
      Photo 8. The CARAFE payload is responsible for taking readings of atmospheric CO2, CH4, and H2Ov levels using a wind probe and two optical spectroscopy instruments manufactured by Picarro: the G2401m Gas Concentration Analyzer and the G2311f Gas Concentration Analyzer. The readings pictured above were made by the G2311f, which measures gas concentrations at a faster rate than the G2401m. The G2401m makes slower but more stable measurements, which are necessary for verifying the accuracy of measurements made by the G2311f. Photo credit: Nathan Marder/NASA’s Goddard Space Flight Center (GSFC) Unlike flux towers, which only collect data within a 100 m2 (328 ft2) “footprint,” airborne readings have a footprint that can stretch up to 1 km (0.6 mi) in upwind directions. The plane’s speed, position, and orientation are used to help link flux data to fixed points along the flight’s path – so the team can make comparisons between aerial measurements and those made by the ground-based towers – see Photo 9.
      “One challenge with that is the flux towers are much lower to the ground, and their footprint is much smaller,” said Glenn Wolfe [GSFC—BlueFlux Flight Lead]. “So, we have to be really careful with our airborne observations, to make sure they closely resemble our ground-based measurements.”
      Part of decoding the airborne data involves overlaying each footprint with detailed maps of different surface properties, such as vegetation cover, soil water depth, or leaf-area index, so the team can constrain the measurements and assign fluxes to specific sources – whether its mangroves, sawgrass, or even water. 
      Photo 9. The BlueFlux airborne science team collects flux measurements from 90m (300ft) above Florida’s mangrove forests. Photo credit: Nathan Marder/NASA’s Goddard Space Flight Center (GSFC) Data Upscaling – Making Daily Flux Predictions from Space
      The coupling of BlueFlux’s ground-based and airborne data provides the framework for the production of a broader, regional image of GHG flux.
      “The eddy flux towers give us information about the temporal variability,” said Cheryl Doughty [GSFC]. “And the airborne campaign gives us this great intermediate dataset that allows us to go from individual trees to a much larger area.”
      Doughty is now using BlueFlux data to train a remote-sensing data product, the prototype of which is called Daily Flux Predictions for South Florida. The product’s underlying model relies on machine learning algorithms and an ensemble modeling technique called random forest regression. It will make flux predictions based on surface reflectance data captured by the Moderate Resolution Imaging Spectroradiometer (MODIS), an instrument that flies on NASA’s polar-orbiting Aqua and Terra satellites – see Figure 4.
      “We’re really at the mercy of the data that’s out there,” said Doughty. “One of the things we’re trying to produce as part of this project is a daily archive of fluxes, so MODIS is an amazing resource, because it has over 20 years of data at a daily temporal resolution.”
      This archival flux data will help researchers explain how fluxes change in relation to processes that are directly described by MODIS surface reflectance data, including sea-level rise, land use, water management, and disturbances from hurricanes and fires.
      Figure 4. Sample of methane flux upscaling, in which MODIS surface reflectance retrievals are used to predict CH4 flux for South Florida at a regional scale [bottom row, left]. The model inputs rely on a composite of MODIS Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted Radiance (NBAR) measurements from all available MODIS land bands: [top row, left to right]: red (620–670 nm), green (545–565 nm), blue (459–479 nm); [middle row, left to right] near infrared 1, or NIR1 (841–876 nm), NIR2 (1230–1250 nm), shortwave IR 1, or SWIR1 (1628–1652 nm), and SWIR 2 (2105–2155 nm). The Everglades National Park boundary is indicated on each image with a white line. Output of the model is shown [bottom row, left] as well as a comparison between modeled fluxes of MODIS NBAR with Terra and Aqua [bottom row, right]. Credit: GSFC To help validate the model, researchers must reformat flux measurements from the airborne campaign to match the daily temporal resolution and 500m2 (0.3mi2) spatial resolution of MODIS reflectance retrievals.
      “It’s best practice to meet the data at the coarsest resolution,” said Doughty. “So, we have to take an average of the hourly estimates to match MODIS’ daily scale.”
      The matching process is slightly more complicated for spatial datasets. BlueFlux’s airborne flux measurements produce roughly 20 data points for each 500 m2 (0.3 mi2) area, the same resolution as a single MODIS pixel.
      “We’re essentially taking an average of all those CARAFE points to get an estimate that corresponds to one pixel,” said Doughty.
      This symmetry is critical, allowing the team to test, train, and tune the model using measurements that capture what’s really happening on the ground – ensuring the accuracy of flux measurements generated from satellite data alone.
      Researchers don’t expect the model to serve as a perfect reconstruction of reality. The heterogenous nature of Florida’s wetland terrain – which consists of a patchwork of sawgrass marshland, mangrove forests, hardwood hammocks, and freshwater swamps – contributes to high degree of variability in CO2 removal rates within and across its distinct regions. The daily flux product accounts for some of this complexity by making hundreds of calculations at a time, each with slightly different parameters based on in-situ measurements.
      “The goal isn’t to just give people one flux measurement but an estimate of the uncertainty that is so inherent to these wetlands,” explained Doughty.
      The prototype of the product will be operational by early 2025 and accessible to the public through NASA’s ORNL­ DAAC. Doughty hopes it will help stakeholders and decision makers evaluate policies related to water management, land use, and conservation that might impact critical stocks of blue carbon. 
      From Drainage to Restoration in the Florida Everglades
      In the late 19th century, land developers were drawn to South Florida, where they hoped the fertile soil and tropical climate could support year-round cultivation of commodities such as exotic fruits, vegetables, and sugar cane. There was just one thing standing in the way – the water. If they could find a way to tame Florida’s wilderness, to drain the wetland of its excess water, Florida would offer Americans a new agricultural frontier.
      Progress was made incrementally, but the Everglades drainage project idled for more than 50 years as its organizers wrestled with the literal and political morass surrounding South Florida’s wetland topography. It was mother nature’s hand that ultimately accelerated the drainage project. In 1926 and 1928, two large hurricanes tore through the barrier along Lake Okeechobee’s southern shore built to prevent water from spilling onto the newly settled, small-scale farmland just south of the lake. The second of the two storms – 1928’s Okeechobee Hurricane – made landfall in early September and resulted in nearly 3,000 recorded fatalities. In some areas, the torrent of flood water was deep enough that even those who sought refuge from the flood on the roofs of their homes were swept away by the current. The federal government was forced to step in.
      By 1938, the U.S. Army Corps of Engineers had completed construction of the Hoover Dike, adding to a collection of four canals responsible for siphoning water away from Lake Okeechobee’s floodplain and into the Atlantic Ocean. Seasonal flooding was brought under control, but the complete reclamation of South Florida’s wetlands proved more challenging than anticipated. As water levels fell and freshly cleared lands dried out, the high organic content of the soil fueled tremendous peat and muck fires that could burn for days, spreading through underground seams where water once flowed. In some areas, fires consumed the entire topsoil layer – exposing the limestone substrata to the atmosphere for the first time in thousands of years. The engineers in charge of Florida’s early wetland reclamation projects underestimated the value of the state’s hydrological system and overestimated its capacity to withstand human interference. 
      “Those initial four canals were enough to drain the everglades three times over,” said Fred Sklar [South Florida Water Management District—Everglades System Sciences Director]. “And they still exist, but now there are more than seven million people who rely on them for drinking water and flood control.”
      Today, much of the Water Management District’s work involves unwinding the damage wrought by earlier drainage efforts.
      “One thing we’re trying to do is make sure these peat fires never happen again,” said Sklar.
      But restoring natural water flow to the Everglades ­– which is critical to the region’s ecological health – isn’t an option. Even if drainage could be reversed, it would subject Florida’s residents to the same flood risks that made drainage a priority. Some residents, including members of the Miccosukee and Seminole tribes, live directly alongside or within Everglades wilderness areas, where the risk of flooding is even greater than it is in the state’s highly populated coastal communities. These areas are also out of reach of the Water Management District’s existing infrastructure. It’s not as simple as turning the tap on and off.
      Photo 10. The Tamiami Trail Canal runs across the Florida Peninsula from west to east, towards a saltwater treatment facility near the Miami River. Construction was completed in 1928, shortly after the first four drainage canals opened. It quickly became apparent that the canal and its adjacent roadway dramatically impede water flow to the Everglades wilderness areas to their south, cutting off the region’s vegetation and wildlife from a critical source of freshwater. New modifications to the canal are currently underway, which aim to introduce a hydrological regime that more closely resembles the pre-drainage system. Photo credit: U.S. National Park Service Florida’s Water Management District works with federal agencies, including the U.S. Army Corps of Engineers, to monitor and govern the flow of Florida’s freshwater. The District has overseen the construction and management of dozens of canals, dikes, levees, dredges, and pumps over the last half-century that offer a higher degree of control over Florida’s complex hydrological network – see Photo 10.
      “The goal is to restore as much acreage as we can, but we also need to restore it functionally, without degrading the whole system or putting residents at risk,” summarized Sklar. “To do this effectively, we need a detailed understanding of how the hydrology functions and how it influences all of these other systems, such as carbon sequestration.”
      Since the 1920s, more than half of Florida’s original wetland coverage has been lost. The present system also carries 65% less peat coverage and 77% less stored carbon than it did prior to drainage. As atmospheric CO2 concentrations climb at unprecedented rates, an accompanying rise in sea levels, severe weather, and ocean salinity all present serious threats to Florida’s wetland ecology – see Figure 5.
      “We’re worried about losing that stored carbon,” said Poulter. “But blue carbon also offers tremendous opportunities for climate mitigation if conservation and restoration are properly supported by science.”
      Figure 5. A map of the BlueFlux study region, showing mangrove extent (green) and the paths of tropical storms and hurricanes from 2011 to 2021 (red). These storms drive losses in mangrove forest coverage – the result of erosion and wind damage. The inset regions at the top of the image highlight proposed targets for the airborne component of NASA’s BlueFlux Campaign. Figure credit: GSFC Conclusion – The Future of Flux
      Every few years, the Intergovernmental Panel on Climate Change (IPCC) releases emissions data and budget reports that have important policy implications related to the Paris Agreement’s goal of limiting global warming to between 1.5°C (2.7°F) and 2°C (3.6°F) compared to pre-industrial levels. Refining the accuracy of global carbon budgets is paramount to reaching that goal, and wetland ecosystems – which have been historically under-represented in climate research – are an important part of the equation.
      Early estimates based on BlueFlux fieldwork deployments and upscaled using MODIS surface reflectance data suggest that wetland CH4 emissions in South Florida offset CO2 removal in the region by about 5% based on a 100-year CH4 warming potential, resulting in a net annual CO2 removal of 31.8 Tg (3.18 million metric tons) per year. This is a small fraction of total CO2 emissions in the U.S. and an even smaller fraction of global emissions. In 2023, an estimated 34,800 Tg (34.8 billion metric tons) of CO2 were released into the atmosphere. But relative to their size, the CO2 removal services provided by tropical wetlands are hardly dismissible.
      “We’re finding that massive amounts of CO2 are removed and substantial amounts of CH4 are produced, but overall, these ecosystems provide a net climate benefit by removing more greenhouse gases than they produce,” Poulter said.
      Access to a daily satellite data product also provides researchers with the means to make more regular adjustments to budgets based on how Florida’s mutable landscape is responding to climate disturbances and restoration efforts in real time.
      With the right resources in hand, the scientists who dedicate their careers to understanding and restoring South Florida’s ecology share a hopeful outlook.
      “Nature and people can absolutely coexist,” said Meenakshi Chabba [The Everglades Foundation—Ecologist and Resilience Scientist]. “But what we need is good science and good management to reach that goal.”
      The Everglades Foundation provides scientific evaluation and guidance to the elected officials and governmental institutions responsible for the implementation of the Comprehensive Everglades Restoration Plan (CERP), a federal program approved by Congress in 2000 that outlines a 30-year plan to restore Florida’s wetland ecology. The Foundation sees NASA’s BlueFlux campaign as an important accompaniment to that goal.
      “The [Daily Flux Predictions for South Florida] data product is incredibly valuable, because it provides us with an indicator of the health of the whole system,” said Steve Davis [The Everglades Foundation—Chief Science Officer]. “We know how valuable the wetlands are, but we need this reliable science from NASA and the BlueFlux Campaign to help translate those benefits into something we can use to reach people as well as policymakers.”
      Researchers hope the product can inform decisions about the management of Florida’s wetlands, the preservation of which is not only a necessity but – to many – a responsibility.
      “These impacts are of our own doing,” added Chabba. “So, now it’s incumbent upon us to make these changes and correct the mistakes of the past.”
      Next, the BlueFlux team is shifting their focus to what they call BlueFlux 2. This stage of the project centers around further analysis of the data collected during fieldwork campaigns and outlines the deployment of the beta version of Daily BlueFlux Predictions for South Florida, which will help generate a more accurate evaluation of flux for the many wetland ecosystems that exist beyond Florida’s borders.
      “We’re trying to contribute to a better understanding of global carbon markets and inspire further and more ambitious investments in these critical stocks of blue carbon,” said Poulter. “First, we want to scale this work to the Caribbean, where we have these great maps of mangrove distribution but limited data on flux.”
      An additional BlueFlux fieldwork deployment is slated for 2026, with plans to make flux measurements above sites targeted by the state for upcoming restoration initiatives, such as the Everglades Agricultural Area Environmental Protection District. In the Agricultural Area, construction is underway on a series of reservoirs that will store excess water during wet seasons and provide a reserve source of water for wildlife and residents during dry seasons. As the landscape evolves, BlueFlux will help local officials evaluate how Florida’s wetlands are responding to efforts designed to protect the state’s most precious natural resource – and all those who depend on it. 
      Nathan Marder
      NASA’s Goddard Space Flight Center/Global Science and Technology Inc.
      nathan.marder@nasa.gov
      Share








      Details
      Last Updated Nov 12, 2024 Related Terms
      Earth Science View the full article
    • By NASA
      A new edition of Issue #4 of Astrobiology: The Story of our Search for Life in the Universe has been released to include the NASA Europa Clipper mission. NASA Astrobiology/Aaron Gronstal To celebrate the successful launch of NASA’s Europa Clipper mission, the agency’s Astrobiology program has released a new edition of Issue #4 – Missions to the Outer Solar System – of its graphic history series Astrobiology: The Story of our Search for Life in the Universe.
      Issue #4 tells the story of the outer solar system, from beyond the asteroid belt to the outer reaches of the Sun’s magnetic influence. Gas giants like Jupiter and Saturn are not habitable, but many of their moons raise questions about life’s potential far, far away from the warmth of the Sun.
      One such body is Jupiter’s moon Europa, which contains an ocean of liquid water beneath its icy surface. The Europa Clipper mission is designed to help scientists understand whether this ocean holds key ingredients that could support habitable environments for life as we know it. The spacecraft launched on Oct. 14 and will arrive at Jupiter in 2030.
      Additional content in the fourth edition of Issue #4 also includes ESA’s (European Space Agency) Juice (Jupiter Icy Moons Explorer) mission, which will arrive in the Jovian system in 2031 and collect data on many of Jupiter’s moons, including Ganymede, Europa, Callisto, and Io, that is complementary to Europa Clipper’s investigation.
      Read more about how astrobiologists study the potential for life on worlds like Europa and the exciting data that Europa Clipper will gather by visiting NASA’s Astrobiology website and downloading the new edition.
      Digital wallpaper for phones, desktops, or meeting backgrounds that feature the new Europa Clipper artwork from Issue #4 are also available.
      This wallpaper image featuring NASA’s Europa Clipper mission uses artwork from Issue #4 of the astrobiology graphic history series, Astrobiology: The Story of our Search for Life in the Universe. The image of Jupiter in the background is adapted from imagery taken by NASA’s Juno Mission (Exotic Marble, 2019, NASA/JPL-Caltech/SwRI/MSSS/Prateek Sarpal/©CCNCSA) NASA Astrobiology/Aaron Gronstal For more information on NASA’s Astrobiology program, visit:
      https://science.nasa.gov/astrobiology
      -end-
      Karen Fox / Molly Wasser
      Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov 
      Share








      Details
      Last Updated Nov 01, 2024 Related Terms
      Astrobiology Explore More
      5 min read NASA: New Insights into How Mars Became Uninhabitable


      Article


      4 weeks ago
      14 min read The Making of Our Alien Earth: The Undersea Volcanoes of Santorini, Greece


      Article


      2 months ago
      5 min read NASA Scientists on Why We Might Not Spot Solar Panel Technosignatures


      Article


      3 months ago
      View the full article
    • By NASA
      Learn Home Europa Trek: NASA Offers a New… Europa Clipper Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   3 min read
      Europa Trek: NASA Offers a New Guided Tour of Jupiter’s Ocean Moon
      NASA’s Europa Clipper mission is on its way to explore a moon of Jupiter that researchers believe may be one of the best places in the Solar System to search for life beyond Earth. While the spacecraft makes its more-than-five year journey to Europa, scientists, students, teachers, and the public can tour and explore the landforms of Europa with newly-released enhancements to NASA’s Europa Trek web portal.
      One of the largest of Jupiter’s nearly 100 recognized moons, Europa is covered with a global ice cap. But beneath that crust of ice, researchers have found an ocean of liquid water, estimated to have about twice the volume of all of Earth’s oceans combined. This vast amount of liquid water is of particular interest to astrobiologists, scientists studying the origin, evolution, and distribution of life in the Universe. Though Europa’s ocean remains hidden beneath its global crust of ice, we can get important clues about its nature by studying the remarkable landforms of Europa’s icy surface.
      To accompany the launch of Europa Clipper, NASA’s Solar System Treks Project released exciting new enhancements to its online Europa Trek portal on September 30, 2024. The new additions to Europa Trek allow users to interactively fly over and explore high-resolution imagery of Europa’s surface from the Voyager, Galileo, and Juno missions. Users can also take a new guided tour of Europa’s amazing landforms, with commentary developed by a collaboration between NASA’s Astrobiology Science Communication Guild and NASA’s Solar System Exploration Research Virtual Institute. The tour and its commentary introduce virtual explorers to the geology and possible biological significance of the diverse features of Europa’s surface.
      “This is really fun. It’s cool how you can zoom into the high resolution data. I’ll spread the word about using this!” – Bob Pappalardo, Europa Clipper Project Scientist
      The new tour and capabilities of Europa Trek were featured at the Europa Clipper public launch program at the Kennedy Space Center Visitor Center on October 6,2024, in advance of the October 14 launch of the mission. As part of the public program conducted by NASA’s Planetary Mission Program Office, the Europa Trek exhibit allowed hundreds of visitors to try their hands at flying over Europa and visualizing its exotic terrain.
      NASA’s Solar System Treks is an infrastructure project within NASA’s Science Activation Team. Their online portals are used for mission planning, planetary science research, and Science, Technology, Engineering, & Mathematics (STEM) education. NASA’s Astrobiology Science Communication Guild is an international, community-based network of astrobiologists who engage in science communication with diverse audiences and learners. Watch for future collaborations between Solar System Treks and the Astrobiology Science Communication Guild at more locations across the Solar System!
      Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      A stop along the guided tour of Europa landforms Share








      Details
      Last Updated Oct 23, 2024 Editor NASA Science Editorial Team Related Terms
      Europa Europa Clipper Opportunities For Educators to Get Involved Opportunities For Students to Get Involved Planetary Science Science Activation Explore More
      5 min read Old Data Yields New Secrets as NASA’s DAVINCI Preps for Venus Trip
      How NASA’s DAVINCI mission to Venus uses old data to reveal new secrets.


      Article


      6 days ago
      6 min read NASA’s Hubble, New Horizons Team Up for a Simultaneous Look at Uranus


      Article


      2 weeks ago
      4 min read NASA’s Hubble Watches Jupiter’s Great Red Spot Behave Like a Stress Ball


      Article


      2 weeks ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      A SpaceX Falcon Heavy rocket carrying NASA’s Europa Clipper spacecraft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 12:06 p.m. EDT on Monday, Oct. 14, 2024. After launch, the spacecraft plans to fly by Mars in February 2025, then back by Earth in December 2026, using the gravity of each planet to increase its momentum. With help of these “gravity assists,” Europa Clipper will achieve the velocity needed to reach Jupiter in April 2030.Credit: NASA/Kim Shiflett NASA’s Europa Clipper has embarked on its long voyage to Jupiter, where it will investigate Europa, a moon with an enormous subsurface ocean that may have conditions to support life. The spacecraft launched at 12:06 p.m. EDT Monday aboard a SpaceX Falcon Heavy rocket from Launch Pad 39A at NASA’s Kennedy Space Center in Florida.
      The largest spacecraft NASA ever built for a mission headed to another planet, Europa Clipper also is the first NASA mission dedicated to studying an ocean world beyond Earth. The spacecraft will travel 1.8 billion miles (2.9 billion kilometers) on a trajectory that will leverage the power of gravity assists, first to Mars in four months and then back to Earth for another gravity assist flyby in 2026. After it begins orbiting Jupiter in April 2030, the spacecraft will fly past Europa 49 times.
      “Congratulations to our Europa Clipper team for beginning the first journey to an ocean world beyond Earth,” said NASA Administrator Bill Nelson. “NASA leads the world in exploration and discovery, and the Europa Clipper mission is no different. By exploring the unknown, Europa Clipper will help us better understand whether there is the potential for life not just within our solar system, but among the billions of moons and planets beyond our Sun.”
      Approximately five minutes after liftoff, the rocket’s second stage fired up and the payload fairing, or the rocket’s nose cone, opened to reveal Europa Clipper. About an hour after launch, the spacecraft separated from the rocket. Ground controllers received a signal soon after, and two-way communication was established at 1:13 p.m. with NASA’s Deep Space Network facility in Canberra, Australia. Mission teams celebrated as initial telemetry reports showed Europa Clipper is in good health and operating as expected.
      “We could not be more excited for the incredible and unprecedented science NASA’s Europa Clipper mission will deliver in the generations to come,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “Everything in NASA science is interconnected, and Europa Clipper’s scientific discoveries will build upon the legacy that our other missions exploring Jupiter — including Juno, Galileo, and Voyager — created in our search for habitable worlds beyond our home planet.”
      The main goal of the mission is to determine whether Europa has conditions that could support life. Europa is about the size of our own Moon, but its interior is different. Information from NASA’s Galileo mission in the 1990s showed strong evidence that under Europa’s ice lies an enormous, salty ocean with more water than all of Earth’s oceans combined. Scientists also have found evidence that Europa may host organic compounds and energy sources under its surface.
      If the mission determines Europa is habitable, it may mean there are more habitable worlds in our solar system and beyond than imagined.
      “We’re ecstatic to send Europa Clipper on its way to explore a potentially habitable ocean world, thanks to our colleagues and partners who’ve worked so hard to get us to this day,” said Laurie Leshin, director, NASA’s Jet Propulsion Laboratory in Southern California. “Europa Clipper will undoubtedly deliver mind-blowing science. While always bittersweet to send something we’ve labored over for years off on its long journey, we know this remarkable team and spacecraft will expand our knowledge of our solar system and inspire future exploration.”
      In 2031, the spacecraft will begin conducting its science-dedicated flybys of Europa. Coming as close as 16 miles (25 kilometers) to the surface, Europa Clipper is equipped with nine science instruments and a gravity experiment, including an ice-penetrating radar, cameras, and a thermal instrument to look for areas of warmer ice and any recent eruptions of water. As the most sophisticated suite of science instruments NASA has ever sent to Jupiter, they will work in concert to learn more about the moon’s icy shell, thin atmosphere, and deep interior.
      To power those instruments in the faint sunlight that reaches Jupiter, Europa Clipper also carries the largest solar arrays NASA has ever used for an interplanetary mission. With arrays extended, the spacecraft spans 100 feet (30.5 meters) from end to end. With propellant loaded, it weighs about 13,000 pounds (5,900 kilograms).
      In all, more than 4,000 people have contributed to Europa Clipper mission since it was formally approved in 2015.
      “As Europa Clipper embarks on its journey, I’ll be thinking about the countless hours of dedication, innovation, and teamwork that made this moment possible,” said Jordan Evans, project manager, NASA JPL. “This launch isn’t just the next chapter in our exploration of the solar system; it’s a leap toward uncovering the mysteries of another ocean world, driven by our shared curiosity and continued search to answer the question, ‘are we alone?’”
      More About Europa Clipper
      Europa Clipper’s three main science objectives are to determine the thickness of the moon’s icy shell and its interactions with the ocean below, to investigate its composition, and to characterize its geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet.
      Managed by Caltech in Pasadena, California, NASA JPL leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, for NASA’s Science Mission Directorate in Washington. The main spacecraft body was designed by APL in collaboration with NASA JPL and NASA’s Goddard Space Flight Center in Greenbelt, Maryland, NASA’s Marshall Space Flight Center in Huntsville, Alabama, and NASA’s Langley Research Center in Hampton, Virginia. The Planetary Missions Program Office at Marshall executes program management of the Europa Clipper mission.
      NASA’s Launch Services Program, based at NASA Kennedy, managed the launch service for the Europa Clipper spacecraft.
      Find more information about NASA’s Europa Clipper mission here:
      https://science.nasa.gov/mission/europa-clipper
      -end-
      Meira Bernstein / Karen Fox
      Headquarters, Washington
      202-358-1600
      meira.b.bernstein@nasa.gov / karen.c.fox@nasa.gov
      Gretchen McCartney
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-287-4115
      gretchen.p.mccartney@jpl.nasa.gov
      Share
      Details
      Last Updated Oct 14, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Europa Clipper Europa Jet Propulsion Laboratory Jupiter Jupiter Moons Kennedy Space Center View the full article
  • Check out these Videos

×
×
  • Create New...