Members Can Post Anonymously On This Site
Hurricane Season Begins
-
Similar Topics
-
By NASA
2 min read
Hurricane Helene’s Gravity Waves Revealed by NASA’s AWE
On Sept. 26, 2024, Hurricane Helene slammed into the Gulf Coast of Florida, inducing storm surges and widespread impacts on communities in its path. At the same time, NASA’s Atmospheric Waves Experiment, or AWE, recorded enormous swells in the atmosphere that the hurricane produced roughly 55 miles above the ground. Such information helps us better understand how terrestrial weather can affect space weather, part of the research NASA does to understand how our space environment can disrupt satellites, communication signals, and other technology.
To view this video please enable JavaScript, and consider upgrading to a web browser that
supports HTML5 video
As the International Space Station traveled over the southeastern United States on Sept. 26, 2024, AWE observed atmospheric gravity waves generated by Hurricane Helene as the storm slammed into the gulf coast of Florida. The curved bands extending to the northwest of Florida, artificially colored red, yellow, and blue, show changes in brightness (or radiance) in a wavelength of infrared light produced by airglow in Earth’s mesosphere. The small black circles on the continent mark the locations of cities. To download this video or other versions with alternate color schemes, visit this page. Utah State University These massive ripples through the upper atmosphere, known as atmospheric gravity waves, appear in AWE’s images as concentric bands (artificially colored here in red, yellow, and blue) extending away from northern Florida.
“Like rings of water spreading from a drop in a pond, circular waves from Helene are seen billowing westward from Florida’s northwest coast,” said Ludger Scherliess, who is the AWE principal investigator at Utah State University in Logan.
Launched in November 2023 and mounted on the outside of the International Space Station, the AWE instrument looks down at Earth, scanning for atmospheric gravity waves, ripple-like patterns in the air generated by atmospheric disturbances such as violent thunderstorms, tornadoes, tsunamis, wind bursts over mountain ranges, and hurricanes. It does this by looking for brightness fluctuations in colorful bands of light called airglow in Earth’s mesosphere. AWE’s study of these gravity waves created by terrestrial weather helps NASA pinpoint how they affect space weather.
These views of gravity waves from Hurricane Helene are among the first publicly released images from AWE, confirming that the instrument has the sensitivity to reveal the impacts hurricanes have on Earth’s upper atmosphere.
By Vanessa Thomas
NASA’s Goddard Space Flight Center, Greenbelt, Md.
View the full article
-
By NASA
NASA Space shuttle Atlantis lifts off in this Nov. 3, 1994, image, with NASA astronauts Donald R. McMonagle, Curtis L. Brown, Jr., Ellen S. Ochoa, Scott E. Parazynski, and Joseph R. Tanner, and ESA (European Space Agency) astronaut Jean-Francois-Clervoy aboard. During the 11-day mission, the crew studied Earth’s atmosphere, gathering data on the Sun’s energy output, the atmosphere’s chemical composition, and how these affect global ozone levels.
Learn more about the mission.
Image credit: NASA
View the full article
-
By NASA
A test image of Earth taken by NASA’s Pathfinder Technology Demonstrator-4’s onboard camera. The camera will capture images of the Lightweight Integrated Solar Array and anTenna upon deployment.NASA NASA recently evaluated initial flight data and imagery from Pathfinder Technology Demonstrator-4 (PTD-4), confirming proper checkout of the spacecraft’s systems including its on-board electronics as well as the payload’s support systems such as the small onboard camera. Shown above is a test image of Earth taken by the payload camera, shortly after PTD-4 reached orbit. This camera will continue photographing the technology demonstration during the mission.
Payload operations are now underway for the primary objective of the PTD-4 mission – the demonstration of a new power and communications technology for future spacecraft. The payload, a deployable solar array with an integrated antenna called the Lightweight Integrated Solar Array and anTenna, or LISA-T, has initiated deployment of its central boom structure. The boom supports four solar power and communication arrays, also called petals. Releasing the central boom pushes the still-stowed petals nearly three feet (one meter) away from the spacecraft bus. The mission team currently is working through an initial challenge to get LISA-T’s central boom to fully extend before unfolding the petals and beginning its power generation and communication operations.
Small spacecraft on deep space missions require more electrical power than what is currently offered by existing technology. The four-petal solar array of LISA-T is a thin-film solar array that offers lower mass, lower stowed volume, and three times more power per mass and volume allocation than current solar arrays. The in-orbit technology demonstration includes deployment, operation, and environmental survivability of the thin-film solar array.
“The LISA-T experiment is an opportunity for NASA and the small spacecraft community to advance the packaging, deployment, and operation of thin-film, fully flexible solar and antenna arrays in space. The thin-film arrays will vastly improve power generation and communication capabilities throughout many different mission applications,” said Dr. John Carr, deputy center chief technologist at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “These capabilities are critical for achieving higher value science alongside the exploration of deep space with small spacecraft.”
The Pathfinder Technology Demonstration series of missions leverages a commercial platform which serves to test innovative technologies to increase the capability of small spacecraft. Deploying LISA-T’s thin solar array in the harsh environment of space presents inherent challenges such as deploying large highly flexible non-metallic structures with high area to mass ratios. Performing experiments such as LISA-T on a smaller, lower-cost spacecraft allows NASA the opportunity to take manageable risk with high probability of great return. The LISA-T experiment aims to enable future deep space missions with the ability to acquire and communicate data through improved power generation and communication capabilities on the same integrated array.
The PTD-4 small spacecraft is hosting the in-orbit technology demonstration called LISA-T. The PTD-4 spacecraft deployed into low Earth orbit from SpaceX’s Transporter-11 rocket which launched from Space Launch Complex 4E at Vandenberg Space Force Base in California on Aug. 16. NASA’s Marshall Space Flight Center in Huntsville, Alabama designed and built the LISA-T technology as well as LISA-T’s supporting avionics system. NASA’s Small Spacecraft Technology program, based at NASA’s Ames Research Center in California’s Silicon Valley and led by the agency’s Space Technology Mission Directorate, funds and manages the PTD-4 mission as well as the overall Pathfinder Technology Demonstration mission series. Terran Orbital Corporation of Irvine, California, developed and built the PTD-4 spacecraft bus, named Triumph.
Learn more about NASA’s LISA-T technology:
NASA teams are testing a key technology demonstration known as LISA-T, short for the Lightweight Integrated Solar Array and anTenna. It’s a super compact, stowable, thin-film solar array that when fully deployed in space, offers both a power generation and communication capability for small spacecraft. LISA-T’s orbital flight test is part of the Pathfinder Technology Demonstrator series of missions. To travel farther into deep space, small spacecraft require more electrical power than what is currently available through existing technology. LISA-T aims to answer that demand and would offer small spacecraft access to power without compromising mass or volume. Watch this video to learn more about the spacecraft, its deployment, and the possibilities from John Carr, deputy center chief technologist at NASA’s Marshall Space Flight Center in Huntsville, Alabama. View the full article
-
By NASA
SpaceX A SpaceX Falcon Heavy rocket carrying NASA’s Europa Clipper spacecraft lifts off from NASA’s Kennedy Space Center in Florida on Monday, Oct. 14, 2024.
Europa Clipper is the first mission designed to conduct a detailed study of Jupiter’s moon Europa to determine if it currently has habitable conditions. The spacecraft will travel 1.8 billion miles (2.9 billion km) to reach Jupiter in April 2030. It will orbit Jupiter and conduct 49 close flybys of Europa.
Follow Europa Clipper’s journey in NASA’s Eyes on the Solar System app.
Image credit: SpaceX
View the full article
-
By NASA
NASA canvases the areas impacted by Hurricane Milton using cloud-penetrating L-band radar providing responders insight into flooding across Florida.NASA In the wake of Hurricane Milton, NASA is deploying resources to support Federal Emergency Management Agency (FEMA) and state emergency management agencies to aid their response effort including satellite and aerial data collection.
The agency’s Disasters Response Coordination System and Airborne Science Program are began conducting flights Friday to provide emergency responders with better insight into flooding, damage in Florida, and debris.
“After the devastating impact from hurricanes Helene and Milton, NASA immediately sprang into action,” said Karen St. Germain, director, Earth Sciences Division at NASA Headquarters in Washington. “Whether it is through observations from space or from airplanes, NASA is ready to assist communities affected by severe storms. We are working together with our federal and state partners to provide a better understanding of what is happening on the ground, in real time. NASA’s Disasters Response Coordination System was designed with the goal of delivering trusted, actionable Earth science information, where and when people need it, to enable effective response when these events strike.”
NASA’s Uninhabited Aerial Synthetic Aperture Radar Vehicle (UAVSAR) instrument is gathering rapid wide area L-Band synthetic aperture radar data shared directly with FEMA and other organizations. Flights are coordinated directly with FEMA to augment their existing satellite and aerial data collection.
Since Hurricane Milton struck, persistent cloud cover over the State of Florida has made it challenging to obtain optical satellite observations of conditions in the region. Synthetic aperture radar instruments, such as those aboard UAVSAR, can see through the clouds to observe changes on the ground. This provides much-needed observations of flood inundation across communities in Florida, as well as the extent of inland river flooding and resource deployment.
The Disaster Response Coordination System has been working closely with FEMA and state emergency management agencies to aid response efforts as Hurricane Milton approached and impacted Florida. The team is actively sharing resources with other agency partners, the state of Florida, and disaster response non-profit organizations.
NASA continues to determine the needs of its partners and is sharing maps and data on the NASA Disasters Mapping Portal as they become available.
Hurricane Milton caused significant wind, flooding, power outages, and damage across central Florida, from Sarasota and Tampa to Palm Springs and the Space Coast. Impacts are currently being assessed alongside lifesaving operations and emergency repairs. The Disasters Response Coordination System is collaborating directly with FEMA, the State of Florida Geospatial Information Office, U.S. Geological Survey, NOAA (National Oceanic and Atmospheric Administration), and the American Red Cross. The Disasters Response Coordination System is also sharing any available Earth observation data with NASA’s Kennedy Space Center emergency managers to support their damage assessment process.
By using tools like NASA’s Black Marble, and updating daily with differential analysis done to highlight areas with extended power outages, the agency provides FEMA, states, and non-profits the opportunity to distribute temporary generators, life-sustaining resources, and damage assessments.
The UAVSAR flights are being conducted with support from NASA’s Disasters Program, NASA’s Earth Action Program, and NASA’s Research and Analysis Program, and are being managed by NASA’s Armstrong Flight Research Center in Edwards, California, a NASA’s Jet Propulsion Laboratory in Southern and California, and the California Institute of Technology.
To learn more about NASA’s Disaster Response Coordination System, visit:
https://disastersresponsecoordinationsystem.gov
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.