Members Can Post Anonymously On This Site
What’s Up: June 2024 Skywatching Tips from NASA
-
Similar Topics
-
By NASA
4 Min Read Five Facts About NASA’s Moon Bound Technology
A view of the Moon from Earth, zooming up to IM-2's landing site at Mons Mouton, which is visible in amateur telescopes. Credits: NASA/Scientific Visualization Studio NASA is sending revolutionary technologies to the Moon aboard Intuitive Machines’ second lunar delivery as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign to establish a long-term presence on the lunar surface.
As part of this CLPS flight to the Moon, NASA’s Space Technology Mission Directorate will test novel technologies to learn more about what lies beneath the lunar surface, explore its challenging terrain, and improve in-space communication.
The launch window for Intuitive Machines’ second CLPS delivery, IM-2, opens no earlier than Wednesday, Feb. 26 from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. After the Intuitive Machines’ Nova-C class lunar lander reaches Mons Mouton, a lunar plateau near the Moon’s South Pole region, it will deploy several NASA and commercial technologies including a drill and mass spectrometer, a new cellular communication network, and a small drone that will survey difficult terrain before returning valuable data to Earth.
Caption: The Intuitive Machines lunar lander that will deliver NASA science and technology to the Moon as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign is encapsulated in the fairing of the SpaceX Falcon 9 rocket. Credit: SpaceX Here are five things to know about this unique mission to the Moon, the technologies we are sending, and the teams making it happen!
1. Lunar South Pole Exploration
IM-2’s landing site is known as one of the flatter regions in the South Pole region, suitable to meet Intuitive Machines’ requirement for a lit landing corridor and acceptable terrain slope. The landing location was selected by Intuitive Machines using data acquired by NASA’s Lunar Reconnaissance Orbiter.
An illustration of Mons Mouton, a mesa-like lunar mountain that towers above the landscape carved by craters near the Moon’s South Pole.Credit: NASA/Scientific Visualization Studio 2. New Technology Demonstrations
NASA’s Polar Resources Ice Mining Experiment, known as PRIME-1, is a suite of two instruments – a drill and mass spectrometer – designed to demonstrate our capability to look for ice and other resources that could be extracted and used to produce propellant and breathable oxygen for future explorers. The PRIME-1 technology will dig up to about three feet below the surface into the lunar soil where it lands, gaining key insight into the soil’s characteristics and temperature while detecting other resources that may lie beneath the surface.
Data from the PRIME-1 technology demonstration will be made available to the public following the mission, enabling partners to accelerate the development of new missions and innovative technologies.
The Polar Resources Ice Mining Experiment-1 (PRIME-1) will help scientists search for water at the lunar South Pole.Credit: NASA/Advanced Concepts Lab 3. Mobile Robots
Upon landing on the lunar surface, two commercial Tipping Point technology demonstrations will be deployed near Intuitive Machines’ lander, Tipping Points are collaborations between NASA’s Space Technology Mission Directorate and industry that foster the development of commercial space capabilities and benefit future NASA missions.
The first is a small hopping drone developed by Intuitive Machines. The hopper, named Grace, will deploy as a secondary payload from the lander and enable high-resolution surveying of the lunar surface, including permanently shadowed craters around the landing site. Grace is designed to bypass obstacles such as steep inclines, boulders, and craters to cover a lot of terrain while moving quickly, which is a valuable capability to support future missions on the Moon and other planets, including Mars.
Artist rendering of the Intuitive Machines Micro Nova Hopper.Credit: Intuitive Machines 4. Lunar Surface Communication
The next Tipping Point technology will test a Lunar Surface Communications System developed by Nokia. This system employs the same cellular technology used here on Earth, reconceptualized by Nokia Bell Labs to meet the unique requirements of a lunar mission. The Lunar Surface Communications System will demonstrate proximity communications between the lander, a Lunar Outpost rover, and the hopper.
Artist rendering of Nokia’s Lunar Surface Communication System (LSCS), which aims to demonstrate cellular-based communications on the lunar surface. Credit: Intuitive Machines 5. Working Together
NASA is working with several U.S. companies to deliver technology and science to the lunar surface through the agency’s CLPS initiative.
NASA’s Space Technology Mission Directorate plays a unique role in the IM-2 mission by strategically combining CLPS with NASA’s Tipping Point mechanism to maximize the potential benefit of this mission to NASA, industry, and the nation.
NASA’s Lunar Surface Innovation Initiative and Game Changing Development program within the agency’s Space Technology Mission Directorate led the maturation, development, and implementation of pivotal in-situ resource utilization, communication, and mobility technologies flying on IM-2.
Join NASA to watch full mission updates, from launch to landing on NASA+, and share your experience on social media. Mission updates will be made available on NASA’s Artemis blog.
A team of engineers from NASA’s Johnson Space Center in Houston and Honeybee Robotics in Altadena, California inspect TRIDENT – short for The Regolith Ice Drill for Exploring New Terrain – shortly after its arrival at the integration and test facility.Credit: NASA/Robert Markowitz Artist’s rendering of Intuitive Machines’ Athena lunar lander on the Moon. Credit: Intuitive Machines
Artist conception: Earth emerges from behind Mons Mouton on the horizon.Credit: NASA/Scientific Visualization Studio Explore More
3 min read NASA’s Polar Ice Experiment Paves Way for Future Moon Missions
Article 2 weeks ago 6 min read Ten NASA Science, Tech Instruments Flying to Moon on Firefly Lander
Article 1 month ago 6 min read How NASA’s Lunar Trailblazer Will Make a Looping Voyage to the Moon
Article 2 weeks ago Keep Exploring Discover More Topics From NASA
Space Technology Mission Directorate
Polar Resources Ice Mining Experiment 1 (PRIME-1)
Commercial Lunar Payload Services (CLPS)
The goal of the CLPS project is to enable rapid, frequent, and affordable access to the lunar surface by helping…
NASA Partners with American Companies on Key Moon, Exploration Tech
NASA has selected 11 U.S. companies to develop technologies that could support long-term exploration on the Moon and in space…
Share
Details
Last Updated Feb 24, 2025 EditorStefanie PayneContactAnyah Demblinganyah.dembling@nasa.govLocationNASA Headquarters Related Terms
Space Technology Mission Directorate Artemis Commercial Lunar Payload Services (CLPS) Game Changing Development Program Kennedy Space Center Lunar Surface Innovation Initiative Missions NASA Headquarters Research and Technology at Kennedy Space Center Science Mission Directorate
View the full article
-
By NASA
The unpiloted Roscosmos Progress spacecraft pictured on Aug. 13, 2024, from the International Space Station.Credit: NASA NASA will provide live launch and docking coverage of a Roscosmos cargo spacecraft delivering approximately three tons of food, fuel, and supplies for the crew aboard the International Space Station.
The unpiloted Roscosmos Progress 91 spacecraft is scheduled to launch at 4:24 p.m. EST, Thursday, Feb. 27 (2:24 a.m. Baikonur time, Friday, Feb. 28), on a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan.
Live launch coverage will begin at 4 p.m. on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
After a two-day in-orbit journey to the station, the spacecraft will dock autonomously to the aft port of the Zvezda service module at 6:03 p.m. Saturday, March 1. NASA’s rendezvous and docking coverage will begin at 5:15 p.m. on NASA+.
The Progress 91 spacecraft will remain docked to the space station for approximately six months before departing for re-entry into Earth’s atmosphere to dispose of trash loaded by the crew.
The International Space Station is a convergence of science, technology, and human innovation that enables research not possible on Earth. For more than 24 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, through which astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including missions to the Moon under Artemis and, ultimately, human exploration of Mars.
Get breaking news, images and features from the space station on Instagram, Facebook, and X.
Learn more about the International Space Station, its research, and its crew, at:
https://www.nasa.gov/station
-end-
Claire O’Shea
Headquarters, Washington
202-358-1100
claire.a.o’shea@nasa.gov
Sandra Jones
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov
Share
Details
Last Updated Feb 24, 2025 LocationNASA Headquarters Related Terms
International Space Station (ISS) Humans in Space ISS Research Johnson Space Center Space Operations Mission Directorate View the full article
-
By NASA
Drone pilot Brayden Chamberlain flashes a “good to go” signal to the command tent, indicating that the NASA Alta X quadcopter is prepped for takeoff during a FireSense uncrewed aerial system (UAS) Technology Demonstration test in 2023 in Missoula, Montana. The instruments on board collected data on wind speed and direction, humidity, temperature, and pressure.NASA/Milan Loiacono NASA’s Kennedy Space Center in Florida invites media to attend a prescribed fire campaign event hosted by the NASA FireSense Project, the Department of Defense (DOD), and the U.S. Fish and Wildlife Service. Campaign activities will occur from Monday, April 7, to Monday, April 21.
The FireSense campaign activities will test cutting-edge models and demonstrate new technologies to measure fire behavior and smoke dynamics. The Fish and Wildlife Service will conduct the prescribed fire as part of their land management responsibilities on the Merritt Island National Wildlife Refuge, which shares a boundary with NASA Kennedy.
The event also will demonstrate how NASA, DOD, and the Fish and Wildlife Service work with interagency and private sector partners to reduce the risk from wildland fires and benefit ecosystem health, ultimately preventing catastrophic impacts on critical national infrastructure, the economy, and local communities, while increasing the safety of wildland fire response operations.
Credentialing is open to U.S. and international media. International media must apply by 11:59 EDT p.m. Sunday, March 16, and U.S. media must apply by 11:59 p.m. EDT Sunday, March 23.
More details on the specific date of the prescribed fire, weather permitting, will be provided in the coming weeks. Media wishing to take part in person must apply for credentials at:
https://media.ksc.nasa.gov
Credentialed media will receive a confirmation email upon approval. NASA’s media accreditation policy is available online. For questions about accreditation or to request special logistical support, please email by Friday, March 28 to: ksc-media-accreditat@mail.nasa.gov.
For other questions, please contact NASA Kennedy’s newsroom at: 321-867-2468.
Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Messod Bendayan, messod.c.bendayan@nasa.gov.
NASA coordinates field and airborne sampling with academic and agency partners, including the DOD Strategic Environmental Research and Development Program and DOD Environmental Security Technology Certification Program. The Fish and Wildlife Service oversees all prescribed burn activities on the Merritt Island National Wildlife Refuge.
NASA Kennedy is one of the most biologically diverse areas in the United States, counting over 1,000 species of plants, 117 kinds of fish, 68 types of amphibians and reptiles, 330 kinds of birds, and 31 different mammals within its more than 144,000 acres.
For more information about NASA’s FireSense Project, please visit:
https://cce.nasa.gov/firesense
-end-
Milan Loiacono
Ames Research Center, California
650-450-7575
milan.p.loiacono@nasa.gov
Harrison Raine
Ames Research Center, California
310-924-0030
harrison.s.raine@nasa.gov
Messod Bendayan
Kennedy Space Center, Florida
256-930-1371
messod.c.bendayan@nasa.gov
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.