Jump to content

Recommended Posts

  • Publishers
Posted
25 Min Read

The Marshall Star for May 29, 2024

Marshall Deputy Director Rae Ann Meyer, second from right, responds to an audience question during a question-and-answer panel the May 20 all-hands meeting. At left, Lance D. Davis, Marshall’s public affairs and news chief, moderates the panel, while Pelfrey, center left, and Larry Leopard, Marshall’s associate director, technical, far right, listen in.

More to Marshall: Center Leadership Provides Updates During Spring All-Hands Meeting

By Wayne Smith

NASA’s Marshall Space Flight Center will celebrate its 65th birthday next summer, and while there are plans to honor the center’s rich history, there is also More to Marshall ahead.

Team members at NASA’s Marshall Space Flight Center listen to Center Director Joseph Pelfrey, background center, share updates on culture and strategy during the spring all-hands meeting May 20 in Activities Building 4316.
Team members at NASA’s Marshall Space Flight Center listen to Center Director Joseph Pelfrey, background center, share updates on culture and strategy during the spring all-hands meeting May 20 in Activities Building 4316.
NASA/Danielle Burleson

That was part of the message Center Director Joseph Pelfrey delivered during the spring all-hands meeting May 20 in Activities Building 4316. He highlighted Marshall’s transformative shift to more strategic partnerships across NASA and with industry, with the center continuing to serve as a technical solutions provider.

“More to Marshall is a systematic approach that will reinforce our center’s strategy and our role in space exploration,” Pelfrey said. “We align this vision with the core values of our Marshall fabric. We are not replacing our roots; we are fostering them to grow stronger and reach farther.”

Pelfrey also discussed the center’s evolving culture, highlighting April outreach activities, including the Total Solar Eclipse event in Russellville, Arkansas, First Robotics, Student Launch, and the Human Exploration Rover Challenge.

Marshall Deputy Director Rae Ann Meyer, second from right, responds to an audience question during a question-and-answer panel the May 20 all-hands meeting. At left, Lance D. Davis, Marshall’s public affairs and news chief, moderates the panel, while Pelfrey, center left, and Larry Leopard, Marshall’s associate director, technical, far right, listen in.
Marshall Deputy Director Rae Ann Meyer, second from right, responds to an audience question during a question-and-answer panel the May 20 all-hands meeting. At left, Lance D. Davis, Marshall’s public affairs and news chief, moderates the panel, while Pelfrey, center left, and Larry Leopard, Marshall’s associate director, technical, far right, listen in.
NASA/Danielle Burleson

“These events emulate the Marshall culture,” Pelfrey said. “I am proud of the impact you have on the community, the Artemis Generation, and across the globe.”

New Deputy Director Rae Ann Meyer followed Pelfrey’s opening remarks, focusing on the center’s newest culture initiatives. Meyer also invited Trace Turner, management assistant in the Office of the Director, to highlight the efforts of three Center Action Teams leading the charge on Marshall’s culture initiatives. Team leaders Rocio Garcia, Benjamin Ferrell, and Mason Quick each shared more about their respective team’s projects, including the development of a user-friendly app that will share information on Marshall, NASA’s Michoud Assembly Facility, Redstone Arsenal, and the community.

Larry Leopard, Marshall’s associate director, technical, provided an update on the center’s efforts to address knowledge management concerns, starting with events like Meals with Mentors, Center Strategy Brown Bags and Tech Talk presentations, and after-action reviews.

: Rocio Garcia, MPH delivery service integration lead at Marshall, shares plans to develop a user-friendly app for Marshall team members and the public, which will serve as a one-stop shop for information on Marshall, NASA’s Michoud Assembly Facility, Redstone Arsenal, and the community.
Center Action Team leader Rocio Garcia shares plans to develop a user-friendly app for Marshall team members and the public, which will serve as a one-stop shop for information on Marshall, NASA’s Michoud Assembly Facility, Redstone Arsenal, and the community.
NASA/Danielle Burleson

Finally, before Marshall leadership participated in a question-and-answer panel, Pelfrey shared updates on center strategy, infrastructure, NASA’s budget, and NASA 2040.

“We will build on the success of our center strategy,” Pelfrey said. “We will continue to implement and mature our pursuits culture, always seeking challenging and exciting opportunities, using our skills, expertise, capabilities, and infrastructure while continuing to build partnerships with industry and academia. Marshall has a tremendous role in returning humans to the Moon, reaching Mars, and exploring the cosmos.”

Team members can watch a recording of the all-hands meeting on Inside Marshall.

Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications.

› Back to Top

Les Johnson Named Center Chief Technologist at Marshall

Les Johnson has been named center chief technologist at NASA’s Marshall Space Flight Center, effective June 2.

Johnson will provide expert advice on technology initiatives to center leadership and to Marshall team members. He will lead the Marshall team on matters involving center-wide technology development. Johnson also will represent Marshall on NASA’s Center Technology Council and serves as the center’s focal point for Center Innovation Fund activities.

Les Johnson.
Les Johnson has been named center chief technologist at NASA’s Marshall Space Flight Center.
NASA

He has been a principal technologist for several of NASA’s advanced in-propulsion and power technology developments during his 33-year career at Marshall. Johnson served as the principal investigator of the Propulsive Small Expendable Deployer System (ProSEDS) tether propulsion project and Near-Earth Asteroid Scout solar sail mission. He was a co-investigator (Co-I) of the JAXA T-Rex tether propulsion demonstration, the European Union’s InflateSail, and NASA’s Lightweight Integrated Solar Array and anTenna (LISA-T) missions, as well as a Co-I on multiple NASA Innovative Advanced Concepts (NIAC) studies.

Johnson began his NASA career in 1990 working in the Program Development Directorate formulating new space science mission concepts. Shortly thereafter, he became the manager for NASA’s Interstellar Propulsion Technology Project that transitioned into the In-Space Propulsion Technology Program, which he managed on behalf of the Office of Space Science. He then served as the formulation manager for the Nuclear Systems Initiative, which became Project JIMO. Johnson served as deputy manager and technical assistant for the Advanced Concepts Office, before being selected to lead the development of the Solar Cruiser solar sail propulsion system in the Science and Technology Office.

Prior to NASA, he worked three years for General Research Corp. on directed energy systems in support of the Strategic Defense Initiative.

Johnson holds three patents. His awards include NASA’s Exceptional Technology Achievement Medal, NASA’s Exceptional Achievement Medal (twice), Marshall’s Technology Transfer and Innovation Awards, and he has been a Rotary Stellar Award finalist two times. As an outside activity, he is also an award-winning author.

A native of Ashland, Kentucky, Johnson earned his bachelor’s degree from Transylvania University and his master’s degree from Vanderbilt University.

› Back to Top

Take 5 with Jose Matienzo

By Wayne Smith

Growing up in the small village of Luquillo, Puerto Rico, Jose Matienzo would fly paper airplanes and launch model rockets from atop the building he lived in with his family.

“I knew then that I wanted to be some sort of engineer, I just didn’t know what it was called,” Matienzo said. “I never imagined that I actually would work for NASA, but I thought I could design cars or planes. I liked drawing them.”

Jose Matienzo.
Jose Matienzo began his NASA career in 1983 at the agency’s Marshall Space Flight Center.
Photo courtesy of Jose Matienzo

Flash forward more than five decades later. Matienzo is in his 42nd year working with NASA and the agency’s Marshall Space Flight Center as he nears retirement in December. Center team members will remember him as manager of the Marshall Exchange for the past 12 years, enjoying his witty daily email from the Exchange.

“Literally every day was fun trying to make life better for our team members,” Matienzo said of his team with the Exchange. “That includes bringing the food truck court, being able to have employee clothing of all styles and types, creating new clubs, and expanding facilities.”

He is currently assigned to a position with NASA’s Source Evaluation Board.

As he approaches retirement, Matienzo still finds it difficult to fathom his many milestones working with NASA and Marshall, where he began his career in 1983 as a co-op student in the structural dynamics division and worked on the Space Shuttle Program for 12 years. Matienzo followed that with a year at NASA Headquarters before returning to Marshall as lead engineer on several projects related to the International Space Station, such as the space station element transportation system.

His other assignments have included managing the NASA office at the Naval Research Center; the Marshall lead for supporting the Launch Services Program, including the office at the United Launch Alliance rocket plant in Decatur; technical assistant for former Marshall Director Robert Lightfoot; and more. 

“There have been so many memories over the years,” Matienzo said. “Six months after becoming a full-time employee, the Challenger accident happened. At the time I had no idea what the possible impact of that accident would be. We all had a little part on returning to flight, so watching the first launch afterwards was a fantastic moment.

“We delivered space station hardware in partnership with the Italians and the European Space Agency, helped train the astronauts who performed the Hubble Telescope repair, and most recently, we made improvements to the Exchange services to make life at work better for our employees.”

Question: What excites you most about the future of human space exploration, or your NASA work, and your team’s role it?

Matienzo: I’ve been here for a long time and our future missions and goals have changed over the years. But no matter what, there’s always been excitement about meeting the agency’s goals and Marshall’s role in providing space transportation, lunar landers, and even Mars sample return vehicles. That and all of the support and testing work that comes with it is fun! 

Question: Who or what drives/motivates you?

Matienzo: I’ve been lucky that my job assignments have always been fun and self-motivating, but certainly dealing and coordinating with colleagues in accomplishing a mutual goal, test, or assignment is very rewarding.

Question: What advice do you have for employees early in their NASA career or those in new leadership roles?

Matienzo: Network! As you get to know others and learn what they do, you will find out how everything comes together at NASA and where other opportunities may be out there for you. For our leaders: keep encouraging, mentoring, and creating opportunities for the employees to experience, learn, and grow.

Question: What do you enjoy doing with your time while away from work?

Matienzo: My kids are older now so keeping in touch is fun. But I do have grandkids to play with. Otherwise, I play congas with my bandmates, love to do social dancing, play lots of pickleball, and enjoy mountain and road bike riding.

Question: What plans do you have for retirement?

Matienzo: I want to move closer to the beach. I love Huntsville, so I want to keep a presence here. I also plan to bike all over the USA!

Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications.

› Back to Top

Marshall Team Supports Safe Travels for Space Station Science

By Jessica Barnett 

During the International Space Station’s more than 25 years of operation, there have been more than 3,000 experiments conducted aboard the microgravity laboratory, and making sure scientific samples are kept safe through launch, spaceflight, experimentation, and the return trip to Earth takes a great deal of planning, testing, and preparation across NASA.

In February, team members at NASA’s Marshall Space Flight Center handled the de-integration of zinc selenide-based crystals grown on the space station as part of an experiment to study how a lack of gravity might affect the crystals’ growth and structure. The experiment was conducted using six sample cartridge assemblies heated up to 1,200 degrees Celsius (2,192 degrees Fahrenheit) inside the Materials Science Laboratory of the Materials Science Research Rack on the space station.

A man wearing blue gloves and a gray visor with a magnifying glass built in it leans against a black table while looking at a specimen. Next to him, a second man wearing black glasses is standing while holding a pen and a stapled stack of papers.
NASA Marshall Space Flight Center’s payload technician Chris Honea, left, and quality assurance specialist Keith Brandon, right, on Feb. 29 carefully inspect the temperature sensors that help gather data and monitor progress during a crystals experiment. The zinc selenide-based crystals were grown on the International Space Station as part of an experiment to see how gravity affects their structure or growth, then de-integrated and inspected in Marshall’s Space Systems Integration & Test Facility.
NASA

John Luke Bili, lead systems test engineer for the sample cartridge assemblies within Marshall’s Instrument Development, Integration, and Test Branch, begins the process by working with engineers, scientists, project personnel, and the experiment’s principal investigator to create an ampoule, or sealed glass vial, to use as a sample container.

“We’ll take the ampoule and do some ground testing, like a normal flight integration,” Bili said. “We’ll assemble it with the hardware we have, then we are responsible for completing different mitigation efforts to prepare for sealing the ampoule up and processing it at the required high temperatures.”

The team exposes the test article to extreme heat and pressure using a duplicate of the furnace on the space station, allowing them to also test the experiment’s software.

The zinc selenide-based crystal experiment required six sample cartridge assemblies. After a month of preparation from Marshall’s team, the assemblies traveled to NASA’s Johnson Space Center for a final round of packing before arriving at the agency’s Kennedy Space Center for launch.

The assemblies launched on NASA’s SpaceX 24th commercial resupply services mission in December 2021 and NASA’s Northrop Grumman 19th commercial resupply services mission in August 2023. Each sample took about a week to process through the space station’s lab furnace. The samples were then brought back to Earth, with three of the six arriving at Marshall on Feb. 9.

A glass tube shaped like a tall hourglass containing silver and gold crystals lies sideways upon a silver metal block on a black table.
An ampoule containing zinc selenide-based crystals rests on a table in Marshall Space Flight Center’s Space Systems Integration & Test Facility. The ampoule was part of the sixth sample cartridge assembly retrieved from the International Space Station as part of an experiment to see how gravity affects the crystals’ structure or growth.
NASA

While unpacking the crystal samples, team members took photos and notes of the tubes throughout the de-integration process in Marshall’s Space Systems Integration & Test Facility. The team includes technicians with 20 to 30 years of experience, ensuring samples safely travel to and from the station and helping expand access for researchers to explore microgravity, space exposure, and future missions in low Earth orbit.

“It’s really nice having that kind of experience when we’re working on the hardware that’s going in space,” he said. “We’ve got a lot of people that are very skilled machinists that are able to help us in a moment’s notice, we have people with a really good understanding of technical tolerances and stuff like that, and we have people with a lot of varying experience doing flight hardware integration and tests.”

For more than two decades, humans have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit.

Learn more about the space station.

Barnett, a Media Fusion employee, supports the Marshall Office of Communications.

› Back to Top

Spotted: ‘Death Star’ Black Holes in Action

A team of astronomers have studied 16 supermassive black holes that are firing powerful beams into space, to track where these beams, or jets, are pointing now and where they were aimed in the past, as reported in a press release. Using NASA’s Chandra X-ray Observatory and the U.S. National Science Foundation (NSF) National Radio Astronomical Observatory’s (NRAO) Very Large Baseline Array (VLBA), they found that some of the beams have changed directions by large amounts.

Abell 478 and NGC 5044.
These two Chandra images show hot gas in the middle of the galaxy cluster Abell 478, left, and the galaxy group NGC 5044, right.
X-ray: NASA/CXC/Univ. of Bologna/F. Ubertosi; Insets Radio: NSF/NRAO/VLBA; Wide field Image: Optical/IR: Univ. of Hawaii/Pan-STARRS; Image Processing: NASA/CXC/SAO/N. Wolk

These two Chandra images show hot gas in the middle of the galaxy cluster Abell 478 (left) and the galaxy group NGC 5044 (right). The center of each image contains one of the sixteen black holes firing beams outwards. Each black hole is in the center of a galaxy embedded in the hot gas.

In the images below, labels and the radio images appear. Ellipses show a pair of cavities in the hot gas for Abell 478, left, and ellipses show two pairs of cavities for NGC 5044, right. These cavities were carved out by the beams millions of years ago, giving the directions of the beams in the past. An X shows the location of each supermassive black hole.

The VLBA images are shown as insets, which reveal where the beams are currently pointing, as seen from Earth. The radio images are both much smaller than the X-ray images. For Abell 478 the radio image is about 3% of the width of the Chandra image and for NGC 5044 the radio image is about 4% of the Chandra image’s width.

Abell 478 and NGC 5044 (Labeled)
A labeled version of the image.
X-ray: NASA/CXC/Univ. of Bologna/F. Ubertosi; Insets Radio: NSF/NRAO/VLBA; Wide field Image: Optical/IR: Univ. of Hawaii/Pan-STARRS; Image Processing: NASA/CXC/SAO/N. Wolk

A comparison between the Chandra and VLBA images shows that the beams for Abell 478 changed direction by about 35 degrees and the beams for NGC 5044 changed direction by about 70 degrees.

Across the entire sample the researchers found that about a third of the 16 galaxies have beams that are pointing in completely different directions than they were before. Some have changed directions by nearly 90 degrees in some cases, and over timescales between one million years and a few tens of millions of years. Given that the black holes are of the order of 10 billion years old, this represents a relatively rapid change for these galaxies.

Black holes generate beams when material falls onto them via a spinning disk of matter and some of it then gets redirected outward. The direction of the beams from each of these giant black holes, which are likely spinning, is thought to align with the rotation axis of the black hole, meaning that the beams point along a line connecting the poles.

These beams are thought to be perpendicular to the disk. If material falls towards the black holes at a different angle that is not parallel to the disk, it could affect the direction of the black hole’s rotation axes, changing the direction of the beams.

Wide Field Views of Abell 478 [Left] and NGC 5044 [Right].
Wide field views of Abell 478, left, and NGC 5044, right.
X-ray: NASA/CXC/Univ. of Bologna/F. Ubertosi et al.; Optical/IR: Univ. of Hawaii/Pan-STARRS; IR: NASA/ESA/JPL/CalTech/Herschel Space Telescope

Scientists think that beams from black holes and the cavities they carve out play an important role in how many stars form in their galaxies. The beams pump energy into the hot gas in and around the galaxy, preventing it from cooling down enough to form huge numbers of new stars. If the beams change directions by large amounts, they can tamp down star formation across much larger areas of the galaxy.

The paper describing these results was published in the January 20th, 2024 issue of The Astrophysical Journal, and is available here. The authors are Francesco Ubertosi (University of Bologna in Italy), Gerritt Schellenberger (Center for Astrophysics | Harvard & Smithsonian), Ewan O’Sullivan (CfA), Jan Vrtilek (CfA), Simona Giacintucci (Naval Research Laboratory), Laurence David (CfA), William Forman (CfA), Myriam Gitti (University of Bologna), Tiziana Venturi (National Institute of Astrophysics—Institute of Radio Astronomy in Italy), Christine Jones (CfA), and Fabrizio Brighenti (University of Bologna).

NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science from Cambridge Massachusetts and flight operations from Burlington, Massachusetts.

Read more from NASA’s Chandra X-ray Observatory.

› Back to Top

NASA, IBM Research to Release New AI Model for Weather, Climate

By Jessica Barnett

Working together, NASA and IBM Research have developed a new artificial intelligence model to support a variety of weather and climate applications. The new model – known as the Prithvi-weather-climate foundational model – uses artificial intelligence (AI) in ways that could vastly improve the resolution we’ll be able to get, opening the door to better regional and local weather and climate models.  

Foundational models are large-scale, base models which are trained on large, unlabeled datasets and can be fine-tuned for a variety of applications. The Prithvi-weather-climate model is trained on a broad set of data – in this case NASA data from NASA’s Modern-Era Retrospective analysis for Research and Applications (MERRA-2)– and then makes use of AI learning abilities to apply patterns gleaned from the initial data across a broad range of additional scenarios.  

With the Prithvi-weather-climate foundational model, researchers will be able to support many climate applications that can be used throughout the science community. These applications include detecting and improving models for severe weather patterns or natural disasters such as hurricanes. NASA’s Terra satellite acquired this image of Idalia in August 2023.
With the Prithvi-weather-climate foundational model, researchers will be able to support many climate applications that can be used throughout the science community. These applications include detecting and improving models for severe weather patterns or natural disasters such as hurricanes. NASA’s Terra satellite acquired this image of Idalia in August 2023.
NASA Earth Observatory

“Advancing NASA’s Earth science for the benefit of humanity means delivering actionable science in ways that are useful to people, organizations, and communities. The rapid changes we’re witnessing on our home planet demand this strategy to meet the urgency of the moment,” said Karen St. Germain, director of the Earth Science Division of NASA’s Science Mission Directorate. “The NASA foundation model will help us produce a tool that people can use: weather, seasonal and climate projections to help inform decisions on how to prepare, respond and mitigate.”  

With the Prithvi-weather-climate model, researchers will be able to support many different climate applications that can be used throughout the science community. These applications include detecting and predicting severe weather patterns or natural disasters, creating targeted forecasts based on localized observations, improving spatial resolution on global climate simulations down to regional levels, and improving the representation of how physical processes are included in weather and climate models.

“These transformative AI models are reshaping data accessibility by significantly lowering the barrier of entry to using NASA’s scientific data,” said Kevin Murphy, NASA’s chief science data officer, Science Mission Directorate at NASA Headquarters. “Our open approach to sharing these models invites the global community to explore and harness the capabilities we’ve cultivated, ensuring that NASA’s investment enriches and benefits all.” 

Prithvi-weather-climate was developed through an open collaboration with IBM Research, Oak Ridge National Laboratory, and NASA, including the agency’s Interagency Implementation and Advanced Concepts Team (IMPACT) at NASA’s Marshall Space Flight Center. 

Prithvi-weather-climate can capture the complex dynamics of atmospheric physics even when there is missing information thanks to the flexibility of the model’s architecture. This foundational model for weather and climate can scale to both global and regional areas without compromising resolution. 

“This model is part of our overall strategy to develop a family of AI foundation models to support NASA’s science mission goals,” said Rahul Ramachandran, who leads IMPACT at Marshall. “These models will augment our capabilities to draw insights from our vast archives of Earth observations.”  

Prithvi-weather-climate is part of a larger model family– the Prithvi family – which includes models trained on NASA’s Harmonized LandSat and Sentinel-2 data. The latest model serves as an open collaboration in line with NASA’s open science principles to make all data accessible and usable by communities everywhere. It will be released later this year on Hugging Face, a machine learning and data science platform that helps users build, deploy, and train machine learning models. 

“The development of the NASA foundation model for weather and climate is an important step towards the democratization of NASA’s science and observation mission,” said Tsendgar Lee, program manager for NASA’s Research and Analysis Weather Focus Area, High-End Computing Program, and Data for Operation and Assessment. “We will continue developing new technology for climate scenario analysis and decision making.” 

Along with IMPACT and IBM Research, development of Prithvi-weather-climate featured significant contributions from NASA’s Office of the Chief Science Data Officer, NASA’s Global Modeling and Assimilation Office at Goddard Space Flight Center, Oak Ridge National Laboratory, the University of Alabama in Huntsville, Colorado State University, and Stanford University. 

Learn more about Earth data and previous Prithvi models.

Barnett, a Media Fusion employee, supports the Marshall Office of Communications.

› Back to Top

Psyche Fires Up Its Sci-Fi-Worthy Thrusters

NASA’s Psyche spacecraft passed its six-month checkup with a clean bill of health, and there’s no holding back now. Navigators are firing its futuristic-looking electric thrusters, which emit a blue glow, nearly nonstop as the orbiter zips farther into deep space.

The spacecraft launched from NASA’s Kennedy Space Center atop a SpaceX Falcon Heavy on Oct. 13, 2023. After leaving Earth’s atmosphere, Psyche made the most of its rocket boost and coasted beyond the orbit of Mars.

For the next year, the spacecraft will be in what mission planners call “full cruise” mode, when its electric thrusters take over and propel the orbiter toward the asteroid belt. The thrusters work by expelling charged atoms, or ions, of xenon, emitting a brilliant blue glow that trails behind the spacecraft.

This artist's concept, updated as of June 2020, depicts NASA's Psyche spacecraft.
This artist’s concept depicts NASA’s Psyche spacecraft headed to the metal-rich asteroid Psyche in the main asteroid belt between Mars and Jupiter. The spacecraft launched in October 2023 and will arrive at its destination in 2029.
NASA/JPL-Caltech/ASU

They are part of Psyche’s incredibly efficient solar electric propulsion system, which is powered by sunlight. The thrust created by the ionized xenon is gentle, but it does the job. Even in full cruise mode, the pressure exerted by the thrusters is about what you’d feel holding three quarters in your hand.

The orbiter is now more than 190 million miles away and moving at a clip of 23 miles per second, relative to Earth. That’s about 84,000 mph. Over time, with no atmospheric drag to slow it down, Psyche will accelerate to speeds of up to 124,000 mph.

The spacecraft will arrive at the metal-rich asteroid Psyche in 2029 and will make observations from orbit for about two years. The data it collects will help scientists better understand the formation of rocky planets with metallic cores, including Earth. Scientists have evidence that the asteroid, which is about 173 miles across at its widest point, may be the partial core of a planetesimal, the building block of an early planet.  

The flight team used Psyche’s first 100 days in space to conduct a full checkout of all spacecraft systems. All of the engineering systems are working just as expected, and the three science instruments have been operating without a hitch. The magnetometer is working so well that it was able to detect an eruption of charged particles from the Sun, as did the gamma-ray and neutron spectrometer. And this past December, the twin cameras on the imaging instrument captured their first images.

An electric Hall thruster
This photo captures an operating electric thruster identical to those being used to propel NASA’s Psyche spacecraft. The blue glow comes from the charged atoms, or ions, of xenon.
NASA/JPL-Caltech

“Until this point, we have been powering on and checking out the various pieces of equipment needed to complete the mission, and we can report they are working beautifully,” said Henry Stone, Psyche project manager at NASA’s Jet Propulsion Laboratory, which manages the mission. “Now we are on our way and looking forward to an upcoming close flyby of Mars.”

That’s because the spacecraft’s trajectory will bring it back toward the Red Planet in the spring of 2026. The spacecraft will power down the thrusters as it coasts toward Mars, using the planet’s gravity to slingshot itself out. From there, the thrusters return to full cruise mode. Next stop: the asteroid Psyche.

In the meantime, the Deep Space Optical Communications technology demonstration aboard the spacecraft will keep on testing its mettle. The experiment already surpassed expectations when, in April, it transmitted test data from over 140 million miles away at a rate of 267 megabits per second to a downlink station on Earth – a bit rate comparable to broadband internet download speeds.

Arizona State University leads the Psyche mission. A division of Caltech in Pasadena, JPL is responsible for the mission’s overall management, system engineering, integration and test, and mission operations. Maxar Technologies in Palo Alto, California, provided the high-power solar electric propulsion spacecraft chassis.

JPL manages DSOC for the Technology Demonstration Missions program within NASA’s Space Technology Mission Directorate and the Space Communications and Navigation program within the Space Operations Mission Directorate.

Psyche is the 14th mission selected as part of NASA’s Discovery Program, which is managed by the agency’s Marshall Space Flight Center. NASA’s Launch Services Program, based at Kennedy, managed the launch service.

› Back to Top

NASA’s OSIRIS-APEX Unscathed After Searing Pass of Sun

Mission engineers were confident NASA’s OSIRIS-APEX (Origins, Spectral Interpretation, Resource Identification – Apophis Explorer) spacecraft could weather its closest ever pass of the Sun on Jan. 2. Their models had predicted that, despite traveling 25 million miles closer to the heat of the Sun than it was originally designed to, OSIRIS-APEX and its components would remain safe.

The mission team confirmed that the spacecraft indeed had come out of the experience unscathed after downloading stored telemetry data in mid-March. The team also tested OSIRIS-APEX’s instruments in early April, once the spacecraft was far enough from the Sun to return to normal operations. Between December 2023 and March, OSIRIS-APEX was inactive, with only limited telemetry data available to the team on Earth.

Both these images from a camera called StowCam aboard OSIRIS-APEX show the same view taken six months apart, before, left, and after, right, the Jan. 2, 2024, perihelion. Notably, there is no observable difference on spacecraft surfaces, a good indication that the higher temperatures faced during perihelion didn’t alter the spacecraft. Another insight gleaned from the identical view in the two images is that the camera’s performance was also not affected by perihelion.
Both these images from a camera called StowCam aboard OSIRIS-APEX show the same view taken six months apart, before, left, and after, right, the Jan. 2, 2024, perihelion. Notably, there is no observable difference on spacecraft surfaces, a good indication that the higher temperatures faced during perihelion didn’t alter the spacecraft. Another insight gleaned from the identical view in the two images is that the camera’s performance was also not affected by perihelion.
NASA/University of Arizona/Lockheed Martin

The spacecraft’s clean bill of health was due to creative engineering. Engineers placed OSIRIS-APEX in a fixed orientation with respect to the Sun and repositioned one of its two solar arrays to shade the spacecraft’s most sensitive components during the pass.

The spacecraft is in an elliptical orbit around the Sun that brings it to a point closest to the Sun, called a perihelion, about every nine months. To get on a path that will allow it to meet up with its new target Apophis in 2029, the spacecraft’s trajectory includes several perihelions that are closer to the Sun than the spacecraft’s components were originally designed to withstand.

“It’s phenomenal how well our spacecraft configuration protected OSIRIS-APEX, so I’m really encouraged by this first close perihelion pass,” said Ron Mink, mission systems engineer for OSIRIS-APEX, based at NASA’s Goddard Space Flight Center.

Besides confirming that the January perihelion worked out according to predictions, engineers found surprises while testing spacecraft components. A couple of instruments came out better than expected after exposure to higher temperatures.

A camera that helped map asteroid Bennu and will do the same at Apophis, saw a 70% reduction in “hot pixels” since April 13, 2023, the last time it was tested. Hot pixels, which are common in well-used cameras in space, show up as white spots in images when detectors accumulate exposure to high-energy radiation, mostly from our Sun.

“We think the heat from the Sun reset the pixels through annealing,” said Amy Simon, OSIRIS-APEX project scientist, based at NASA Goddard. Annealing is a heat process that can restore function of instruments and is often done intentionally through built-in heaters on some spacecraft.

Another welcome surprise, said Simon, came from the spacecraft’s visible and near-infrared spectrometer. Before perihelion, the spectrometer, which mapped the surface composition of Bennu, and will do the same at Apophis, seemed to have a rock from Bennu stuck inside its calibration port. Scientist suspected that some sunlight was blocked from filtering through the instrument after the spacecraft, then called OSIRIS-REx, grabbed a sample from asteroid Bennu on Oct. 20, 2020. By picking up the sample and then firing its engines to back away from Bennu, the spacecraft stirred up dust and pebbles that clung to it.

“But, with enough spacecraft maneuvers and engine burns after sample collection,” Simon said, the rock in the calibration port appears to have been dislodged. Scientists will check the spectrometer again when OSIRIS-APEX swings by Earth on Sept. 25, 2025, for a gravitational boost.

OSIRIS-APEX is now operating normally as it continues its journey toward asteroid Apophis for a 2029 rendezvous. Its better-than-expected performance during the first close perihelion is welcome news. But engineers caution that it doesn’t mean it’s time to relax. OSIRIS-APEX needs to execute five more exceptionally close passes of the Sun – along with three Earth gravity assists – to get to its destination. It’s unclear how the cumulative effect of six perihelions at a closer distance than designed will impact the spacecraft and its components.

The second OSIRIS-APEX perihelion is scheduled for Sept. 1. The spacecraft will be 46.5 million miles away from the Sun, which is roughly half the distance between Earth and the Sun, and well inside the orbit of Venus.

OSIRIS-APEX (previously named OSIRIS-REx) is the third mission in NASA’s New Frontiers Program, managed by NASA’s Marshall Space Flight Center in for the agency’s Science Mission Directorate.

› Back to Top

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 2 min read
      Hubble Studies a Nearby Galaxy’s Star Formation
      This NASA/ESA Hubble Space Telescope image features the picturesque spiral galaxy NGC 4941. ESA/Hubble & NASA, D. Thilker This NASA/ESA Hubble Space Telescope image features the picturesque spiral galaxy NGC 4941, which lies about 67 million light-years from Earth in the constellation Virgo (The Maiden). Because this galaxy is nearby, cosmically speaking, Hubble’s keen instruments are able to pick out exquisite details such as individual star clusters and filamentary clouds of gas and dust.
      The data used to construct this image were collected as part of an observing program that investigates the star formation and stellar feedback cycle in nearby galaxies. As stars form in dense, cold clumps of gas, they begin to influence their surroundings. Stars heat and stir up the gas clouds in which they form through winds, starlight, and — eventually, for massive stars — by exploding as supernovae. These processes are collectively called stellar feedback, and they influence the rate at which a galaxy can form new stars.
      As it turns out, stars aren’t the only entities providing feedback in NGC 4941. At the heart of this galaxy lies an active galactic nucleus: a supermassive black hole feasting on gas. As the black hole amasses gas from its surroundings, the gas swirls into a superheated disk that glows brightly at wavelengths across the electromagnetic spectrum. Similar to stars — but on a much, much larger scale — active galactic nuclei shape their surroundings through winds, radiation, and powerful jets, altering not only star formation but also the evolution of the galaxy as a whole.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated Apr 04, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Spiral Galaxies The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Night Sky Challenge



      Hubble’s Galaxies



      35 Years of Hubble Images


      View the full article
    • By European Space Agency
      Image: This image shows Webb’s recent observation of the asteroid 2024 YR4 using both its Near-Infrared Camera (NIRCam) and Mid-Infrared Instrument (MIRI). Data from NIRCam shows reflected light, while the MIRI observations show thermal light.
      On 8 March 2025, the NASA/ESA/CSA James Webb Space Telescope turned its watchful eye toward asteroid 2024 YR4, which we now know poses no significant threat to Earth in 2032 and beyond.
      This is the smallest object targeted by Webb to date, and one of the smallest objects to have its size directly measured.
      Observations were taken to study the thermal properties of 2024 YR4, including how quickly it heats up and cools down and how hot it is at its current distance from the Sun. These measurements indicate that this asteroid does not share properties observed in larger asteroids. This is likely a combination of its fast spin and lack of fine-grained sand on its surface. Further research is needed, however this is considered consistent with a surface dominated by rocks that are roughly fist-sized or larger.
      Asteroid 2024 YR4 was recently under close watch by the team at ESA's Near Earth Objects Coordination Centre, located in Italy. Planetary defence experts from the Agency's Space Safety programme worked with NASA and the international asteroid community to closely watch this object and refine its orbit, which was eventually determined to not pose a risk of Earth impact. Read details on this unusual campaign via ESA's Rocket Science blog and in news articles here and here.
      Webb’s observations indicate that the asteroid measures roughly 60 meters (comparable to the height of a 15-story building).
      The new observations from Webb not only provide unique information about 2024 YR4’s size, but can also complement ground-based observations of the object's position to help improve our understanding of the object’s orbit and future trajectory.
      Note: This post highlights data from Webb science in progress, which has not yet been through the peer-review process.
      [Image description: A collage of three images showing the black expanse of space. Two-thirds of the collage is taken up by the black background sprinkled with small, blurry galaxies in orange, blue, and white. There are two images in a column at the right side of the collage. On the right side of the main image, not far from the top, a very faint dot is outlined with a white square. At the right, there are two zoomed in views of this area. The top box is labeled NIRCam and shows a fuzzy dot at the center of the inset. The bottom box is labeled MIRI and shows a fuzzy pinkish dot.]
      View the full article
    • By NASA
      Explore This Section Webb News Latest News Latest Images Blog (offsite) Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 5 Min Read NASA Webb Explores Effect of Strong Magnetic Fields on Star Formation
      An image of the Milky Way captured by the MeerKAT radio telescope array puts the James Webb Space Telescope’s image of the Sagittarius C region in context. Full image below. Credits:
      NASA, ESA, CSA, STScI, SARAO, Samuel Crowe (UVA), John Bally (CU), Ruben Fedriani (IAA-CSIC), Ian Heywood (Oxford) Follow-up research on a 2023 image of the Sagittarius C stellar nursery in the heart of our Milky Way galaxy, captured by NASA’s James Webb Space Telescope, has revealed ejections from still-forming protostars and insights into the impact of strong magnetic fields on interstellar gas and the life cycle of stars.  
      “A big question in the Central Molecular Zone of our galaxy has been, if there is so much dense gas and cosmic dust here, and we know that stars form in such clouds, why are so few stars born here?” said astrophysicist John Bally of the University of Colorado Boulder, one of the principal investigators. “Now, for the first time, we are seeing directly that strong magnetic fields may play an important role in suppressing star formation, even at small scales.”
      Detailed study of stars in this crowded, dusty region has been limited, but Webb’s advanced near-infrared instruments have allowed astronomers to see through the clouds to study young stars like never before.
      “The extreme environment of the galactic center is a fascinating place to put star formation theories to the test, and the infrared capabilities of NASA’s James Webb Space Telescope provide the opportunity to build on past important observations from ground-based telescopes like ALMA and MeerKAT,” said Samuel Crowe, another principal investigator on the research, a senior undergraduate at the University of Virginia and a 2025 Rhodes Scholar.
      Bally and Crowe each led a paper published in The Astrophysical Journal.
      Image A: Milky Way Center (MeerKAT and Webb)
      An image of the Milky Way captured by the MeerKAT (formerly the Karoo Array Telescope) radio telescope array puts the James Webb Space Telescope’s image of the Sagittarius C region in context. Like a super-long exposure photograph, MeerKAT shows the bubble-like remnants of supernovas that exploded over millennia, capturing the dynamic nature of the Milky Way’s chaotic core. At the center of the MeerKAT image the region surrounding the Milky Way’s supermassive black hole blazes bright. Huge vertical filamentary structures echo those captured on a smaller scale by Webb in Sagittarius C’s blue-green hydrogen cloud. NASA, ESA, CSA, STScI, SARAO, Samuel Crowe (UVA), John Bally (CU), Ruben Fedriani (IAA-CSIC), Ian Heywood (Oxford) Image B: Milky Way Center (MeerKAT and Webb), Labeled
      The star-forming region Sagittarius C, captured by the James Webb Space Telescope, is about 200 light-years from the Milky Way’s central supermassive black hole, Sagittarius A*. The spectral index at the lower left shows how color was assigned to the radio data to create the image. On the negative end, there is non-thermal emission, stimulated by electrons spiraling around magnetic field lines. On the positive side, thermal emission is coming from hot, ionized plasma. For Webb, color is assigned by shifting the infrared spectrum to visible light colors. The shortest infrared wavelengths are bluer, and the longer wavelengths appear more red. NASA, ESA, CSA, STScI, SARAO, Samuel Crowe (UVA), John Bally (CU), Ruben Fedriani (IAA-CSIC), Ian Heywood (Oxford) Using Infrared to Reveal Forming Stars
      In Sagittarius C’s brightest cluster, the researchers confirmed the tentative finding from the Atacama Large Millimeter Array (ALMA) that two massive stars are forming there. Along with infrared data from NASA’s retired Spitzer Space Telescope and SOFIA (Stratospheric Observatory for Infrared Astronomy) mission, as well as the Herschel Space Observatory, they used Webb to determine that each of the massive protostars is already more than 20 times the mass of the Sun. Webb also revealed the bright outflows powered by each protostar.
      Even more challenging is finding low-mass protostars, still shrouded in cocoons of cosmic dust. Researchers compared Webb’s data with ALMA’s past observations to identify five likely low-mass protostar candidates.
      The team also identified 88 features that appear to be shocked hydrogen gas, where material being blasted out in jets from young stars impacts the surrounding gas cloud. Analysis of these features led to the discovery of a new star-forming cloud, distinct from the main Sagittarius C cloud, hosting at least two protostars powering their own jets.
      “Outflows from forming stars in Sagittarius C have been hinted at in past observations, but this is the first time we’ve been able to confirm them in infrared light. It’s very exciting to see, because there is still a lot we don’t know about star formation, especially in the Central Molecular Zone, and it’s so important to how the universe works,” said Crowe.
      Magnetic Fields and Star Formation
      Webb’s 2023 image of Sagittarius C showed dozens of distinctive filaments in a region of hot hydrogen plasma surrounding the main star-forming cloud. New analysis by Bally and his team has led them to hypothesize that the filaments are shaped by magnetic fields, which have also been observed in the past by the ground-based observatories ALMA and MeerKAT (formerly the Karoo Array Telescope).
      “The motion of gas swirling in the extreme tidal forces of the Milky Way’s supermassive black hole, Sagittarius A*, can stretch and amplify the surrounding magnetic fields. Those fields, in turn, are shaping the plasma in Sagittarius C,” said Bally.
      The researchers think that the magnetic forces in the galactic center may be strong enough to keep the plasma from spreading, instead confining it into the concentrated filaments seen in the Webb image. These strong magnetic fields may also resist the gravity that would typically cause dense clouds of gas and dust to collapse and forge stars, explaining Sagittarius C’s lower-than-expected star formation rate. 
      “This is an exciting area for future research, as the influence of strong magnetic fields, in the center of our galaxy or other galaxies, on stellar ecology has not been fully considered,” said Crowe.  
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the science paper led by Bally from the The Astrophysical Journal.
      View/Download the science paper led by Crowe from the The Astrophysical Journal.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Leah Ramsay – lramsay@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Read more: press releases about the center of the Milky Way
      NASA’s Universe of Learning: ViewSpace Interactive image tour of the center of the Milky Way
      Learn more about the Milky Way and Sagittarius Constellation
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What Is a Nebula?
      What Is a Galaxy?
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      ¿Qué es una nebulosa?
      ¿Qué es una galaxia?
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Stars



      Galaxies



      Universe


      Share








      Details
      Last Updated Apr 02, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Galaxies Galaxies, Stars, & Black Holes Goddard Space Flight Center Protostars Science & Research Stars The Milky Way The Universe View the full article
    • By NASA
      X-ray: NASA/CXC/Technion/N. Keshet et al.; Illustration: NASA/CXC/SAO/M. Weiss People often think about archaeology happening deep in jungles or inside ancient pyramids. However, a team of astronomers has shown that they can use stars and the remains they leave behind to conduct a special kind of archaeology in space.
      Mining data from NASA’s Chandra X-ray Observatory, the team of astronomers studied the relics that one star left behind after it exploded. This “supernova archaeology” uncovered important clues about a star that self-destructed – probably more than a million years ago.
      Today, the system called GRO J1655-40 contains a black hole with nearly seven times the mass of the Sun and a star with about half as much mass. However, this was not always the case.
      Originally GRO J1655-40 had two shining stars. The more massive of the two stars, however, burned through all of its nuclear fuel and then exploded in what astronomers call a supernova. The debris from the destroyed star then rained onto the companion star in orbit around it, as shown in the artist’s concept.
      This artist’s impression shows the effects of the collapse and supernova explosion of a massive star. A black hole (right) was formed in the collapse and debris from the supernova explosion is raining down onto a companion star (left), polluting its atmosphere.CXC/SAO/M. Weiss With its outer layers expelled, including some striking its neighbor, the rest of the exploded star collapsed onto itself and formed the black hole that exists today. The separation between the black hole and its companion would have shrunk over time because of energy being lost from the system, mainly through the production of gravitational waves. When the separation became small enough, the black hole, with its strong gravitational pull, began pulling matter from its companion, wrenching back some of the material its exploded parent star originally deposited.
      While most of this material sank into the black hole, a small amount of it fell into a disk that orbits around the black hole. Through the effects of powerful magnetic fields and friction in the disk, material is being sent out into interstellar space in the form of powerful winds.
      This is where the X-ray archaeological hunt enters the story. Astronomers used Chandra to observe the GRO J1655-40 system in 2005 when it was particularly bright in X-rays. Chandra detected signatures of individual elements found in the black hole’s winds by getting detailed spectra – giving X-ray brightness at different wavelengths – embedded in the X-ray light. Some of these elements are highlighted in the spectrum shown in the inset.
      The team of astronomers digging through the Chandra data were able to reconstruct key physical characteristics of the star that exploded from the clues imprinted in the X-ray light by comparing the spectra with computer models of stars that explode as supernovae. They discovered that, based on the amounts of 18 different elements in the wind, the long-gone star destroyed in the supernova was about 25 times the mass of the Sun, and was much richer in elements heavier than helium in comparison with the Sun.
      This analysis paves the way for more supernova archaeology studies using other outbursts of double star systems.
      A paper describing these results titled “Supernova Archaeology with X-Ray Binary Winds: The Case of GRO J1655−40” was published in The Astrophysical Journal in May 2024. The authors of this study are Noa Keshet (Technion — Israel Institute of Technology), Ehud Behar (Technion), and Timothy Kallman (NASA’s Goddard Space Flight Center).
      NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory.
      Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description
      This release features an artist’s rendering of a supernova explosion, inset with a spectrum graph.
      The artist’s illustration features a star and a black hole in a system called GRO J1655-40. Here, the black hole is represented by a black sphere to our upper right of center. The star is represented by a bright yellow sphere to our lower left of center. In this illustration, the artist captures the immensely powerful supernova as a black hole is created from the collapse of a massive star, with an intense burst of blurred beams radiating from the black sphere. The blurred beams of red, orange, and yellow light show debris from the supernova streaking across the entire image in rippling waves. These beams rain debris on the bright yellow star.
      When astronomers used the Chandra X-ray Observatory to observe the system in 2005, they detected signatures of individual elements embedded in the X-ray light. Some of those elements are highlighted in the spectrum graph shown in the inset, positioned at our upper lefthand corner.
      The graph’s vertical axis, on our left, indicates X-ray brightness from 0.0 up to 0.7 in intensity units. The horizontal axis, at the bottom of the graph, indicates Wavelength from 6 to 12 in units of Angstroms. On the graph, a tight zigzagging line begins near the top of the vertical axis, and slopes down toward the far end of the horizontal axis. The sharp dips show wavelengths where the light has been absorbed by different elements, decreasing the X-ray brightness. Some of the elements causing these dips have been labeled, including Silicon, Magnesium, Iron, Nickel, Neon, and Cobalt.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      mwatzke@cfa.harvard.edu
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      View the full article
    • By NASA
      The innovative team of engineers and scientists from NASA, the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, and more than 40 other partner organizations across the country that created the Parker Solar Probe mission has been awarded the 2024 Robert J. Collier Trophy by the National Aeronautic Association (NAA). This annual award recognizes the most exceptional achievement in aeronautics and astronautics in America with respect to improving the performance, efficiency, and safety of air or space vehicles in the previous year.   
      “Congratulations to the entire Parker Solar Probe team for this well-earned recognition,” said NASA acting Administrator Janet Petro. “This mission’s trailblazing research is rewriting the textbooks on solar science by going to a place no human-made object has ever been and advancing NASA’s efforts to better understand our solar system and the Sun’s influence, with lasting benefits for us all. As the first to touch the Sun and fastest human-made object ever built, Parker Solar Probe is a testament to human ingenuity and discovery.”
      An artist’s concept of NASA’s Parker Solar Probe. NASA On Dec. 24, 2024, Parker Solar Probe made its closest approach to the Sun, passing deep within the Sun’s corona, just 3.8 million miles above the Sun’s surface and at a top speed of close to 430,000 mph, ushering in a new era of scientific discovery and space exploration.
      “This award is a recognition of the unrelenting dedication and hard work of the Parker Solar Probe team. I am so proud of this team and honored to have been a part of it,” said Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters in Washington. “By studying the Sun closer than ever before, we continue to advance our understanding of not only our closest star, but also stars across our universe. Parker Solar Probe’s historic close approaches to the Sun are a testament to the incredible engineering that made this record-breaking journey possible.”
      Three novel aerospace technology advancements were critical to enabling this record performance: The first is the Thermal Protection System, or heat shield, that protects the spacecraft and is built to withstand brutal temperatures as high as 2,500 degrees Fahrenheit. The Thermal Protection System allows Parker’s electronics and instruments to operate close to room temperature.
      Additional Parker innovations included first-of-their-kind actively cooled solar arrays that protect themselves from overexposure to intense solar energy while powering the spacecraft, and a fully autonomous spacecraft system that can manage its own flight behavior, orientation, and configuration for months at a time. Parker has relied upon all of these vital technologies every day since its launch almost seven years ago, in August 2018.
      “I am thrilled for the Parker Solar Probe team on receiving this well-deserved award,” said Joe Westlake, director of the Heliophysics Division at NASA Headquarters. “The new information about the Sun made available through this mission will improve our ability to prepare for space weather events across the solar system, as well as better understand the very star that makes life possible for us on Earth.”
      Parker’s close-up observations of solar events, such as coronal mass ejections and solar particle events, are critical to advancing our understanding of the science of our Sun and the phenomena that drive high-energy space weather events that pose risks to satellites, air travel, astronauts, and even power grids on Earth. Understanding the fundamental physics behind events which drive space weather will enable more reliable predictions and lower astronaut exposure to hazardous radiation during future deep space missions to the Moon and Mars.
      “This amazing team brought to life an incredibly difficult space science mission that had been studied, and determined to be impossible, for more than 60 years. They did so by solving numerous long-standing technology challenges and dramatically advancing our nation’s spaceflight capabilities,” said APL Director Ralph Semmel. “The Collier Trophy is well-earned recognition for this phenomenal group of innovators from NASA, APL, and our industry and research partners from across the nation.”
      First awarded in 1911, the Robert J. Collier Trophy winner is selected by a group of aviation leaders chosen by the NAA. The Collier Trophy is housed in the Smithsonian’s National Air and Space Museum in Washington.
      “Traveling three times closer to the Sun and seven times faster than any spacecraft before, Parker’s technology innovations enabled humanity to reach inside the Sun’s atmosphere for the first time,” said Bobby Braun, head of APL’s Space Exploration Sector. “We are all immensely proud that the Parker Solar Probe team will join a long legacy of prestigious aerospace endeavors that redefined technology and changed history.”
      “The Parker Solar Probe team’s achievement in earning the 2024 Collier is a shining example of determination, genius, and teamwork,” said NAA President and CEO Amy Spowart. “It’s a distinct honor for the NAA to acknowledge and celebrate the remarkable team that turned the impossible into reality.”
      Parker Solar Probe was developed as part of NASA’s Living With a Star program to explore aspects of the Sun-Earth system that directly affect life and society. The Living With a Star program is managed by the agency’s Goddard Space Flight Center in Greenbelt, Maryland, for NASA’s Science Mission Directorate in Washington. The Applied Physics Laboratory designed, built, and operates the spacecraft and manages the mission for NASA.
      By Geoff Brown
      Johns Hopkins University Applied Physics Laboratory
      Share








      Details
      Last Updated Mar 25, 2025 Editor Sarah Frazier Contact Abbey Interrante abbey.a.interrante@nasa.gov Location Goddard Space Flight Center Related Terms
      Heliophysics Goddard Space Flight Center Heliophysics Division Parker Solar Probe (PSP) The Sun Explore More
      5 min read NASA’s Parker Solar Probe Makes History With Closest Pass to Sun


      Article


      3 months ago
      4 min read Final Venus Flyby for NASA’s Parker Solar Probe Queues Closest Sun Pass


      Article


      5 months ago
      11 min read NASA Enters the Solar Atmosphere for the First Time, Bringing New Discoveries
      A major milestone and new results from NASA’s Parker Solar Probe were announced on Dec.…


      Article


      3 years ago
      View the full article
  • Check out these Videos

×
×
  • Create New...