Jump to content

Summary of the Fifty-Second U.S.–Japan ASTER Science Team Meeting


NASA

Recommended Posts

  • Publishers
eo-meeting-summary-banner.png?w=1037

8 min read

Summary of the Fifty-Second U.S.–Japan ASTER Science Team Meeting

Michael Abrams, NASA/Jet Propulsion Laboratory/California Institute of Technology, mjabrams@jpl.nasa.gov
Yasushi Yamaguchi, Nagoya University/Japan Science and Technology Agency, yasushi@nagoya-u.jp

Introduction

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Science Team (ST) organized a three-day workshop that took place September 11–13, 2023, at the offices of Japan Space Systems (JSS) in Tokyo. Over 40 people from Japan and the U.S. participated in the in-person meeting—some of whom are shown in the Photo below. U.S. participants included members from NASA/Jet Propulsion Laboratory (JPL), NASA’s Land Processes Distributed Active Archive Center (LPDAAC), NASA’s Goddard Space Flight Center (GSFC), University of Arizona (UA), Grace Consulting (GC), and University of Pittsburgh (Pitt). Japanese members included representatives from JSS, Ibaraki University (IU), Nagoya University (NU), University of Tokyo (UT), Geologic Survey of Japan (GSJ), National Institute of Advanced Industrial Science and Technology (AIST), University of Tsukuba (UTs), and Remote Sensing Technology Center of Japan (RESTEC). 

The meeting objectives focused on discussing impacts of the 50% budget reductions to the Terra mission (including ASTER) that have been proposed in the NASA Budget for Fiscal Years (FY) 2024–26; revised spacecraft management protocols by the Flight Operations Team; data acquisition status; data calibration and validation; data distribution; status of Level-1 processing interruption; applications; and end-of-mission plans. After summarizing the opening plenary presentations, the remainder of this article provides highlights from meetings of the various ASTER working groups and the closing plenary session. 

ASTER group photo
Photo. Some of the attendees at the fifty-second ASTER STM.
Photo credit: Mako Komoda, JSS

Opening Plenary Session

Yasushi Yamaguchi [NU] and Michael Abrams [JPL—ASTER ST Leaders from Japan and the U.S., respectively] welcomed participants and reviewed the agenda for the opening plenary and the schedule for the week’s working groups.

Akira Tsuneto [AIST—Vice President], whose office is responsible for the ASTER project, presented a special welcome. As the former Director of Space Industry Office in the Japan Ministry of Economy, Trade and Industry (METI), he was responsible for making ASTER data free to all users.

Michael Abrams [JPL] presented Jason Hendrickson’s [GSFC] slides on the operations status of NASA’s Terra platform—which has changed significantly since the last meeting. The Earth Science Mission Operations (ESMO) Flight Operations Team began implementing “Lights Out Operation,” reducing staff from 24/7 coverage and eliminating the night shift. These changes resulted in a small increase in data gaps and delayed anomaly response. In early 2023 Terra lost two of its 24 solar array shunts. Full power capability remains—however, there is only one spare shunt remaining. Those issues notwithstanding, Terra remains healthy after more than 23 years of operation. 

Chris Torbert [LPDAAC] presented ASTER product distribution statistics. The ASTER Global Digital Elevation Model (DEM) continues to be the most ordered product. Torbert discussed the ASTER Preservation Content Specification for the end-of-mission archiving. There is a NASA document that describes the desired content of this archive. As described by the ST at the last meeting, most ASTER data products will be created as real files and placed in a searchable and orderable archive, accessed through NASA’s Earthdata tool, where mission preservation documents for other instruments (e.g., HIRDLS, ICESat/GLAS, TOMS) can be found.

Michael Abrams [JPL] presented highlights of science results based on ASTER data—including the 2023 Earth Science Senior Review. Terra presented its report to NASA Headquarters, but as of this meeting, the response is still pending. However, as stated earlier, a three-year budget reduction of 50% is anticipated.

Hitomi Inada [JSS] presented the status of the ASTER instrument. Although many of the monitored components [e.g., visible-near-infrared (VNIR) pointing motor] have exceeded their original useful life in orbit, they show no signs of decreases in performance. All temperature and current telemetry trends remain straight lines.

Tetsushi Tachikawa [JSS] summarized the status of ASTER observations since the beginning of the mission. He reported that all of the global observation programs are functioning normally, acquiring data as planned. The change of the orbit repeat after the October 2022 constellation exit maneuver has been accommodated in the ASTER scheduler.

Simon Hook [JPL] described the status of the multispectral thermal infrared (TIR) instrument on the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) as well as NASA’s future Surface Biology and Geology (SBG) mission, which is part of the planned Earth System Observatory.

Applications Working Group

The applications session offered a sample of the variety of applications that make use of data from ASTER, see examples below. Miyuki Muto [IU] shared her work to estimate the volume of waste in 19 landfills in 11 countries through analysis of ASTER DEM data over the past 20 years. Analysis of data from a site in India showed that the volume of waste increased four-fold over 20 years—see Figure 1. All the other monitored sites showed similar large increases in waste volume.

ASTER Figure 1
Figure 1. Google Earth Image of landfill in India [top] and temporal changes in volume from 2001 to 2021 [bottom]. Figure credit: Miyuki Muto and Hideyuki Tonooka, IU
Figure credit: Miyuki Muto and Hideyuki Tonooka, IU

Michael Ramsey [Pitt] discussed detecting volcanic eruption precursors using the entire ASTER TIR archive for six selected volcanoes: Etna, Fuego, Kliuchevskoi, Lascar, Vulcano, and Popocatepetl—four of these are shown in Figure 2. He and his students developed statistical methods to detect both low- and high-temperature anomalies. The team performed a cluster analysis on four volcanoes. By calculating and plotting heat flux versus mean temperature-above-background versus maximum temperature-above-background, clusters for eruption styles can be identified—see Figure 2. These results offer potential applicability to other volcanoes.

ASTER Figure 2
Figure 2. Three-dimensional plots show heat flux and temperature plots (further explained in the text) for hundreds of ASTER TIR scenes for four volcanoes, revealing differences related to eruptive styles. The lower cluster (blue) indicated fumarole and passive degassing; the medium cluster (red) correlated with domes and explosive and small lava flows; and the high clusters (green) correlated with large lava flows.
Figure credit: Michael Ramsey/Pitt

Calibration/Validation Working Group

This working group monitors the radiometric performance of ASTER’s VNIR and TIR instruments. The team performs calibration and validation of these instruments by analysis of onboard calibration lamps or blackbody, as well as measurements of pseudo-invariant ground targets during field campaigns. No changes in instrument performance were found based on validation activities during the past year. The radiometric calibration coefficients will remain unchanged for the foreseeable future.

Temperature–Emissivity Working Group

The Temperature–Emissivity Working Group focuses on ASTER’s kinetic temperature and emissivity (T–E) products and their applications, including monitoring instrument performance and calibration. They also review the status of the nighttime TIR global map program. In situ measurement campaigns in Japan and the U.S. use lakes and dry lake beds for ground-based calibration campaigns. Recent campaign results indicate that the TIR instrument perform within required calibration limits—see Figure 3. The team also noted the successful completion of the Visible Infrared Imaging Radiometer Suite (VIIRS)–ASTER 375-m (~1230-ft) near-real-time land-surface temperature algorithm using ASTER emissivity for corrections. Review of the thermal global mapping acquisition program indicated that it was proceeding as planned with no changes needed. 

ASTER Figure 3
Figure 3. ASTER and Landsat 8 and 9 data provide a way to compare the satellite-derived temperature and lake surface measured temperature. ASTER mean difference for all five bands is less than 0.5 °C (~0.9 °F). On the Y axis, BT stands for Brightness Temperature. Figure credit: Remote Sensing Technology Center of Japan/Soushi Kato
Figure credit: Remote Sensing Technology Center of Japan/Soushi Kato

Operations and Mission Planning Working Group

The Operations and Mission Planning working group oversees and reviews the acquisition programs executed by the ASTER scheduler. The working group schedules ASTER data acquisitions daily to accommodate ASTER’s average 8% duty cycle. An automated program selects 600–700 daily scenes from the more than 3000 in the request archive. 

Tetsushi Tachikawa [JSS] reviewed the status of acquisition scheduling. Urgent observations receive the highest priority and can be scheduled close to acquisition time. Approximately 70 scenes are programmed per month—with over 95% acquisition success. By contrast, global mapping data acquisitions receive the lowest priority and fill in the scenes for the daily quota. The objective is for ASTER to acquire at least one cloud-free image for every place on Earth. Due to persistent cloud cover, success is typically ~85%. The group restarts the program after several years, with the next scheduled restart in October 2024. The thermal group submits aerial requirements to acquire global nighttime coverage with the thermal bands, which will continue as scheduled. There are also acquisition programs that focus on islands, volcanoes, glaciers, and cloudy areas. The global volcano image acquisition program will continue with no change to the observation parameters. Acquisition of images of islands and over cloudy areas will also continue in current form. The global glacier acquisition program will be modified to change the VNIR gain settings to optimize images over snow and ice. 

Chris Torbert [LPDAAC] reported that software fixes were ongoing for the (currently non-functional) expedited data processing at the LPDAAC.

Closing Plenary Session

Each working group chairperson summarized the presentations, discussions, and recommendations that occurred during each session. Consensus holds the ASTER instrument is operating normally, with no indications of any component failures. The backlog of unprocessed scenes resulting from the 2022 constellation exit maneuver impact on production software should clear by early October 2023. The closing highlighted the impact of the 50% budget reduction on the Flight Operation Team at GSFC with only a small increase in lost data (1–2%) due to the absence of operators to attempt immediate recovery. 

Conclusion

The fifty-second ASTER ST Meeting successfully covered all of the critical issues introduced during the opening plenary session. Working groups updated instrument scheduling, instrument performance, archiving plans, and new applications. The plan is for the 2024 meeting to take place at the same venue in Tokyo.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      Unveiling The Mystery: The Science Behind The Intensity Of The Northern Lights
    • By NASA
      Rob Gutro has never been one to stay idle. From his start working at a paper factory as a teenager, Rob navigated his way to NASA’s Goddard Space Flight Center where he serves as the deputy news chief in the Office of Communications until he retires in October 2024.
      Rob Gutro serves as deputy news chief at NASA’s Goddard Space Flight Center.Photo courtesy of Rob Gutro In this role, Rob manages all the media products, like news stories and videos, that come out of Goddard. He also edits content, creates detailed reports, and coordinates media requests, leaning on decades of experience in communications to help the Goddard newsroom run smoothly.
      But his path to NASA was neither paved nor linear. It took a strong will and unflagging passion to overcome obstacles along the way and rise to his current role.
      Weathering the Journey 
      Rob began working at a young age, first at a paper factory, then a bank, and then a law office. But none of these jobs were ever his end goal.
      “I loved music as a teenager and always wanted to work on the radio,” Rob says. So he got a degree in radio and television from Northeast Broadcasting School in Boston. “I went straight into radio broadcasting and continued that part-time for 20 years.”
      He started out hosting a weekend radio show, but didn’t intend for it to be a career for financial reasons. So he completed another degree, this time in English and business at Suffolk University in Boston. 
      “I knew that to do the type of broadcasting I wanted to do, I needed to learn how to write so I could explain things via stories and reporting,” Rob says. “And I was particularly fascinated by the weather, so I wanted to be able to communicate broadly about that.”
      He then worked for the USDA as a writer and editor for a year before joining NOAA as a writer in the 1990s. The highlight of his NOAA career was a work detail he did for the National Hurricane Center during hurricane season in 1993. He enjoyed it so much he eventually decided to go back to school again, earning a degree in meteorology from Western Kentucky University in Bowling Green. “I call it my third degree burn,” he jokes.
      During the program, he refined his broadcasting skills and immersed himself in the science behind the weather and forecasting. He was focusing on what he loved, though it wasn’t an easy journey.
      “When I went back to school for meteorology I was working two jobs and making minimum wage, living off of ramen noodles and tuna fish every day because that was all I could afford,” Rob says. “But I was determined!”
      Upon graduation, he began working for a private weather company doing marketing and writing. Rob balanced multiple jobs, including a part-time radio gig, while continually applying to The Weather Channel. After eight years of applications, he was finally hired as a radio broadcast meteorologist! “I loved being on the air with The Weather Channel and doing radio broadcasts,” Rob says. 
      “I think the key to everything is persistence and patience,” Rob says. “My advice to everybody is no matter what your goal is, keep pursuing it because eventually it will happen!”
      Navigating NASA 
      Rob’s desire to understand climate change and return to Maryland brought him to NASA. He became an Earth science writer at NASA Goddard in 2000. By 2005, he was the manager of the Earth science news team, and in 2009 he began working with the James Webb Space Telescope team and also obtained his current role of deputy news chief.
      Rob and Lynn to the rescue! One of the highlights of Rob’s career at NASA was working with Lynn Jenner for more than 20 years. Together, the duo –– photographed here at a work party –– managed web pages about hurricanes and fires.Courtesy of Rob Gutro “My degrees have served me well at NASA because I work with the media, I write, and I have to understand science,” Rob says. 
      His favorite NASA project was the now-retired NASA hurricane page, which he wrote content for and kept updated every single day for the 15 years it was active. The media frequently used NASA imagery shared on the hurricane page, and people worldwide used the information to make decisions about their safety during hurricanes.
      “I’ll never forget one experience, where a woman in the Philippines asked if she should evacuate her mother from a nursing home on the island of Visayas,” Rob says. “I said yes, because the island was going to be inundated by an eight-foot storm surge.” So she did, and two weeks later she emailed Rob again saying the entire nursing home was flooded to the roof — her mother would have likely drowned if she’d stayed.
      On to the Next Chapter
      As busy as his work life has been — Rob had three jobs at any given time until he was 40 years old — his off duty hours haven’t been idle either. In January 2025, he’s publishing his twelfth book, and has another six already mostly written.
      “I’m retiring from NASA soon and will focus on my books, continuing the fundraising lectures for animal rescues that I’ve done for the last decade, and teaching paranormal courses in night school for two adult education programs,” Rob says. “And my husband and I have three dogs to keep us busy — they are the joy of my life!”
      Rob’s three dogs, as pictured on a 2023 Christmas card. Photo courtesy of Rob Gutro Reflecting on his career, Rob singles out blogging as one of the most effective tools he’s used over the years. 
      “Whether you want to write a book or science articles, one of the easiest ways to begin is by starting a blog and writing about things you like,” he says. That’s one key to his productivity, as he says, “Whatever you write can always be repurposed, and if you’re constantly leaning into things you’re passionate about, you’ll eventually end up exactly where you’re meant to be.”
      By Ashley Balzer
      NASA’s Goddard Space Flight Center in Greenbelt, Md.
      View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Back to Fire Science Landing Page
      FireSage
      San José State University (SJSU) and NASA Ames Research Center are offering the FireSage Program; a premier summer internship opportunity designed to equip students with expertise in fire ecology and remote sensing technologies. This 10-week internship program offers a paid opportunity to work on-site at NASA Ames Earth Science Division and SJSU’s Wildfire Interdisciplinary Research Center (WIRC) Geofly Lab and FireEcology Lab. Here, interns will be introduced to cutting-edge technologies and methodologies for wildfire research and management and benefit from a comprehensive learning environment including a one-on-one setting with NASA Scientists and SJSU Faculty.
      Learn More About the FireSage Internship
      Fire & Air
      Ames Research Center and California State University, Stanislaus (CSUStan) are partnering together to offer the Fire & Air program: a yearlong internship for CSUStan undergraduates, with opportunities to work with both NASA Subject Matter Experts and CSUStan MSI Mentors. The program focuses on two main research areas: atmospheric effects and causes of wildfires, and the study of aerosols in biomass burning.
      Learn More About the Fire and Air Internship
      Back to Fire Science Landing Page Share
      Details
      Last Updated Sep 17, 2024 Related Terms
      General Earth Science Earth Science Division Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Back to Fire Science Landing Page FireSense
      The FireSense project is focused on delivering NASA’s unique Earth science and technological capabilities to operational agencies, striving to address challenges in US wildland fire management. The project concentrates on four use-cases to support decisions before, during, and after wildland fires. These include the measurement of pre-fire fuels conditions, active fire dynamics, post fire impacts and threats, as well as air quality forecasting, each co-developed with identified wildland fire management agency stakeholders.

      Strategic Tac Radio and Tac Overwatch (STRATO)
      The Strategic Tac Radio and Tac Overwatch (STRATO) system is designed to provide real-time fire observations and last-mile communications with firefighters from stratospheric platforms. By providing persistent communications to a wildfire response team for a week or longer, STRATO is expected to offer capabilities beyond the currently used tethered balloons, which have a limited range and coverage area. By achieving station-keeping at altitudes up to 70,000 feet above ground level—to be demonstrated in flight testing—the STRATO will be able to provide communications to incident response teams in areas with no cellphone coverage.

      Surface Biology and Geology (SBG)


      Arctic Boreal Vulnerability Experiment (ABoVE)
      Climate change in the Arctic and Boreal region is unfolding faster than anywhere else on Earth, resulting in reduced Arctic sea ice, thawing of permafrost soils, decomposition of long- frozen organic matter, widespread changes to lakes, rivers, coastlines, and alterations of ecosystem structure and function. NASA’s Terrestrial Ecology Program is conducting a major field campaign, the Arctic-Boreal Vulnerability Experiment (ABoVE), in Alaska and western Canada, from 2015 – 2025. ABoVE seeks a better understanding of the vulnerability and resilience of ecosystems and society to this changing environment.

      Tactical Fire Remote Sensing Advisory Committee (TFRSAC)


      Embracing CSDA-Supported Spaceborne SAR Data in NASA FireSense Airborne Campaigns
      This project aims to determine the capability of Umbra X-band Synthetic Aperture Radar (SAR) data to characterize rapidly changing fire landscapes during NASA’s FireSense airborne campaigns.

      Opti-SAR
      Opti-SAR is focused on accurate and timely mapping of forest structure and aboveground biomass (AGB) with integrated space-based optical and radar observations. This project will make a fundamental contribution to an integrated Earth System Observatory by using the mathematical foundation of RADAR-VSPI and VSPI to integrate SAR and optical data to achieve breakthroughs in forest monitoring and assessment.

      Tropospheric Regional Atmospheric Composition and Emissions Reanalysis – 1 (TRACER-1)
      TRACER-1 is a 20-year atmospheric composition re-analysis product that will enable researchers to answer questions about changes in wildfire emissions and the impact of extreme wildfire events on regional air quality. Active dates: 2005 – 2024

      Cultural Burning
      The Indigenous People’s Initiative partners with indigenous groups in the US and across the world, many of whom practice a long history of cultural burning.

      Back to Fire Science Landing Page Share
      Details
      Last Updated Sep 17, 2024 Related Terms
      General Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Back to Ocean Science Landing Page
      Internet of Animals
      The Internet of Animals project combines animal tracking tags with remote sensing, to better understand habitat use and movement patterns. This kind of research enables more informed ecological management and conservation efforts, and broadens our understanding of how different ecosystems are reacting to a changing climate.
      https://www.nasa.gov/nasa-earth-exchange-nex/new-missions-support/internet-of-animals/
      FATE: dFAD Trajectory Tool
      FATE will quantify dFAD (drifting fish aggregating devices) activity in relation to ocean currents, fish biomass, and animal telemetry at Palmyra Atoll, which is a U.S. Fish and Wildlife Service (USFWS) National Wildlife Refuge and is part of the U.S. Pacific Remote Islands Marine National Monument (PRIMNM) in the central Pacific Ocean. This innovative decision support tool will use NASA observations and numerical models to predict future dFAD trajectories and inform resource managers whether they should deploy tactical resources (boats, personnel) to monitor, intercept, or retrieve dFADs that have entered the MPA.
      SeaSTAR
      SeaSTAR aims to provide multi-spectral aerosol optical depth (AOD) and aerosol optical properties using a custom-built robotic sun/sky photometer. The instrument is designed to operate from a ship and is planned to deploy aboard the NOAA research vessel RV Shearwater in September 2024 to support the PACE-PAX airborne campaign.
      PACE Validation Science Team Project: AirSHARP
      Airborne asSessment of Hyperspectral Aerosol optical depth and water-leaving Reflectance Product Performance for PACE

      The goal of AirSHARP is to provide high fidelity spatial coverage and spectral data for ocean color and aerosol products for validation of the PACE Ocean Color Instrument (OCI). Coastal influences on oceanic waters can produce high optical complexity for remote sensing especially in dynamic waters in both space and time. Dynamic coastal water features include riverine plumes (sediments and pollution), algal blooms, and kelp beds. Further, coastal California has a range of atmospheric conditions related to fires. We will accomplish validation of PACE products by combined airborne and field instrumentation for Monterey Bay, California.
      Water2Coasts
      Watersheds, Water Quality, and Coastal Communities in Puerto Rico
      Water2Coasts is an interdisciplinary island landscape to coastal ocean assessment with socioeconomic implications. The goal of Water2Coasts is to conduct a multi-scale, interdisciplinary (i.e., hydrologic, remote sensing, and social) study on how coastal waters of east, and south Puerto Rico are affected by watersheds of varying size, land use, and climate regimes, and how these may in turn induce a variety of still poorly understood effects on coastal and marine ecosystems such as coral reefs and seagrass beds.
      US Coral Reef Task Force (USCRTF)
      The USCRTF was established in 1998 by Presidential Executive Order to lead U.S. efforts to preserve and protect coral reef ecosystems. The USCRTF includes leaders of Federal agencies, U.S. States, territories, commonwealths, and Freely Associated States. The USCRTF helps build partnerships, strategies, and support for on-the-ground action to conserve coral reefs. NASA ARC scientists are members of the Steering Committee, Watershed Working Group, and Disease and Disturbance Working Group, and lead the Climate Change Working Group to assist in the use of NASA remote sensing data and tools for coastal studies, including coral reef ecosystems. Data from new and planned hyperspectral missions will advance research in heavily impacted coastal ecosystems.
      CyanoSCape
      Cyanobacteria and surface phytoplankton biodiversity of the Cape freshwater systems
      The diversity of phytoplankton is also found in freshwater systems. In Southern Africa, land use change and agricultural practices has hindered hydrological processes and compromised freshwater ecosystems. These impacts are compounded by increasingly variable rainfall and temperature fluctuations associated with climate change posing risks to water quality, food security, and aquatic biodiversity and sustainability. The goal of CyanoSCape is to utilize airborne hyperspectral data and field spectral and water sample data to distinguish phytoplankton biodiversity, including the potentially toxic cyanobacteria.
      mCDR: Marine Carbon Dioxide Removal
      The goals of this effort are to conduct literature review, analysis, and ocean simulation to provide scientifically vetted estimates of the impacts, risks, and benefits of various potential mCDR methods.
      Ocean modeling
      Atlantic Meridional Overturning Circulation (AMOC) in a changing climate

      The goals of this project are to build scientific understanding of the AMOC physics and its implications for biogeochemical cycles and climate, to assess the representation of AMOC in historical global ocean state estimates, and evaluate future needs for AMOC systems in a changing climate.

      Elucidating the role of the ocean circulation in changing North Atlantic Ocean nutrients and biological productivity

      This project will conduct analysis of NASA’s ECCO-Darwin ocean biogeochemical state estimate and historical satellite ocean color observations in order to understand the underlying causes for the sharp decline in biological productivity observed in the North Atlantic Ocean.

      Integrated GEOS and ECCO Earth system modeling and data assimilation to advance seasonal-to-decadal prediction through improved understanding and representation of air-sea interactions

      This analysis will build understanding of upper ocean, air-sea interaction, and climate processes by using data from the SWOT mission and ultra-high-resolution GEOS-ECCO simulations.
      Back to Ocean Science Landing Page Share
      Details
      Last Updated Sep 17, 2024 Related Terms
      General Earth Science Oceans Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...