Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Regolith Adherence Characterization, or RAC, is one of 10 science and technology instruments flying on NASA’s next Commercial Lunar Payload Services (CLPS) flight as part of the Blue Ghost Misison-1. Developed by Aegis Aerospace of Webster, Texas, RAC is designed to study how lunar dust reacts to more than a dozen different types of material samples, located on the payload’s wheels. Photo courtesy Firefly Aerospace The Moon may look like barren rock, but it’s actually covered in a layer of gravel, pebbles, and dust collectively known as “lunar regolith.” During the Apollo Moon missions, astronauts learned firsthand that the fine, powdery dust – electromagnetically charged due to constant bombardment by solar and cosmic particles – is extremely abrasive and clings to everything: gloves, boots, vehicles, and mechanical equipment. What challenges does that dust pose to future Artemis-era missions to establish long-term outposts on the lunar surface?
      That’s the task of an innovative science instrument called RAC-1 (Regolith Adherence Characterization), one of 10 NASA payloads flying aboard the next delivery for the agency’s CLPS (Commercial Lunar Payload Services) initiative and set to be carried to the surface by Firefly Aerospace’s Blue Ghost 1 lunar lander.
      Developed by Aegis Aerospace of Webster, Texas, RAC will expose 15 sample materials – fabrics, paint coatings, optical systems, sensors, solar cells, and more – to the lunar environment to determine how tenaciously the lunar dust sticks to each one. The instrument will measure accumulation rates during landing and subsequent routine lander operations, aiding identification of those materials which best repel or shed dust. The data will help NASA and its industry partners more effectively test, upgrade, and protect spacecraft, spacesuits, habitats, and equipment in preparation for continued exploration of the Moon under the Artemis campaign.
      “Lunar regolith is a sticky challenge for long-duration expeditions to the surface,” said Dennis Harris, who manages the RAC payload for NASA’s CLPS initiative at the agency’s Marshall Space Flight Center in Huntsville, Alabama. “Dust gets into gears, sticks to spacesuits, and can block optical properties. RAC will help determine the best materials and fabrics with which to build, delivering more robust, durable hardware, products, and equipment.”
      Under the CLPS model, NASA is investing in commercial delivery services to the Moon to enable industry growth and support long-term lunar exploration. As a primary customer for CLPS deliveries, NASA aims to be one of many customers on future flights. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the development of seven of the 10 CLPS payloads carried on Firefly’s Blue Ghost lunar lander.
      Learn more about. CLPS and Artemis at:
      https://www.nasa.gov/clps
      Alise Fisher
      Headquarters, Washington
      202-358-2546
      Alise.m.fisher@nasa.gov
      Headquarters, Washington
      202-358-2546
      Alise.m.fisher@nasa.gov
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256-544-0034  
      corinne.m.beckinger@nasa.gov 
      Share
      Details
      Last Updated Dec 20, 2024 EditorBeth RidgewayContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
      Commercial Lunar Payload Services (CLPS) Artemis Marshall Space Flight Center Explore More
      3 min read NASA Payload Aims to Probe Moon’s Depths to Study Heat Flow
      Article 2 days ago 4 min read NASA Technology Helps Guard Against Lunar Dust
      Article 8 months ago 4 min read NASA Collects First Surface Science in Decades via Commercial Moon Mission
      Article 10 months ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA-supported scientists have suggested an updated framework for the role of ferns in environmental recovery from disaster. Instead of competing with other organisms, ferns may act as facilitators that ease the way for other plants and animals to re-establish themselves in a damaged landscape.
      The study examines how a biosphere recovers from major upheaval, be it from wildfires or asteroid impacts, using what scientists call a ‘facilitative’ framework (where the actions of organisms help each other) rather than the long-held ‘competition-based’ framework. 
      NASA supported researchers at a fossil plant quarry near the Old Raton Pass Cretaceous–Paleogene (K-Pg) boundary in New Mexico.Ellen Currano Ferns are a common type of vascular plant found in woodlands, gardens, and many a plant pot on apartment shelves. Unlike many other vascular plants, ferns do not flower or seed. Instead, they reproduce via spores. Ferns first appeared on Earth some 360 million years ago during the Devonian period and, prior to the evolution of flowering plants, were the most common vascular plant on Earth.
      Ferns are often one of the first plants to re-establish in areas affected by large-scale upheaval events, and it has been suggested that this is because ferns produce spores in great amounts that are widely distributed on the wind. Some scientists, particularly in the fields of geology and paleontology, have used this ‘competitive’ success of ferns as a foundation for ecological theories about how recolonization happens after upheavals.
      However, in recent years, growing research has shown that recovery is not only about competition. Positive interactions, known as facilitation, between ferns and other species also play a significant role. The authors of the recent study believe that it is time to re-examine positive interactions within ecosystems, rather than defaulting to a competition framework.  
      Ferns in History
      “I love to imagine ecosystems through time and play a game in my head where I ask myself, ’if I could stand here for 1 million years, would this fossilize?’” said lead author Lauren Azevedo Schmidt of the University of California at Davis. “Because of the mental time gymnastics I do, my research questions follow the same pathway. How do I create synergy between modern and paleo research?”
      Early Paleocene fern fossil discovered on the Vermejo Park Ranch, NM. Photo by Ellen Currano.Ellen Currano The team examined ideas that have been developed based on observing modern organisms as well as ancient populations in the fossil record. They propose that, rather than out-competing other species, ferns act as facilitators for ecosystem recovery by stabilizing the ground, enhancing properties of the soil, and mediating competition between other organisms. This repositions ferns as facilitators of ecological recovery within disturbed habitats. This has broad implications for understanding how a community recovers and the importance of positive interactions following disturbance events. Because ferns are among the oldest lineages of plants on Earth and have experienced unimaginable climates and extinction events, they provide critical information to better understand the fossil record and Earth before humans.
      Fossil plant excavation in the Cretaceous rocks just below the K-Pg boundary at Old Raton Pass, NM. Photo by Ellen Currano.Ellen Currano “The Cretaceous – Paleogene [K-Pg] extinction event reworked Earth’s biosphere, resulting in approximately 75% of species going extinct, with up to 90% of plants going extinct,” said Azevedo Schmidt. “This magnitude of devastation is something humans (luckily) have never had to deal with, making it hard to even think about. But it is something we must consider when tackling research/issues surrounding exobiology.” 
      The longevity of ferns on Earth provides a view into the evolution of life on Earth, even through some of the planet’s most devastating disasters. This is of interest to astrobiology and exobiology because exploring how environmental factors can and have impacted the large-scale evolution of life on Earth through mass extinctions and mass radiation events can help us understand the potential for the origin, evolution and distribution for life elsewhere in the Universe.   
      Ferns in Space
      In addition to their relevance to astrobiology, the resilience of ferns and their ability to help heal a damaged environment could also make them important partners for future human missions in space. NASA’s Space Biology program has supported experiments to study how plants adapt to space with the expectation that knowledge gained can lead to ways by which crops can be cultivated for fresh food. Lessons learned from studying resilient plants, such as ferns, could guide efforts to make crops adapt better to harsh space conditions so they can serve as a reliable food source as humans explore destinations beyond our planet. Previous studies have also looked at how plants might keep air clean in enclosed spaces like the International Space Station or in habitats on the Moon or Mars.
      NASA supported scientists can be seen prospecting for plant fossils in Berwind Canyon, CO. Photo by Ellen Currano.Ellen Currano “Ferns were able to completely transform Earth’s biosphere following the devastation of the K-Pg [Cretaceous–Paleogene] extinction event. The environment experienced continental-scale fires, acid rain, and nuclear winter, but ferns were able to tolerate unbelievable stress and make their environment better,” says Azevedo Schmidt. “I think we can all learn something from the mighty ferns.”  
      The study, “Ferns as facilitators of community recovery following biotic upheaval,” was published in the journal BioScience [doi:10.1093/biosci/biae022]
      For more information on NASA’s Astrobiology program, visit:
      https://www.science.nasa.gov/astrobiology
      -end-
      Karen Fox / Molly Wasser
      Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov 
      Explore More
      2 min read NASA-Funded Study Examines Tidal Effects on Planet and Moon Interiors
      NASA-supported scientists have developed a method to compute how tides affect the interiors of planets…
      Article 1 month ago 2 min read NASA’s New Edition of Graphic Novel Features Europa Clipper
      NASA has released a new edition of Issue 4 of the Astrobiology Graphic History series.…
      Article 2 months ago 5 min read NASA: New Insights into How Mars Became Uninhabitable
      Article 2 months ago Share
      Details
      Last Updated Dec 20, 2024 Related Terms
      Astrobiology View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      LISTER (Lunar Instrumentation for Subsurface Thermal Exploration with Rapidity) is one of 10 payloads flying aboard the next delivery for NASA’s CLPS (Commercial Lunar Payload Services) initiative. The instrument is equipped with a drilling system and thermal probe designed to dig into the lunar surface. Photo courtesy: Firefly Aerospace Earth’s nearest neighboring body in the solar system is its Moon, yet to date humans have physically explored just 5% of its surface. It wasn’t until 2023 – building on Apollo-era data and more detailed studies made in 2011-2012 by NASA’s automated GRAIL (Gravity Recovery and Interior Laboratory) mission – that researchers conclusively determined that the Moon has a liquid outer core surrounding a solid inner core.
      As NASA and its industry partners plan for continued exploration of the Moon under Artemis in preparation for future long-duration missions to Mars, improving our understanding of Earth’s 4.5-billion-year-old Moon will help teams of researchers and astronauts find the safest ways to study and live and work on the lunar surface.
      That improved understanding is  the primary goal of a state-of-the-art science instrument called LISTER (Lunar Instrumentation for Subsurface Thermal Exploration with Rapidity), one of 10 NASA payloads flying aboard the next delivery for the agency’s CLPS (Commercial Lunar Payload Services) initiative and set to be carried to the surface by Firefly Aerospace’s Blue Ghost 1 lunar lander.
      Developed jointly by Texas Tech University in Lubbock and Honeybee Robotics of Altadena, California, LISTER will measure the flow of heat from the Moon’s interior. Its sophisticated pneumatic drill will penetrate to a depth of three meters into the dusty lunar regolith. Every half-meter it descends, the drilling system will pause and extend a custom-built thermal probe into the lunar regolith. LISTER will measure two different aspects of heat flow: thermal gradient, or the changes in temperature at various depths, and thermal conductivity, or the subsurface material’s ability to let heat pass through it.
      “By making similar measurements at multiple locations on the lunar surface, we can reconstruct the thermal evolution of the Moon,” said Dr. Seiichi Nagihara, principal investigator for the mission and a geophysics professor at Texas Tech. “That will permit scientists to retrace the geological processes that shaped the Moon from its start as a ball of molten rock, which gradually cooled off by releasing its internal heat into space.”
      Demonstrating the drill’s effectiveness could lead to more innovative drilling capabilities, enabling future exploration of the Moon, Mars, and other celestial bodies.. The science collected by LISTER aims to contribute to our knowledge of lunar geology, improving our ability to establish a long-term presence on the Moon under the Artemis campaign.
      Under the CLPS model, NASA is investing in commercial delivery services to the Moon to enable industry growth and support long-term lunar exploration. As a primary customer for CLPS deliveries, NASA aims to be one of many customers on future flights. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the development of seven of the 10 CLPS payloads carried on Firefly’s Blue Ghost lunar lander.
      Learn more about CLPS and Artemis at:
      https://www.nasa.gov/clps
      Alise Fisher
      Headquarters, Washington
      202-358-2546
      Alise.m.fisher@nasa.gov
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256-544-0034  
      corinne.m.beckinger@nasa.gov 
      Share
      Details
      Last Updated Dec 18, 2024 EditorBeth RidgewayContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
      Commercial Lunar Payload Services (CLPS) Artemis Marshall Space Flight Center Explore More
      4 min read NASA Finds ‘Sideways’ Black Hole Using Legacy Data, New Techniques
      Article 4 hours ago 8 min read NASA’s Kennedy Space Center Looks to Thrive in 2025
      Article 5 hours ago 4 min read New Commercial Artemis Moon Rovers Undergo Testing at NASA
      Article 6 hours ago Keep Exploring Discover Related Topics
      Commercial Lunar Payload Services (CLPS)
      The goal of the CLPS project is to enable rapid, frequent, and affordable access to the lunar surface by helping…
      Moon
      The Moon makes Earth more livable, sets the rhythm of ocean tides, and keeps a record of our solar system’s…
      Marshall Space Flight Center
      Solar System
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Seen at the center of this image, NASA’s retired InSight Mars lander was captured by the agency’s Mars Reconnaissance Orbiter using its High-Resolution Imagine Science Experiment (HiRISE) camera on Oct. 23, 2024.NASA/JPL-Caltech/University of Arizona New images taken from space show how dust on and around InSight is changing over time — information that can help scientists learn more about the Red Planet.
      NASA’s Mars Reconnaissance Orbiter (MRO) caught a glimpse of the agency’s retired InSight lander recently, documenting the accumulation of dust on the spacecraft’s solar panels. In the new image taken Oct. 23 by MRO’s High-Resolution Imaging Science Experiment (HiRISE) camera, InSight’s solar panels have acquired the same reddish-brown hue as the rest of the planet.
      After touching down in November 2018, the lander was the first to detect the Red Planet’s marsquakes, revealing details of the crust, mantle, and core in the process. Over the four years that the spacecraft collected science, engineers at NASA’s Jet Propulsion Laboratory in Southern California, which led the mission, used images from InSight’s cameras and MRO’s HiRISE to estimate how much dust was settling on the stationary lander’s solar panels, since dust affected its ability to generate power.
      NASA retired InSight in December 2022, after the lander ran out of power and stopped communicating with Earth during its extended mission. But engineers continued listening for radio signals from the lander in case wind cleared enough dust from the spacecraft’s solar panels for its batteries to recharge. Having detected no changes over the past two years, NASA will stop listening for InSight at the end of this year.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      NASA’s InSight Mars lander acquires the same reddish-brown hue as the rest of the planet in a set of images from 2018 to 2024 that were captured by the agency’s Mars Reconnaissance Orbiter using its High-Resolution Imagine Science Experiment (HiRISE) camera.NASA/JPL-Caltech/University of Arizona Scientists requested the recent HiRISE image as a farewell to InSight, as well as to monitor how its landing site has changed over time.
      “Even though we’re no longer hearing from InSight, it’s still teaching us about Mars,” said science team member Ingrid Daubar of Brown University in Providence, Rhode Island. “By monitoring how much dust collects on the surface — and how much gets vacuumed away by wind and dust devils — we learn more about the wind, dust cycle, and other processes that shape the planet.”
      Dust Devils and Craters
      Dust is a driving force across Mars, shaping both the atmosphere and landscape. Studying it helps scientists understand the planet and engineers prepare for future missions (solar-powered and otherwise), since dust can get into sensitive mechanical parts.
      When InSight was still active, scientists matched MRO images of dust devil tracks winding across the landscape with data from the lander’s wind sensors, finding these whirling weather phenomena subside in the winter and pick up again in the summer.
      The imagery also helped with the study of meteoroid impacts on the Martian surface. The more craters a region has, the older the surface there is. (This isn’t the case with Earth’s surface, which is constantly recycled as tectonic plates slide over one another.) The marks around these craters fade with time. Understanding how fast dust covers them helps to ascertain a crater’s age.
      Another way to estimate how quickly craters fade has been studying the ring of blast marks left by InSight’s retrorocket thrusters during landing. Much more prominent in 2018, those dark marks are now returning to the red-brown color of the surrounding terrain.
      HiRISE has captured many other spacecraft images, including those of NASA’s Perseverance and Curiosity rovers, which are still exploring Mars, as well as inactive missions, like the Spirit and Opportunity rovers and the Phoenix lander.
      “It feels a little bittersweet to look at InSight now. It was a successful mission that produced lots of great science. Of course, it would have been nice if it kept going forever, but we knew that wouldn’t happen,” Daubar said.
      More About MRO and InSight
      The University of Arizona, in Tucson, operates HiRISE, which was built by Ball Aerospace & Technologies Corp., in Boulder, Colorado. A division of Caltech in Pasadena, California, JPL manages the MRO project and managed InSight for NASA’s Science Mission Directorate, Washington.
      The InSight mission was part of NASA’s Discovery Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama. Lockheed Martin Space in Denver built the InSight spacecraft, including its cruise stage and lander, and supported spacecraft operations for the mission.
      A number of European partners, including France’s Centre National d’Études Spatiales (CNES) and the German Aerospace Center (DLR), supported the InSight mission. CNES provided the Seismic Experiment for Interior Structure (SEIS) instrument to NASA, with the principal investigator at IPGP (Institut de Physique du Globe de Paris). Significant contributions for SEIS came from IPGP; the Max Planck Institute for Solar System Research (MPS) in Germany; the Swiss Federal Institute of Technology (ETH Zurich) in Switzerland; Imperial College London and Oxford University in the United Kingdom; and JPL. DLR provided the Heat Flow and Physical Properties Package (HP3) instrument, with significant contributions from the Space Research Center (CBK) of the Polish Academy of Sciences and Astronika in Poland. Spain’s Centro de Astrobiología (CAB) supplied the temperature and wind sensors.
      For more about the missions:
      https://science.nasa.gov/mission/insight
      science.nasa.gov/mission/mars-reconnaissance-orbiter
      News Media Contacts
      Andrew Good
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-2433
      andrew.c.good@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      2024-175
      Share
      Details
      Last Updated Dec 16, 2024 Related Terms
      InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) Jet Propulsion Laboratory Mars Mars Reconnaissance Orbiter (MRO) Radioisotope Power Systems (RPS) Explore More
      5 min read NASA’s Perseverance Rover Reaches Top of Jezero Crater Rim
      Article 4 days ago 5 min read NASA’s Juno Mission Uncovers Heart of Jovian Moon’s Volcanic Rage
      Article 4 days ago 5 min read NASA-DOD Study: Saltwater to Widely Taint Coastal Groundwater by 2100
      Article 5 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Watersheds on the U.S. Eastern Seaboard will be among the areas most affected by underground saltwater intrusion by the year 2100 due to sea level rise and changes in groundwater supplies, according to a NASA-DOD study. NASA’s Terra satellite captured this image on April 21, 2023. Intrusion of saltwater into coastal groundwater can make water there unusable, damage ecosystems, and corrode infrastructure.
      Seawater will infiltrate underground freshwater supplies in about three of every four coastal areas around the world by the year 2100, according to a recent study led by researchers at NASA’s Jet Propulsion Laboratory in Southern California. In addition to making water in some coastal aquifers undrinkable and unusable for irrigation, these changes can harm ecosystems and corrode infrastructure.
      Called saltwater intrusion, the phenomenon happens below coastlines, where two masses of water naturally hold each other at bay. Rainfall on land replenishes, or recharges, fresh water in coastal aquifers (underground rock and soil that hold water), which tends to flow below ground toward the ocean. Meanwhile, seawater, backed by the pressure of the ocean, tends to push inland. Although there’s some mixing in the transition zone where the two meet, the balance of opposing forces typically keeps the water fresh on one side and salty on the other.
      Now, two impacts of climate change are tipping the scales in favor of salt water. Spurred by planetary warming, sea level rise is causing coastlines to migrate inland and increasing the force pushing salt water landward. At the same time, slower groundwater recharge — due to less rainfall and warmer weather patterns — is weakening the force moving the underground fresh water in some areas.
      Worldwide Intrusion
      Saltwater intrusion will affect groundwater in about three of every four coastal aquifers around the world by the year 2100, a NASA-DOD study estimates. Saltwater can make groundwater in coastal areas undrinkable and useless for irrigation, as well as harm ecosystems and corrode infrastructure.NASA/JPL-Caltech The study, published in Geophysical Research Letters in November, evaluated more than 60,000 coastal watersheds (land area that channels and drains all the rainfall and snowmelt from a region into a common outlet) around the world, mapping how diminished groundwater recharge and sea level rise will each contribute to saltwater intrusion while estimating what their net effect will be.
      Considering the two factors separately, the study’s authors found that by 2100 rising sea levels alone will tend to drive saltwater inland in 82% of coastal watersheds studied. The transition zone in those places would move a relatively modest distance: no more than 656 feet (200 meters) from current positions. Vulnerable areas include low-lying regions such as Southeast Asia, the coast around the Gulf of Mexico, and much of the United States’ Eastern Seaboard.  
      Meanwhile, slower recharge on its own will tend to cause saltwater intrusion in 45% of the coastal watersheds studied. In these areas, the transition zone would move farther inland than it will from sea level rise — as much as three-quarters of a mile (about 1,200 meters) in some places. The regions to be most affected include the Arabian Peninsula, Western Australia, and Mexico’s Baja California peninsula. In about 42% of coastal watersheds, groundwater recharge will increase, tending to push the transition zone toward the ocean and in some areas overcoming the effect of saltwater intrusion by sea level rise.
      All told, due to the combined effects of changes in sea level and groundwater recharge, saltwater intrusion will occur by century’s end in 77% of the coastal watersheds evaluated, according to the study.
      Generally, lower rates of groundwater recharge are going to drive how far saltwater intrudes inland, while sea level rise will determine how widespread it is around the world. “Depending on where you are and which one dominates, your management implications might change,” said Kyra Adams, a groundwater scientist at JPL and the paper’s lead author. 
      For example, if low recharge is the main reason intrusion is happening in one area, officials there might address it by protecting groundwater resources, she said. On the other hand, if the greater concern is that sea level rise will oversaturate an aquifer, officials might divert groundwater.
      Global Consistency
      Co-funded by NASA and the U.S. Department of Defense (DOD), the study is part of an effort to evaluate how sea level rise will affect the department’s coastal facilities and other infrastructure. It used information on watersheds collected in HydroSHEDS, a database managed by the World Wildlife Fund that uses elevation observations from the NASA Shuttle Radar Topography Mission. To estimate saltwater intrusion distances by 2100, the researchers used a model accounting for groundwater recharge, water table rise, fresh- and saltwater densities, and coastal migration from sea level rise, among other variables.
      Study coauthor Ben Hamlington, a climate scientist at JPL and a coleader of NASA’s Sea Level Change Team, said that the global picture is analogous to what researchers see with coastal flooding: “As sea levels rise, there’s an increased risk of flooding everywhere. With saltwater intrusion, we’re seeing that sea level rise is raising the baseline risk for changes in groundwater recharge to become a serious factor.”
      A globally consistent framework that captures localized climate impacts is crucial for countries that don’t have the expertise to generate one on their own, he added.
      “Those that have the fewest resources are the ones most affected by sea level rise and climate change,” Hamlington said, “so this kind of approach can go a long way.”
      News Media Contacts
      Andrew Wang / Jane J. Lee
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-379-6874 / 818-354-0307
      andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov 
      Share
      Details
      Last Updated Dec 11, 2024 Related Terms
      Shuttle Radar Topography Mission (SRTM) Earth Earth Science Division Jet Propulsion Laboratory Oceans Explore More
      5 min read NASA Performs First Aircraft Accident Investigation on Another World
      Article 3 hours ago 6 min read NASA’s PACE, US-European SWOT Satellites Offer Combined Look at Ocean
      Article 2 days ago 3 min read Leader of NASA’s VERITAS Mission Honored With AGU’s Whipple Award
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...