Jump to content

15 Years Ago: First Time all Partners Represented aboard the International Space Station


NASA

Recommended Posts

  • Publishers

From May 29 to July 17, 2009, for the first time in its history, each of the five partner agencies participating in the International Space Station Program had a crew member living and working aboard the orbiting facility at the same time. The period also marked the beginning of six-person crew habitation, greatly increasing the time available for utilization. The addition of the international partner elements and life support systems to enable the larger crew size made this 49-day event possible. Although international partner crew members routinely live and work aboard the station, its crew size now expanded to seven, having all the partners represented at the same time remains a unique event in the space station’s history.

Plaque commemorating the signing of the 1988 Inter-Governmental Agreement (IGA) governing the International Space Station partnership Signatories of the 1998 IGA visit the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, posing in front of the Unity Node 1 module being prepared for launch Joint NASA-Roscosmos crew of STS-88, the first space station assembly mission
Left: Plaque commemorating the signing of the 1988 Inter-Governmental Agreement (IGA) governing the International Space Station partnership. Middle: Signatories of the 1998 IGA visit the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, posing in front of the Unity Node 1 module being prepared for launch. Right: Joint NASA-Roscosmos crew of STS-88, the first space station assembly mission.

The International Space Station as we know it came into existence in 1993 with the merging of Space Station Freedom, a partnership among the United States, Canada, Japan, and the European Space Agency (ESA), with Russia’s planned Mir-2 space station. In January 1998, representatives of these space agencies met at NASA’s Kennedy Space Center in Florida and signed the Intergovernmental Agreement (IGA) that established the framework for use of the orbiting laboratory. The IGA stipulated the contributions of each agency to the program that entitled them commensurate utilization of the research facility as well as long-duration crew member flight opportunities, beginning when their elements had reached the station. Separate agreements covered the flights of International Partner astronauts on space shuttle assembly flights, usually to accompany elements from their agencies. In orbit construction of the space station began 11 months after the signing of the IGA. From the first assembly mission in December 1998 to March 2001, all components belonged to either NASA or Roscosmos, a fact reflected in the makeup of early space shuttle and expedition crews. The crew of the STS-88, the first space shuttle assembly mission, included five NASA astronauts and cosmonaut Sergei K. Krikalev representing Roscosmos.

STS-96 included Julie Payette, third from left, the first Canadian Space Agency astronaut to visit the space station STS-92 included Koichi Wakata, right, the first astronaut from the Japan Aerospace Exploration Agency to visit the space station The joint NASA-Roscosmos space station Expedition 1 crew
Left: STS-96 included Julie Payette, third from left, the first Canadian Space Agency astronaut to visit the space station. Middle: STS-92 included Koichi Wakata, right, the first astronaut from the Japan Aerospace Exploration Agency to visit the space station. Right: The joint NASA-Roscosmos space station Expedition 1 crew.

As early assembly continued, select space shuttle missions included International Partner crew members. The Canadian Space Agency’s (CSA) first astronaut to visit the space station, Julie Payette, flew as one of the seven crew members on the second assembly flight, STS-96 in May-June 1999. The first astronaut from the Japan Aerospace Exploration Agency (JAXA) to visit the station, Koichi Wakata, flew on the fifth assembly flight, STS-92 in October 2000. When the Expedition 1 crew arrived to begin permanent habitation of the space station in November 2000, the crew consisted of NASA astronaut William M. Shepherd, and Roscosmos cosmonauts Krikalev  and Yuri P. Gidenzko. The next six expeditions maintained the two-and-one crew composition, alternating between expeditions, until the impacts from the Columbia accident reduced crew size to two until Expedition 13. During this time, NASA and Roscosmos each had one crew member on board.

STS-100 included Umberto Guidoni, center, the first European Space Agency (ESA) astronaut to visit the space station Expedition 13 included Thomas A. Reiter, left, the first ESA astronaut to serve as a long-duration crew member on the space station STS-119 delivered Koichi Wakata, right, the first astronaut from the Japanese Aerospace Exploration Agency to serve as a long-duration crewmember on the space station
Left: STS-100 included Umberto Guidoni, center, the first European Space Agency (ESA) astronaut to visit the space station. Middle: Expedition 13 included Thomas A. Reiter, left, the first ESA astronaut to serve as a long-duration crew member on the space station. Right: STS-119 delivered Koichi Wakata, right, the first astronaut from the Japanese Aerospace Exploration Agency to serve as a long-duration crewmember on the space station.

The first ESA astronaut to visit the space station, Umberto Guidoni from Italy, served as a mission specialist on STS-100 in April 2001. The seven-member crew also included CSA’s Christopher A. Hadfield, who accompanied and helped install the Canadian Space Station Remote Manipulator System, and Yuri V. Lonchakov from Roscosmos, making the STS-100 crew the most internationally diverse shuttle assembly crew. Thomas A. Reiter from Germany arrived at the station aboard STS-121 in July 2006, joining Expedition 13 as ESA’s first long-duration resident crew member, and also returning the onboard crew size back to three. Wakata arrived at the station on STS-119 in March 2009 as JAXA’s first long-duration crew member, joining Expedition 19’s Lonchakov and E. Michael Fincke. Wakata’s arrival set in motion the steps leading to the unique occasion of having each of the five partners with a crew member living and working aboard the space station at the same time.

Expedition 19 crew of Koichi Wakata of the Japan Aerospace Exploration Agency, left, NASA astronaut E. Michael Fincke, and Yuri V. Lonchakov of Roscosmos Gennadi I. Padalka of Roscosmos, left, and NASA astronaut Michael M. Barratt of Expedition 19 Canadian Space Agency astronaut Robert B. Thirsk, left, Roman Y. Romanenko of Roscosmos, and European Space Agency astronaut Frank L. DeWinne of Expedition 20
Left: Expedition 19 crew of Koichi Wakata of the Japan Aerospace Exploration Agency, left, NASA astronaut E. Michael Fincke, and Yuri V. Lonchakov of Roscosmos. Middle: Gennadi I. Padalka of Roscosmos, left, and NASA astronaut Michael M. Barratt of Expedition 19. Right: Canadian Space Agency astronaut Robert B. Thirsk, left, Roman Y. Romanenko of Roscosmos, and European Space Agency astronaut Frank L. DeWinne of Expedition 20.

Eleven days after Wakata’s arrival, Soyuz TMA-14 delivered replacement Expedition 19 crew members NASA astronaut Michael M. Barratt and Gennadi I. Padalka of Roscosmos. On May 29, ESA’s Frank L. DeWinne and CSA’s Robert B. Thirsk, along with Roman Y. Romanenko of Roscosmos arrived aboard Soyuz TMA-15, and all five space station partners had representatives on board. Their arrival began Expedition 20 and the first period of six-person crew residency.

Preflight crew photo of Expedition 20, the first six-person crew on the space station – Michael M. Barratt (NASA), Frank L. DeWinne (ESA), Robert B. Thirsk (CSA), Koichi Wakata (JAXA), Gennadi I. Padalka (Roscosmos), and Roman Y. Romanenko (Roscosmos) Inflight photo of the Expedition 20 crew The Expedition 20 crew members put their heads together
Left: Preflight crew photo of Expedition 20, the first six-person crew on the space station – Michael M. Barratt (NASA), Frank L. DeWinne (ESA), Robert B. Thirsk (CSA), Koichi Wakata (JAXA), Gennadi I. Padalka (Roscosmos), and Roman Y. Romanenko (Roscosmos). Middle: Inflight photo of the Expedition 20 crew. Right: The Expedition 20 crew members put their heads together.

The period of full international representation proved brief, however, lasting just 49 days, and remains unique to this day. Wakata broke up the party on July 17 when he exchanged places with NASA astronaut Timothy L. Kopra who arrived aboard STS-127. Barratt and Padalka left on Oct. 11, replaced by another NASA-Roscosmos crew. Finally, Romanenko, DeWinne, and Thirsk left on Dec. 1, replaced after a brief gap by a crew consisting of a NASA astronaut, a JAXA astronaut, and a representative of Roscosmos.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      In September 1969, celebrations continued to mark the successful first human Moon landing two months earlier, and NASA prepared for the next visit to the Moon. The hometowns of the Apollo 11 astronauts held parades in their honor, the postal service recognized their accomplishment with a stamp, and the Smithsonian put a Moon rock on display. They addressed Congress and embarked on a 38-day presidential round the world goodwill tour. Eager scientists received the first samples of lunar material to study in their laboratories. Meanwhile, NASA prepared Apollo 12 for November launch as the astronauts trained for the mission with an increased emphasis on lunar science. Plans called for additional Moon landings in 1970, with spacecraft under construction and astronauts in training.
      Apollo 11
      For Apollo 11 astronauts Neil A. Armstrong, Michael Collins, and Edwin E. “Buzz” Aldrin, their busy August 1969 postflight schedule continued into September with events throughout the United States and beyond. These included attending hometown parades, dedicating a stamp to commemorate their historic mission, unveiling a display of a Moon rock they collected, addressing a Joint Meeting of Congress, and visiting contractor facilities that built parts of their rocket and spacecraft. They capped off the hectic month with their departure, accompanied by their wives, on a presidential round-the-world goodwill tour that lasted into early November.

      Left: Neil A. Armstrong at his hometown parade in Wapakoneta, Ohio. Image credit: Ohio Historical Society. Middle: Edwin E. “Buzz” Aldrin at his hometown parade in Montclair, New Jersey. Image credit: Star-Register. Right: Michael Collins at his adopted hometown parade in New Orleans, Louisiana. Image credit: AP Photo.
      On Sep. 6, each astronaut appeared at hometown events held in their honor. Apollo 11 Commander Armstrong’s hometown of Wapakoneta, Ohio, welcomed him with a parade and other events.  Montclair, New Jersey, held a parade to honor hometown hero Lunar Module Pilot (LMP) Aldrin. And New Orleans, Louisiana, the adopted hometown of Command Module Pilot (CMP) Michael Collins, honored him with a parade.

      Left: Apollo 11 astronauts Michael Collins, left, Neil A. Armstrong, and Edwin E. “Buzz” Aldrin with Postmaster General Winton M. Blount display an enlargement of the stamp commemorating the first Moon landing. Right: Aldrin, left, Collins, and Armstrong examine a Moon rock with Smithsonian Institution Director General of Museums Frank A. Taylor.
      Three days later, the astronauts reunited in Washington, D.C., where they appeared at the dedication ceremony of a new postage stamp that honored their mission. The U.S. Postal Service had commissioned artist Paul Calle in 1968 to design the stamp. The Apollo 11 astronauts had carried the stamp’s master die to the Moon aboard the Lunar Module (LM) Eagle and after its return to Earth the Postal Service used it to make the printing pages for the 10¢ postage stamp. At the National Postal Forum, Armstrong, Collins, and Aldrin unveiled the stamp together with Postmaster General Winton M. Blount, and each astronaut received an album with 30 of the “First Man on the Moon” stamps. On Sep. 15, the crew returned to Washington to present a two-pound rock they collected in the Sea of Tranquility during their historic Moon walk to Frank A. Taylor, the Director General of Museums at the Smithsonian Institution in Washington, D.C. The rock went on public display two days later at the Smithsonian’s Arts and Industries Building, the first time the public could view a Moon rock. 

      Left: Apollo 11 astronauts Michael Collins, left, Edwin E. “Buzz Aldrin, and Neil A. Armstrong each addressed a Joint Meeting of Congress, with Vice President Spiro T. Agnew and Speaker of the House John W. McCormack seated behind them. Middle: Apollo 11 astronauts’ wives Joan Aldrin, left, Patricia Collins, and Janet Armstrong receive recognition in the Visitors Gallery of the House Chamber. Right: The Apollo 11 astronauts and their wives cut at a cake at a reception at the Capitol.
      With their wives observing from the Visitors Gallery of the House of Representatives, on Sep. 16 Armstrong, Aldrin, and Collins addressed a Joint Meeting of Congress. In this same chamber in May 1961, President John F. Kennedy committed the nation to land a man on the Moon and return him safely to the Earth before the end of decade. In a sense, the astronauts reported on the safe and successful completion of that challenge. Speaker of the House John W. McCormack introduced the astronauts to the gathering, as Vice President Spiro T. Agnew looked on. Each astronaut reflected on the significance of the historic mission.
      Armstrong noted that their journey truly began in the halls of Congress when the Space Act of 1958 established NASA. Aldrin commented that “the Apollo lesson is that national goals can be met when there is a strong enough will to do so.” Collins shared a favorite quotation of his father’s to describe the value of the Apollo 11 mission: “He who would bring back the wealth of the Indies must take the wealth of the Indies with him.” Armstrong closed with, “We thank you, on behalf of all the men of Apollo, for giving us the privilege of joining you in serving – for all mankind.” After their speeches, the astronauts presented one American flag each to Vice President Agnew in his role as President of the Senate and to Speaker McCormack. The flags, that had flown over the Senate and House of Representatives, had traveled to the Moon and back with the astronauts. Speaker McCormack recognized the astronauts’ wives Jan Armstrong, Joan Aldrin, and Pat Collins for their contributions to the success of the Apollo 11 mission.

      Left: Neil A. Armstrong and Michael Collins address North American Rockwell employees in Downey, California. Right: Presidential Boeing VC-137B jet at Ellington Air Force Base in Houston to take the Apollo 11 astronauts and their wives on the Giantstep goodwill world tour. 
      On Sep. 26, Armstrong and Collins visited two facilities in California of North American Rockwell (NAR) Space Division, the company that built parts of the Saturn V rocket and Apollo 11 spacecraft. First, they stopped at the Seal Beach plant that built the S-II second stage of the rocket, where 3,000 employees turned out to welcome them. Armstrong commented to the assembled crowd that during the July 16, 1969, liftoff, “the S-II gave us the smoothest ride ever.” Collins added that despite earlier misgivings about using liquid hydrogen as a rocket fuel, “after the ride you people gave us, I sure don’t have doubts any longer.” About 7,000 employees greeted the two astronauts and showered them with confetti at their next stop, the facility in Downey that built the Apollo Command and Service Modules. Both Armstrong and Collins thanked the team for building an outstanding spacecraft that took them to the Moon and returned them safely to Earth. The astronauts inspected the Command Module (CM) for Apollo 14, then under construction at the plant.
      On the morning of Sep. 29, a blue and white Boeing VC-137B presidential jet touched down at Ellington Air Force Base in Houston. Neil and Jan Armstrong, Buzz and Joan Aldrin, and Mike and Pat Collins boarded the plane and joined their entourage of State Department and NASA support personnel. They departed Houston for Mexico City, the first stop on the Apollo 11 Giantstep goodwill world tour. They didn’t return to the United States until Nov. 5, having visited 29 cities in 24 countries, just nine days before Apollo 12 took off on humanity’s second journey to land on the Moon.

      Distribution of Apollo 11 lunar samples to scientists at the Lunar Receiving Laboratory at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston.
      Back in Houston, distribution to scientists of samples of the lunar material returned by the Apollo 11 astronauts began on Sep. 17 at the Lunar Receiving Laboratory (LRL) at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston. Daniel H. Anderson, curator of lunar samples at the LRL, supervised the distribution of approximately 18 pounds – about one-third of the total Apollo 11 lunar material – to 142 principal investigators from the United States and eight other countries according to prior agreements. The scientists examined the samples at their home institutions and reported their results at a conference in Houston in January 1970. They returned to the LRL any of the samples not destroyed during the examination process.
      Apollo 12
      In September 1969, NASA continued preparations for the second Moon landing mission, Apollo 12, scheduled for launch on Nov. 14. The Apollo 12 mission called for a pinpoint landing in Oceanus Procellarum (Ocean of Storms) near where the robotic spacecraft Surveyor 3 had touched down in April 1967. They planned to stay on the lunar surface for about 32 hours, compared to Apollo 11’s 21 hours, and conduct two surface spacewalks totaling more than 5 hours. During the first of their two excursions, the astronauts planned to deploy the Apollo Lunar Surface Experiments Package (ALSEP) and collect lunar samples. During the second spacewalk, they planned to visit Surveyor 3 and remove some of its equipment for return to Earth and collect additional lunar samples. The Apollo 12 prime crew of Commander Charles “Pete” Conrad, CMP Richard F. Gordon, and LMP Alan L. Bean and their backups David R. Scott, Alfred M. Worden, and James B. Irwin continued intensive training for the mission.

      Left: The Apollo 12 Saturn V exits the Vehicle Assembly Building on its way to Launch Pad 39A. Middle: The Apollo 12 Saturn V rolling up the incline as it approaches Launch Pad 39A. Right: Apollo 12 astronauts Alan L. Bean, left, Richard F. Gordon, and Charles “Pete” Conrad pose in front of their Saturn V during the rollout to the pad.
      On Sep. 8, the Saturn V rocket with the Apollo 12 spacecraft on top rolled out from Kennedy Space Center’s (KSC) Vehicle Assembly Building to Launch Pad 39A. The rocket made the 3.5-mile trip to the pad in about 6 hours, with Conrad, Gordon, and Bean on hand to observe the rollout. Workers at the pad spent the next two months thoroughly checking out the rocket and spacecraft to prepare it for its mission to the Moon. The two-day Flight Readiness Test at the end of September ensured that the launch vehicle and spacecraft systems were in a state of flight readiness. In addition to spending many hours in the spacecraft simulators, Conrad and Bean as well as their backups Scott and Irwin rehearsed their lunar surface spacewalks including the visit to Surveyor 3. Workers at NASA’s Jet Propulsion Laboratory in Pasadena, California, shipped an engineering model of the robotic spacecraft to KSC, and for added realism, engineers there mounted the model on a slope to match its relative position on the interior of the crater in which it stood on the Moon. Conrad and Scott used the Lunar Landing Training Vehicle (LLTV) at Ellington Air Force Base (AFB) near MSC to train for the final 200 feet of the descent to the lunar surface.

      Left: Apollo 12 astronauts Alan L. Bean, left, and Charles “Pete” Conrad rehearse their lunar surface spacewalks at NASA’s Kennedy Space Center in Florida. Middle: Conrad trains in the use of the Hasselblad camera he and Bean will use on the Moon. Right: Bean, left, and Conrad train with an engineering model of a Surveyor spacecraft.
      With regard to lunar geology training, the Apollo 12 astronauts had one advantage over their predecessors – they could inspect actual Moon rocks and soil returned by the Apollo 11 crew. On Sep. 19, Conrad and Bean arrived at the LRL, where Lunar Sample Curator Anderson met them. Anderson brought out a few lunar rocks and some lunar soil that scientists had already tested and didn’t require to be stored under vacuum or other special conditions, allowing Conrad and Bean to examine them closely and compare them with terrestrial rocks and soil they had seen during geology training field trips. This first-hand exposure to actual lunar samples significantly augmented Conrad and Bean’s geology training. To highlight the greater emphasis placed on lunar surface science, the Apollo 12 crews (prime and backup) went on six geology field trips compared to just one for the Apollo 11 crews.

      Left: Apollo 12 astronauts Charles “Pete” Conrad, left, Richard F. Gordon, and Alan L. Bean prepare for water egress training aboard the MV Retriever in the Gulf of Mexico. Middle: Wearing Biological Isolation Garments and assisted by a decontamination officer, standing in the open hatch, Apollo 12 astronauts await retrieval in the life raft. Right: The recovery helicopter hoists the third crew member using a Billy Pugh net.
      Although the Apollo 11 astronauts returned from the Moon in excellent health and scientists found no evidence of any harmful lunar microorganisms, NASA managers still planned to continue the postflight quarantine program for the Apollo 12 crew members, their spacecraft, and the lunar samples they brought back. The first of these measures involved the astronauts donning Biological Isolation Garments (BIG) prior to exiting the spacecraft after splashdown. Since they didn’t carry the BIGs with them to the Moon and back, one of the recovery personnel, also clad in a BIG, opened the hatch to the capsule after splashdown and handed the suits to the astronauts inside, who donned them before exiting onto a life raft.
      On Sep. 20, the Apollo 12 astronauts rehearsed these procedures, identical to the ones used after the first Moon landing mission, in the Gulf of Mexico near Galveston, Texas, using a boilerplate Apollo CM and supported by the Motorized Vessel (MV) Retriever. As it turned out, NASA later removed the requirement for the crew to wear BIGs, and after their splashdown the Apollo 12 crew wore overalls and respirators.
      Apollo 13

      Left: Apollo 13 prime crew members James A. Lovell and Thomas K. “Ken” Mattingly in the Command Module (CM) for an altitude chamber test – Fred W. Haise is out of the picture at right – at NASA’s Kennedy Space Center in Florida. Middle: Apollo 13 backup astronaut John L. “Jack” Swigert prepares to enter the CM for an altitude chamber test. Right: Apollo 13 backup crew members John W. Young, left, and Swigert in the CM for an altitude chamber test – Charles M. Duke is out of the picture at right.
      Preparations for Apollo 13 continued in parallel. In KSC’s Manned Spacecraft Operations Building (MSOB), Apollo 13 astronauts completed altitude chamber tests of their mission’s CM and LM. Prime crew members Commander James A. Lovell, CMP Thomas K. “Ken” Mattingly, and LMP Fred W. Haise completed the CM altitude test on Sep. 10, followed by their backups John W. Young, Jack L. Swigert, and Charles M. Duke on Sep. 17. The next day, Lovell and Haise completed the altitude test of the LM, followed by Young and Duke on Sep. 22. At the time of these tests, Apollo 13 planned to launch on March 12, 1970, on a 10-day mission to visit the Fra Mauro highlands region of the Moon. To prepare for their lunar surface excursions, Lovell, Haise, Young, and Duke, accompanied by geologist-astronaut Harrison H. “Jack” Schmitt and Caltech geologist Leon T. “Lee” Silver, spent the last week of September in Southern California’s Orocopia Mountains immersed in a geology boot camp.
      Apollo 14 and 15

      Left: At North American Rockwell’s (NAR) Downey, California, facility, workers assemble the Apollo 14 Command Module (CM), left, and Service Module. Right: NAR engineers work on the CM originally intended for Apollo 15.
      Looking beyond Apollo 13, the Apollo 14 crew of Commander Alan B. Shepard, CMP Stuart A. Roosa, and LMP Edgar D. Mitchell and their backups Eugene A. Cernan, Ronald E. Evans, and Joe H. Engle had started training for their mission planned for mid-year 1970. At the NAR facility in Downey, engineers prepared the CM and SM and shipped them to KSC in November 1969. Also at Downey, workers continued assembling the CM and SM planned for the Apollo 15 mission in late 1970. As events transpired throughout 1970, plans for those two missions changed significantly.
      NASA management changes

      Left: Portrait of NASA astronaut James A. McDivitt. Right: NASA Administrator Thomas O. Paine, right, swears in George M. Low as NASA deputy administrator.
      On Sept. 25, NASA appointed veteran astronaut James A. McDivitt as the Manager of the Apollo Spacecraft Program Office at MSC. McDivitt, selected as an astronaut in 1962, commanded two spaceflights, Gemini IV in June 1965 that included the first American spacewalk and Apollo 9 in March 1969, the first test of the LM in Earth orbit. He succeeded George M. Low who, in that position since April 1967, led the agency’s efforts to recover from the Apollo 1 fire and originated the idea to send Apollo 8 on a lunar orbital mission. Under his tenure, NASA successfully completed five crewed Apollo missions including the first human Moon landing. MSC Director Robert R. Gilruth initially assigned Low to plan future programs until Nov. 13, when President Richard M. Nixon nominated him as NASA deputy administrator. The Senate confirmed Low’s nomination on Nov. 25, and NASA Administrator Thomas O. Paine swore him in on Dec. 3. Low filled the position vacant since March 20, 1969.
      To be continued …
      News from around the world in September 1969:
      September 2 – The first automated teller machine is installed at a Chemical Bank branch in Rockville Center, New York.
      September 13 – Hannah-Barbera’s “Scooby Doo, Where Are You?” debuts on CBS.
      September 20 – John Lennon announces in a private meeting his intention to leave The Beatles.
      September 22 – San Francisco Giant Willie Mays becomes the second player, after Babe Ruth, to hit 600 career home runs.
      September 23 – “Butch Cassidy and the Sundance Kid,” starring Paul Newman and Robert Redford, premieres.
      September 24 – Tokyo’s daily newspaper Asahi Shimbun announced that it would be the first to deliver an edition electronically, using a FAX machine that could print a page in five minutes.
      September 26 – Apple Records releases “Abbey Road,” The Beatles’ 11th studio album.
      Explore More
      8 min read 65 Years Ago: First Powered Flight of the X-15 Hypersonic Rocket Plane 
      Article 2 days ago 8 min read 55 Years Ago: Space Task Group Proposes Post-Apollo Plan to President Nixon
      Article 3 days ago 7 min read 15 Years Ago: Japan launches HTV-1, its First Resupply Mission to the Space Station
      Article 1 week ago View the full article
    • By European Space Agency
      Just a month after its launch, ESA’s Arctic Weather Satellite has already delivered its first images, notably capturing Storm Boris, which has been wreaking havoc across central Europe. 
      View the full article
    • By Space Force
      U.S. Space Force senior leaders discussed the Personnel Management Act during a panel at the Air and Space Force’s Air, Space and Cyber Conference at National Harbor, Maryland, Sept. 18.

      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA astronaut Tracy C. Dyson smiles for a portrait in the vestibule between the Kibo laboratory module and the Harmony module aboard space station.NASA NASA astronaut Tracy C. Dyson is returning home after a six-month mission aboard the International Space Station. While on orbit, Dyson conducted an array of experiments and technology demonstrations that contribute to advancements for humanity on Earth and the agency’s trajectory to the Moon and Mars. 
      Here is a look at some of the science Dyson conducted during her mission: 
      Heart-Shaped Bioprints 
      NASA NASA astronaut Tracy C. Dyson operates the BioFabrication Facility for the Redwire Cardiac Bioprinting Investigation, which 3D prints cardiovascular tissue samples. In microgravity, bio inks used for 3D printing are less likely to settle and retain their shape better than on Earth. Cardiovascular disease is currently the number one cause of death in the United States, and findings from this space station investigation could one day lead to 3D-printed organs such as hearts for patients awaiting transplants. 
      Wicking in Weightlessness 
      NASA NASA astronaut Tracy C. Dyson handles hardware for the Wicking in Gel-Coated Tubes (Gaucho Lung) experiment. This study uses a tube lined with various gel thicknesses to simulate the human respiratory system. A fluid mass known as a liquid plug is then observed as it either blocks or flows through the tube. Data regarding the movement and trailing of the liquid plug allows researchers to design better drug delivery methods to address respiratory ailments. 
      Programming for Future Missions 
      NASA NASA NASA astronaut Tracy C. Dyson runs student-designed software on the free-flying Astrobee robot. This technology demonstration is part of Zero Robotics, a worldwide competition that engages middle school students in writing computer code to address unique specifications. Winning participants get to run their software on an actual Astrobee aboard the space station. This educational opportunity helps inspire the next generation of technology innovators.     
      Robo-Extensions
      NASA As we venture to the Moon and Mars, astronauts may rely more on robots to ensure safety and preserve resources. Through the Surface Avatar study, NASA astronaut Tracy C. Dyson controls a robot on Earth’s surface from a computer aboard station. This technology demonstration aims to toggle between manipulating multiple robots and “diving inside” a specific bot to control as an avatar. This two-way demonstration also evaluates how robot operators respond their robotic counterparts’ efficiency and general output. Applications for Earth use include exploration of inhospitable zones and search and rescue missions after disasters.  
      Capturing Earth’s Essence
      NASA For Crew Earth Observations, astronauts take pictures of Earth from space for research purposes. NASA astronauts Suni Williams (left) and Tracy C. Dyson (right) contribute by aiming handheld cameras from the space station’s cupola to photograph our planet. Images help inform climate and environmental trends worldwide and provide real-time natural disaster assessments. More than four million photographs have been taken of Earth by astronauts from space.  
      Multi-faceted Crystallization Processor 
      NASA NASA astronaut Tracy C. Dyson holds a cassette for Pharmaceutical In-Space Laboratory – 04 (ADSEP-PIL-04), an experiment to crystallize the model proteins lysozyme and insulin. Up to three cassettes with samples can be processed simultaneously in the Advanced Space Experiment Processor (ADSEP), each at an independent temperature. Because lysozyme and insulin have well-documented crystal structures, they can be used to evaluate the hardware’s performance in space. Successful crystallization with ADSEP could lead to production and manufacturing of versatile crystals with pharmaceutical applications.  
      Cryo Care  
      NASA NASA astronauts Tracy C. Dyson and Matthew Dominick preserve research samples in freezers aboard the space station. Cryopreservation is essential for maintaining the integrity of samples for a variety of experiments, especially within the field of biology. The orbiting laboratory has multiple freezer options with varying subzero temperatures. Upon return, frozen samples are delivered back to their research teams for further analysis.    
      Welcoming New Science 
      NASA NASA astronaut Tracy C. Dyson is pictured between the Unity module and Northrop Grumman’s Cygnus spacecraft in preparation for depressurization and departure from the International Space Station. On long-duration missions, visiting vehicles provide necessities for crew daily living as well as new science experiments and supplies for ongoing research. This vehicle brought experiments to test water recovery technology, produce stem cells in microgravity, study the effects of spaceflight on microorganism DNA, and conduct science demonstrations for students.   
      Diana Garcia 
      International Space Station Research Communications Team
      NASA’s Johnson Space Center 
      Keep Exploring Discover More Topics
      Latest News from Space Station Research
      Humans in Space
      Station Science 101
      Expedition 71
      Expedition 71 began on April 5, 2024 and ends in September 2024. This crew will explore neuro-degenerative diseases and therapies,…
      View the full article
    • By NASA
      Earth Observer Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 4 min read
      Celebrating the First Earth Day Event at NASA Headquarters
      Photo. Young attendees pose in front of the NASA Worm at the Earth Day celebration at NASA HQ. Photo credit: NASA Introduction
      Organized by the Science Mission Directorate’s Science Support Office (SSO), NASA hosted its 12th annual Earth Day Celebration event from April 18–19, 2024. For the first time ever, the two-day event was held at NASA Headquarters (HQ) in Washington, DC.
      The in-person event, which was free and open to the public, featured the newly installed Earth Information Center (EIC) exhibit –­­ see Photos 1–4. The event featured 17 hands-on activities offered in NASA HQ’s East Lobby as well as two adjacent outdoor tents­. Event participants were given an activity passport called the “Passport to Fun” listing all the activities and encouraging attendees to visit the stations and interact with NASA staff – see Figure 1. After completing six or more activities, attendees were able to claim giveaway items, e.g., lenticulars, NASA bags, posters, and calendars.
      Photos 1–3. Student attendees at the Earth Information Center (EIC) interactive exhibit. Photo credits: NASA Photos 1–3. Student attendees at the Earth Information Center (EIC) interactive exhibit. Photo credits: NASA Photos 1–3. Student attendees at the Earth Information Center (EIC) interactive exhibit. Photo credits: NASA




      Photo 4. Mark Subbarao [GSFC—Scientific Visualization Studio Lead] engages attendees with NASA science in front of the EIC Hyperwall. Photo credit: NASA Figure 1. Earth Day Activity Passport. Figure credit: NASA Prior to the event, Trena Ferrell [GSFC—Earth Science Education and Public Outreach Lead] arranged for groups of students from several local schools to visit the NASA Earth Day event. This included over 300 students from DuVal High School, Morgan State University, Howard University, Prince George’s County Environmental Academy, Prince George’s County Virtual Academy, International Hispanic School, and homeschoolers.  On April 19, all of the students who were present at that time gathered for a plenary in the Webb Auditorium. Ferrell welcomed the attendees and provided introductions to prepare them for a virtual presentation by former NASA astronaut Paul Richards, who interacted with attendees and answered questions for roughly 20 minutes.
      After Richard’s presentation, the attendees heard from Karen St. Germain [NASA HQ—Director of NASA’s Earth Science Division], whose in-person remarks emphasized to the students the crucial albeit less publicized studies that NASA does of our home planet. Related to this year’s Earth Day theme, “Water Touches Everything,” she discussed the ability of NASA’s Earth observing satellites to track water in all its forms as it circulates throughout the Earth system. St. Germain then answered questions from the audience for 15 minutes – see Photos 5–8.
      Photo 5.Trena Ferrell [GSFC—Earth Science Education and Public Outreach Lead] welcomed student attendees to the Earth Day event. Photo credit: NASA Photos 6–7. Former NASA astronaut Paul Richards takes audience questions at the NASA Earth Day event. Photo credit: NASA Photos 6–7. Former NASA astronaut Paul Richards takes audience questions at the NASA Earth Day event. Photo credit: NASA Photo 8. Karen St. Germain [NASA Headquarters—Director of NASA’s Earth Science Division] provided remarks and answered student questions in the Webb Auditorium. Photo credit: NASA




      NASA Administrator Bill Nelson visited the event on April 19, accompanied by Karen St. Germain and several NASA staff members who guided him as he explored the activities offered – see Photos 9–10.
      Photo 9. NASA Administrator Bill Nelson [center, rear] spent time circulating among the NASA Earth Day hands-on activities. Here, he visits the “Measuring Light the Landsat Way” activity station, where Mike Taylor [GSFC/Science Systems and Applications, Inc.—Landsat Outreach Team] [left] explains how Landsat utilizes the electromagnetic spectrum and spectral signatures to better understand Earth. Photo credit: NASA Photo 10. [Left to right] Faith McKie [Acting NASA Press Secretary], Bill Nelson, Karen St. Germain, and Tom Wagner [Associate Director for Earth Action in the Earth Science Division of NASA’s Science Mission Directorate] during the Earth Day media briefing. Photo credit: NASA




      Throughout the two-day event, it is estimated that as many as 1500 public participants attended along with the 300 students already discussed. While SSO staff distributed 500 activity passports, many small groups and families shared a single passport. SSO staff estimates that the true number of participants may be close to 1500 – see Photos 11–19.
      Photo 11. A young Earth Day participant interacts with Ellen Gray [NASA GSFC—Earth Science News Team]. Photo credit: NASA Photo 12. Jenny Mottar [NASA HQ—Art  Director for the Science Mission Directorate] and Kevin Miller [GSFC—SSO Senior Graphic Designer] hand out “Water Touches Everything” NASA Earth Day posters to student attendees. Photo credit: NASA Photos 13. Ross Walter [GSFC—Data Visualizer and Animator, Landsat Outreach Team] engages with students at the “Viewing Earth From Above with Landsat” station. Photo credit: NASA Photos 14. Students explore the Chesapeake Bay as seen by Landsat 8 with a large, vinyl floor mat. Photo credit: NASA Photo 15. Students play a Global Ecosystem Dynamics Investigation (GEDI) Jeopardy game at the “GEDI Knights Measure Forests from Space” table. Photo credit: NASA Photo 16. Student attendees make ultraviolet-bead bracelets and Helio Big Year buttons at the Heliophysics station. Photo credit: NASA Photo 17. Young attendees engage with Valerie Casasanto [GSFC—Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) Outreach Lead], who helps them work on a three-dimensional glacier puzzle at the “ICESat-2: Ice, Trees, and Earth Height, If You Please!” station. Photo credit: NASA Photo 18. Young attendees engage with the “Meteorite Map Challenge.” Photo credit: NASA Photo 19. Dorian Janney [GSFC—GPM Outreach Specialist] engages visitors at the “Connect the Drops” station, where visitors learn how and why measuring global precipitation helps us better understand our home planet. Photo credit: NASA




      Conclusion
      NASA’s first Earth Day Celebration at NASA Headquarters was quite successful. While attendance was lower than previous events held at the more heavily trafficked Union Station or the National Mall, there was a steady stream of people throughout the exhibit on both days. It was also a great opportunity to showcase the new EIC to the public.  Earth Day is the largest event organized annually by the SSO. This event requires months of planning, cross-divisional coordination, and intensive design of the hands-on activities – all carried from conceptualization through numerous revisions to implementation by more than 100 individuals from across the agency. This combined effort of SSO staff and assisting organizations results in an event that brings together thousands of visitors from a broad spectrum of ages and backgrounds to enjoy NASA science. This event would not have been possible were it not for the incredible efforts and collaboration put forth by so many of NASA’s outreach professionals. The SSO is grateful for all who helped to make this year’s Earth Day event a success and looks forward to Earth Day 2025.
      Dalia Kirshenblat
      NASA’s Goddard Space Flight Center/Global Science & Technology, Inc. (GSFC/GST)
      dalia.p.zelmankirshenblat@nasa.gov
      Share








      Details
      Last Updated Sep 17, 2024 Related Terms
      Earth Science View the full article
  • Check out these Videos

×
×
  • Create New...