Jump to content

Last look at EarthCARE


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 Min Read NASA’s Webb Provides Another Look Into Galactic Collisions
      This composite image of Arp 107 reveals a wealth of information about the star-formation and how these two galaxies collided hundreds of million years ago (full image below). Credits:
      NASA, ESA, CSA, STScI Smile for the camera! An interaction between an elliptical galaxy and a spiral galaxy, collectively known as Arp 107, seems to have given the spiral a happier outlook thanks to the two bright “eyes” and the wide semicircular “smile.” The region has been observed before in infrared by NASA’s Spitzer Space Telescope in 2005, however NASA’s James Webb Space Telescope displays it in much higher resolution. This image is a composite, combining observations from Webb’s MIRI (Mid-Infrared Instrument) and NIRCam (Near-Infrared Camera).
      Image A: Arp 107 (NIRCam and MIRI Image)
      This composite image of Arp 107, created with data from the James Webb Space Telescope’s NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument), reveals a wealth of information about the star-formation and how these two galaxies collided hundreds of million years ago. NASA, ESA, CSA, STScI NIRCam highlights the stars within both galaxies and reveals the connection between them: a transparent, white bridge of stars and gas pulled from both galaxies during their passage. MIRI data, represented in orange-red, shows star-forming regions and dust that is composed of soot-like organic molecules known as polycyclic aromatic hydrocarbons. MIRI also provides a snapshot of the bright nucleus of the large spiral, home to a supermassive black hole.
      Image B: Arp 107 (MIRI Image)
      This image of Arp 107, shown by Webb’s MIRI (Mid-Infrared Instrument), reveals the supermassive black hole that lies in the center of the large spiral galaxy to the right. This black hole, which pulls much of the dust into lanes, also display’s Webb’s characteristic diffraction spikes, caused by the light that it emits interacting with the structure of the telescope itself. NASA, ESA, CSA, STScI The spiral galaxy is classified as a Seyfert galaxy, one of the two largest groups of active galaxies, along with galaxies that host quasars. Seyfert galaxies aren’t as luminous and distant as quasars, making them a more convenient way to study similar phenomena in lower energy light, like infrared.
      This galaxy pair is similar to the Cartwheel Galaxy, one of the first interacting galaxies that Webb observed. Arp 107 may have turned out very similar in appearance to the Cartwheel, but since the smaller elliptical galaxy likely had an off-center collision instead of a direct hit, the spiral galaxy got away with only its spiral arms being disturbed. 
      The collision isn’t as bad as it sounds. Although there was star formation occurring before, collisions between galaxies can compress gas, improving the conditions needed for more stars to form. On the other hand, as Webb reveals, collisions also disperse a lot of gas, potentially depriving new stars of the material they need to form.
      Webb has captured these galaxies in the process of merging, which will take hundreds of millions of years. As the two galaxies rebuild after the chaos of their collision, Arp 107 may lose its smile, but it will inevitably turn into something just as interesting for future astronomers to study.
      Arp 107 is located 465 million light-years from Earth in the constellation Leo Minor.
      Video: Tour the Arp 107 Image
      Video tour transcript
      Credit: NASA, ESA, CSA, STScI, Danielle Kirshenblat (STScI) The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      Downloads
      Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov, Rob Gutro – rob.gutro@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Matthew Brown – mabrown@stsci.edu, Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Video: What happens when galaxies collide?
      Interactive: Explore “Interacting Galaxies: Future of the Milky Way”
      Other images: Hubble’s view of Arp 107 and Spitzer’s view of Arp 107
      Video: Galaxy Collisions: Simulations vs. Observations
      Article: More about Galaxy Evolution
      Video: Learn more about galactic collisions
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is a galaxy?
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      ¿Qué es una galaxia?
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Galaxies



      Galaxies Stories



      Universe


      Share








      Details
      Last Updated Sep 17, 2024 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      Active Galaxies Astrophysics Galaxies Galaxies, Stars, & Black Holes Goddard Space Flight Center James Webb Space Telescope (JWST) Science & Research Seyfert Galaxies The Universe View the full article
    • By NASA
      The Dash 7 that will be modified into a hybrid electric research vehicle under NASA’s Electrified Powertrain Flight Demonstration (EPFD) project on display with its new livery for the first time. In front of the plane is an electric powertrain that magniX will integrate into the current aircraft to build a hybrid electric propulsion system.NASA/David C. Bowman In a special unveiling ceremony on Aug. 22, 2024, the public received a first look at magniX’s Dash 7 aircraft that will serve as a testbed for sustainable aviation research with NASA’s Electrified Powertrain Flight Demonstration (EPFD) project. 
      Hosted by magniX at King County International Airport, commonly known as Boeing Field, in Seattle, Washington, leaders from NASA and magniX unveiled the research vehicle in its new livery.  
      EPFD is a collaboration between NASA and industry to demonstrate the capabilities of electrified aircraft propulsion technologies in reducing emissions for future commercial aircraft in mid-2030s.  
      As part of this demonstration, magniX will modify the Dash 7 with a new hybrid electric system to conduct ground and flight tests. NASA will use data gathered from these tests to identify and minimize barriers in certifying these new technologies and help inform new standards and regulations for future electrified aircraft.  
      “We are a research organization that continues to advance aviation, solve the problems of flight, and lead the community into the future,” said Robert A. Pearce, associate administrator for NASA’s Aeronautics Research Mission Directorate. “Through our EPFD project, we’re taking big steps in partnership to make sure electric aviation is part of the future of commercial flight.” 
      With the aircraft livery complete, magniX will begin the process of converting the Dash 7 into a research testbed with a hybrid electric propulsion system. Flight tests with the new system are planned for 2026.
      Image Credit: NASA/David C. Bowman
      View the full article
    • By European Space Agency
      Launched in May, ESA’s EarthCARE satellite has been making waves, with the first images from three of its scientific instruments already delivered. Now, the spotlight is firmly on the atmospheric lidar, the most advanced of the satellite’s four instruments.
      This cutting-edge sensor has captured detailed 20 km-high vertical profiles of atmospheric aerosols – tiny particles and droplets from natural sources like wildfires, dust, and sea spray, and from human activities like industrial emissions or burning of wood – and clouds across various regions of the globe.
      View the full article
    • By NASA
      Through a nonlinear path to success, research astrophysicist Tyler Parsotan discovers transformational science using Swift’s observations. 
      Name: Tyler Parsotan
      Formal Job Classification: Research astrophysicist
      Organization: Astroparticle Physics Laboratory (Code 661), Astrophysics Science Division, Sciences and Exploration Directorate 
      Dr. Tyler Parsotan is a research astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Md. He helps operate the Bust Alert Telescope on board the Neil Gehrels Swift Observatory. Courtesy of Tyler Parsotan What do you do and what is most interesting about your role here at Goddard? 
      I help operate the Burst Alert Telescope on board the Neil Gehrels Swift Observatory to study some of the most powerful astrophysical processes in the universe. What is most interesting is the engineering capabilities that have gone into the spacecraft to make it nimble and robust, allowing it to conduct a wide range of transformative science. 
      Why did you become an astrophysicist?
      Ever since I was young, I was fascinated with the stars and how the world worked. All of this led me to physics with a focus on astrophysics. That is how I got into what I am doing now.
      What is your educational background?
      In 2015, I got a Bachelor of Science in space physics from Embry Riddle Aeronautical University in Daytona Beach, Florida. In 2019, I got a master’s in physics from Oregon State University, Corvallis, and in 2020 I got a master’s in mechanical engineering also from Oregon State University. In 2021, I got a doctorate in physics from Oregon State University. 
      When I first applied to graduate school, I did not get into any. I was fortunate enough to learn about Oregon State University though a program geared towards allowing underrepresented students in STEM fields to get graduate degrees. This program, known as the Ronald E. McNair Post-baccalaureate Achievement Program, played a pivotal role in me being able to attend graduate school . 
      Are you also a pilot?
      Yes, I am. While I was in Oregon as a graduate student, I was able to save up enough money to get my private pilot’s license over the course of one summer from the local Corvallis airport. I would bike to the airport and get in a plane to fly all over Oregon from the coast to the Cascade Mountains. It was a very cool experience. 
      How did you come to Goddard?
      I did a post-doctorate fellowship starting the fall of 2021 through May 2023. My doctoral research was related to one of Swift’s many science focuses, so I wanted to continue my work at Goddard. 
      What transformational science have you been involved with using Swift’s observations?
      Some of the science that Swift focuses on is related to the transient universe, meaning that we primarily look at astrophysical events that come and go very quickly and typically produce a ton of energy. Swift examines the light energy produced from black holes, the majority of which are eating mass from black stars. 
      While at Oregon State University, I studied the most energetic events in the universe known as gamma-ray bursts. I am now studying gamma-ray bursts at Goddard. One of the big discoveries made by Swift is that these gamma ray bursts can be seen out to early times in the universe. Some of these explosions occurred when the universe was very young, only 100,000 years old or so. Because the universe is expanding, it takes that light some time to travel to us. With Swift, we detect that light and can make some measurements about the gamma-ray bursts, such as when they occurred, how much energy they produced in these massive explosions, and some of the properties of the early universe. 
      “There are no linear paths to success,” said Tyler. “Keep looking for a way to be successful. This advice applies to life overall.”Courtesy of Tyler Parsotan What is the biggest discovery you have been involved with and what do you love most about working on Swift?
      We are simulating the gamma-ray bursts, which was a focus of my doctorate. We cannot yet actually see these explosions, so we have to simulate them using the physics that we now know. I have been able to connect some of the large simulations to the Swift observations and measurements. This helps us better understand the underlying physics of these powerful explosions. 
      The amount of energy produced in a typical gamma-ray burst is enough to blow up the Sun a few times over.
      Lots of people know about Hubble, which observes the light that we can see with our eyes. The light that I deal with, gamma rays, has much higher energy and cannot be seen with our eyes. We have to use different techniques to measure this light. Designing detectors to measure this light is challenging technically but means that this area of physics is ripe for discovery. I love being part of this. 
      Swift will be 20 years old in November 2024. As a relative newcomer to Swift, what are your thoughts?
      I think Swift is a great observatory because it has conducted lots of transformational science, drastically expanding our knowledge of the cosmos. Even though it is getting older, it is still able to push science forward in new and exciting ways. I am looking forward to helping the Swift mission celebrate 20 years of amazing science. 
      What is your advice to anyone starting and continuing a career?
      There are no linear paths to success. Keep looking for a way to be successful. This advice applies to life overall. 
      Are you involved in any of Goddard’s extracurricular activities?
      I recently joined Goddard’s soccer league. Everyone at Goddard self organizes into teams that play each other after work during the week. We play about a game a week. The winning team gets bragging rights. I mostly play defense. Being on a team is a good way to meet people at Goddard and to stay active. 
      In addition to soccer, what are your hobbies?
      I enjoy hiking, mountain biking, and generally being outdoors. 
      Where do you see yourself in five years?
      I hope to still be at Goddard. I enjoy the type of work and the overall work environment. If Swift continues another five years, hopefully I’ll be working on it and also helping to create the next generation of gamma-ray observatories to help push science forward. We are making the science that will be in the next textbooks. 
      Who do you want to thank?
      My doctoral supervisor Davide Lazzati was an extremely supportive mentor and pushed me to be the best scientist that I can be. Since I arrived at Goddard, we have been good colleagues. 
      My former mentor and supervisor at Goddard is Brad Cenko, the Swift principal investigator. I am grateful that he hired me and allowed me to grow as a post-doctoral researcher.
      I also want to thank my entire family for being extremely supportive and understanding even though they may not fully understand what I really do. 
      Who is your science hero?
      Copernicus. He put forward the theory that our solar system orbits the Sun. He was obviously very instrumental in changing the way we think about the cosmos. He got into a lot of trouble with his theory, which makes his accomplishments all the more important. 
      By Elizabeth M. Jarrell
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
      Share
      Details
      Last Updated Aug 20, 2024 EditorMadison OlsonContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
      People of Goddard Goddard Space Flight Center Neil Gehrels Swift Observatory People of NASA Explore More
      7 min read Bindu Rani Explores Black Holes, Mothers Hard, Balances Life
      Article 2 weeks ago 4 min read Regina Caputo Charts the Future of High-Energy Astrophysics
      Article 2 weeks ago 6 min read Rebekah Hounsell: Tracking Cosmic Light to Untangle the Universe’s Darkest Mysteries
      Article 1 month ago View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
      Sols 4280-4281: Last Call at Kings Canyon
      This image was taken by Right Navigation Camera onboard NASA’s Mars rover Curiosity on Sol 4278 (2024-08-18 16:30:04 UTC). NASA/JPL-Caltech Earth planning date: Monday, Aug. 19, 2024
      Curiosity successfully completed the drill sequence at the Kings Canyon site within the Gediz Vallis channel. Today was a smooth planning day as we decided to stay put for sols 4280 and 4281 to obtain APXS data of the drill tailings (the crushed rock removed from the drill hole) before we reposition the rover nearby for our next set of observations. The science team is eagerly plotting the rover’s next move and is looking forward to all the interesting targets along the route ahead! 
      ChemCam had a very busy day with multiple activities in the plan. ChemCam LIBS will examine the chemistry of rocks at nearby “Cathedral Lake” and “Royce Lakes” to analyze the fresh surfaces that were recently broken by the weight of the rover driving over them. Mastcam will provide their standard documentation images of these locations after the LIBS instrument zaps each target.  ChemCam planned two long distance RMI images and one passive RMI image to get a closer view of the diversity of rocks at Milestone Peak and the upper channel and the yardang unit – a white, wind-sculped rock that caps the mound in Gale crater. 
      In our current workspace, we planned a MAHLI image and will use the dust removal tool (DRT) to characterize the grain size of the light-toned rock near our drill location at “Gabbot Pass.” Mastam has amassed a beautiful collection of mosaics at our current location and therefore included only one small Mastcam mosaic of the nearby Texoli butte that will provide context for a recently acquired ChemCam LD RMI image. The environmental theme group planned surveys to search for dust devils as well as measurements to observe the amount of dust in the atmosphere. 
      Looking ahead, we will reposition the rover slightly to access “Fourth Recess Lake” to quantify its chemistry for comparison to past and future observations within the Gediz Vallis channel. And after that, it’s McDonald Pass or bust!
      Written by Sharon Wilson Purdy, Planetary Geologist at the Smithsonian National Air and Space Museum
      Share








      Details
      Last Updated Aug 20, 2024 Related Terms
      Blogs Explore More
      4 min read Sols 4277-4279: Getting Ready To Say Goodbye to the King!


      Article


      22 hours ago
      2 min read Sols 4275-4276: A Familiar View


      Article


      6 days ago
      2 min read Sols 4273-4274: Prep Rally


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
  • Check out these Videos

×
×
  • Create New...