Jump to content

Modeling, Simulation Summit: Following through with training transformation


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 Min Read NASA’s Artemis II Crew Uses Iceland Terrain for Lunar Training
      Credits:
      NASA/Trevor Graff/Robert Markowitz Black and gray sediment stretches as far as the eye can see. Boulders sit on top of ground devoid of vegetation. Humans appear almost miniature in scale against a swath of shadowy mountains. At first glance, it seems a perfect scene from an excursion on the Moon’s surface … except the people are in hiking gear, not spacesuits.
      Iceland has served as a lunar stand-in for training NASA astronauts since the days of the Apollo missions, and this summer the Artemis II crew took its place in that long history. NASA astronauts Reid Wiseman, Victor Glover, Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen, along with their backups, NASA astronaut Andre Douglas and CSA astronaut Jenni Gibbons, joined geology experts for field training on the Nordic island.
      NASA astronaut and Artemis II mission specialist Christina Koch stands in the desolate landscape of Iceland during a geology field training course. NASA/Robert Markowitz NASA/Robert Markowitz “Apollo astronauts said Iceland was one of the most lunar-like training locations that they went to in their training,” said Cindy Evans, Artemis geology training lead at NASA’s Johnson Space Center in Houston. “It has lunar-like planetary processes – in this case, volcanism. It has the landscape; it looks like the Moon. And it has the scale of features astronauts will both be observing and exploring on the Moon.”
      Iceland’s geology, like the Moon’s, includes rocks called basalts and breccias. Basalts are dark, fine-grained, iron-rich rocks that form when volcanic magma cools and crystalizes quickly. In Iceland, basalt lavas form from volcanoes and deep fissures. On the Moon, basalts can form from both volcanoes and lava pooling in impact basins. Breccias are angular fragments of rock that are fused together to create new rocks. In Iceland, volcanic breccias are formed from explosive volcanic eruptions and on the Moon, impact breccias are formed from meteoroids impacting the lunar surface.
      Apollo astronauts said Iceland was one of the most lunar-like training locations that they went to in their training.
      Cindy Evans
      Artemis Geology Training Lead
      Along with exploring the geology of Iceland, the astronauts practiced navigation and expeditionary skills to prepare them for living and working together, and gave feedback to instructors, who used this as an opportunity to hone their instruction and identify sites for future Artemis crew training. They also put tools to the test, learning to use hammers, scoops, and chisels to collect rock samples.
      Caption: The Artemis II crew, NASA astronauts Reid Wiseman, Victor Glover, Christina Koch, and Canadian Space Agency (CSA) astronaut Jeremy Hansen, and backup crew members NASA astronaut Andre Douglas and CSA astronaut Jenni Gibbons trek across the Icelandic landscape during their field geology training. NASA/Robert Markowitz “The tools we used during the Apollo missions haven’t changed that much for what we’re planning for the Artemis missions,” said Trevor Graff, exploration geologist and the hardware and testing lead on the Artemis science team at NASA Johnson. “Traditionally, a geologist goes out with just standard tool sets of things like rock hammers and scoops or shovels to sample the world around them, both on the surface and subsurface.”
      The Artemis tools have a bit of a twist from traditional terrestrial geology tools, though. Engineers must take into consideration limited mass availability during launch, how easy it is to use a tool while wearing pressurized gloves, and how to ensure the pristine nature of the lunar samples is preserved for study back on Earth.
      There’s really transformational science that we can learn by getting boots back on the Moon, getting samples back, and being able to do field geology with trained astronauts on the surface.
      Angela Garcia
      Exploration Geologist and Artemis II Science Officer
      Caption: Angela Garcia, Artemis II science officer and exploration geologist, demonstrates how to use a rock hammer and chisel to dislodge a rock sample from a large boulder during the Artemis II field geology training in Iceland. NASA/Robert Markowitz “There’s really transformational science that we can learn by getting boots back on the Moon, getting samples back, and being able to do field geology with trained astronauts on the surface,” said Angela Garcia, exploration geologist and an Artemis II science officer at NASA Johnson.
      The Artemis II test flight will be NASA’s first mission with crew under Artemis and will pave the way to land the first woman, first person of color, and first international partner astronaut on the Moon on future missions. The crew will travel approximately 4,600 miles beyond the far side of the Moon. While the Artemis II astronauts will not land on the surface of the Moon, the geology fundamentals they develop during field training will be critical to meeting the science objectives of their mission.
      These objectives include visually studying a list of surface features, such as craters, from orbit. Astronauts will snap photos of the features, and describe their color, reflectivity, and texture — details that can reveal their geologic history.
      The Artemis II crew astronauts, their backups, and the geology training field team pose in a valley in Iceland’s Vatnajökull national park. From front left: Angela Garcia, Jacob Richardson, Cindy Evans, Jenni Gibbons, Jacki Mahaffey, back row from left: Jeremy Hansen, John Ramsey, Reid Wiseman, Ron Spencer, Scott Wray, Kelsey Young, Patrick Whelley, Christina Koch, Andre Douglas, Jacki Kagey, Victor Glover, Rick Rochelle (NOLS), Trevor Graff. “Having humans hold the camera during a lunar pass and describe what they’re seeing in language that scientists can understand is a boon for science,” said Kelsey Young, lunar science lead for Artemis II and Artemis II science officer at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “In large part, that’s what we’re training astronauts to do when we take them to these Moon-like environments on Earth.”

      Read More

      Share








      Details
      Last Updated Sep 13, 2024 Related Terms
      Analog Field Testing Andre Douglas Apollo Artemis Astronauts Christina H. Koch Earth’s Moon G. Reid Wiseman Humans in Space Missions The Solar System Victor J. Glover Explore More
      2 min read Hubble Examines a Spiral Star Factory


      Article


      6 hours ago
      5 min read NASA’s Webb Peers into the Extreme Outer Galaxy


      Article


      1 day ago
      23 min read The Next Full Moon is a Partial Lunar Eclipse; a Supermoon; the Corn Moon; and the Harvest Moon
      The next full Moon will be Tuesday, September 17, 2024, at 10:35 PM EDT. The…


      Article


      2 days ago
      Keep Exploring Discover More Topics From NASA
      Astromaterials



      Humans In Space



      Our Solar System



      Artemis Science


      A Time Capsule The Moon is a 4.5-billion-year-old time capsule, pristinely preserved by the cold vacuum of space. It is…

      View the full article
    • By NASA
      A 1.2% scale model of the Super Heavy rocket that will launch the Starship human landing system to the Moon for future crewed Artemis missions was recently tested at NASA’s Ames Research Center’s transonic wind tunnel, providing valuable information on vehicle stability when re-entering Earth’s atmosphere.NASA Four grid fins on the Super Heavy rocket help stabilize and control the rocket as it re-enters Earth’s atmosphere after launching Starship to a lunar trajectory. Engineers tested the effects of various aerodynamic conditions on several grid fin configurations during wind tunnel testing. NASA Wind tunnel testing at NASA’s Ames Research Center helped engineers better understand the aerodynamic forces the SpaceX Super Heavy rocket, with its 33 Raptor engines, experiences during various stages of flight. As a result of the testing, engineers updated flight control algorithms and modified the exterior design of the rocket. NASA NASA and its industry partners continue to make progress toward Artemis III and beyond, the first crewed lunar landing missions under the agency’s Artemis campaign. SpaceX, the commercial Human Landing System (HLS) provider for Artemis III and Artemis IV, recently tested a 1.2% scale model of the Super Heavy rocket, or booster, in the transonic Unitary Plan Wind Tunnel at NASA’s Ames Research Center in California’s Silicon Valley. The Super Heavy rocket will launch the Starship human landing system to the Moon as part of Artemis.
      During the tests, the wind tunnel forced an air stream at the Super Heavy scale model at high speeds, mimicking the air resistance and flow the booster experiences during flight. The wind tunnel subjected the Super Heavy model, affixed with pressure-measuring sensors, to wind speeds ranging from Mach .7, or about 537 miles per hour, to Mach 1.4, or about 1,074 miles per hour. Mach 1 is the speed that sound waves travel, or 761 miles per hour, at sea level.
      Engineers then measured how Super Heavy model responded to the simulated flight conditions, observing its stability, aerodynamic performance, and more. Engineers used the data to update flight software for flight 3 of Super Heavy and Starship and to refine the exterior design of future versions of the booster. The testing lasted about two weeks and took place earlier in 2024.
      After Super Heavy completes its ascent and separation from Starship HLS on its journey to the Moon, SpaceX plans to have the booster return to the launch site for catch and reuse. The Starship HLS will continue on a trajectory to the Moon.
      To get to the Moon for the Artemis missions, astronauts will launch in NASA’s Orion spacecraft aboard the SLS (Space Launch System) rocket from the agency’s Kennedy Space Center in Florida. Once in lunar orbit, Orion will dock with the Starship HLS or with Gateway. Once the spacecraft are docked, the astronauts will move from Orion or Gateway to the HLS Starship, which will bring them to the surface of the Moon. After surface activities are complete, Starship will return the astronauts to Orion or Gateway waiting in lunar orbit. The astronauts will transfer to Orion for the return trip to Earth. 
      With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of the Red Planet. NASA’s SLS, exploration ground systems, and Orion spacecraft, along with the human landing system, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
      For more information about Artemis, visit:
      https://www.nasa.gov/artemis
      News Media Contact
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      View the full article
    • By NASA
      The NASA Ames Fire Department will conduct emergency response fire training on the west ramp of the Moffett Federal Airfield between 8 a.m. and 8 p.m. PDT Tuesday, Sept. 10 through Saturday, Sept. 14. The media and the public are advised that sirens may be audible and smoke plumes and flames may be visible from U.S. Highway 101 during this time. However, officials generally expect little to no smoke.
      The session will include a live burn created by a propane-fueled aircraft fire simulator at the field. The drill is intended to prepare Ames fire responders and Ames Emergency Operations Center staff for real-life fire emergencies.
      For more information about NASA’s Ames Research Center, visit: 
      https://www.nasa.gov/ames
      -end-
      Rachel Hoover
      Ames Research Center, Silicon Valley
      650-604-4789
      rachel.hoover@nasa.gov
      View the full article
    • By NASA
      Mars: Perseverance (Mars 2020) Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
      Persevering Through the Storm
      A region-wide seasonal dust storm obscures the Jezero Crater in this image from NASA’s Mars Perseverance rover, acquired using its Left Mastcam-Z camera. Mastcam-Z is a pair of cameras located high on the rover’s mast. Perseverance captured the image on Aug. 20, 2024 (Sol 1244, or Martian day 1,244 of the Mars 2020 mission) at the local mean solar time of 16:05:34. This image is part of a Mastcam-Z mosaic of the “northern fan,” a part of Jezero Crater that Perseverance never drove through, but is an area that’s thought to have been deposited in a similar way to the delta that the rover did explore. NASA/JPL-Caltech/ASU It is dust-storm season on Mars! Over the past couple of weeks, as we have been ascending the Jezero Crater rim, our science team has been monitoring rising amounts of dust in the atmosphere. This is expected: Dust activity is typically highest around this time of the Martian year (early Spring in the northern hemisphere). The increased dust has made our views back toward the crater hazier than usual, and provided our atmospheric scientists with a great opportunity to study the way that dust storms form, develop, and spread around the planet.
      Perseverance has a suite of scientific instruments well-suited to study the Martian atmosphere. The Mars Environmental Dynamics Analyzer (MEDA) provides regular weather reports, the cadence of which has increased during the storm to maximize our science. We also routinely point our Mastcam-Z imager toward the sky to assess the optical density (“tau”) of the atmosphere.
      There are not any signs that this regional dust storm will become planetwide — like the global dust storm in 2018 — but every day we are assessing new atmospheric data. Hopefully the skies will further clear up as we continue to climb in the coming weeks, because we are expecting stunning views of the crater floor and Jezero delta. This will offer the Perseverance team a unique chance to reflect on the tens of kilometers we have driven and years we have spent exploring Mars together.
      Written by Henry Manelski, Ph.D. student at Purdue University
      Share








      Details
      Last Updated Sep 05, 2024 Related Terms
      Blogs Explore More
      2 min read Sols 4295-4296: A Martian Moon and Planet Earth


      Article


      7 hours ago
      2 min read Sol 4294: Return to McDonald Pass


      Article


      21 hours ago
      3 min read Sols 4291-4293: Fairview Dome, the Sequel


      Article


      22 hours ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Texas High School Aerospace Scholars get a virtual view of an extravehicular activity (EVA) suit in testing at NASA’s Johnson Space Center in Houston. Photo credit: NASA/Helen Arase Vargas Explore the universe this fall without leaving your classroom through live virtual engagements with NASA space and aviation experts. NASA is offering a new lineup of stellar virtual experiences to spark STEM excitement and connect students with the agency’s missions, science, careers, and more.
      The virtual engagements, managed by NASA’s Next Gen STEM project, are free to join and open to both formal and informal education groups. These options are sure to launch your students’ love of STEM:
      NASA Back-to-School Career Day (Grades K-12)
      On Sept. 26, NASA is hosting a Back-to-School Career Day showcasing a variety of NASA careers with virtual tours of agency facilities, live Q&A with experts, and more.
      Open to K-12 formal and informal education organizations, the registration deadline is Thursday, Sept. 5. In addition to the live event, the interactive platform will be available from Monday, Sept. 23, through Friday, Sept. 27.
      Europa Clipper Launch Virtual Watch Party (All Grade Levels)
      NASA’s Europa Clipper spacecraft is scheduled to launch no earlier than Oct. 10 on a mission to investigate whether Jupiter’s icy moon, Europa, could contain the building blocks needed to support life. The launch window opens on Oct. 10 during the school day at 12:32 p.m. EDT, and your classroom can be part of this pioneering mission. Sign up to watch the launch online, visit Europa Clipper’s Participation Hub for more opportunities, and find additional resources on Europa Clipper’s Kids Resources Hub.
      NQuest Virtual Workshops (Grades 6-8)
      NQuest offers 45-minute virtual workshops every Monday and Thursday. Available on a first-come, first-served basis, these free workshops include a live presentation, captivating NASA videos, and a hands-on activity to bring STEM concepts to life. All you need is a laptop, projector, and basic classroom supplies. Workshops can be scheduled to fit your school’s bell schedule between 11:30 a.m. and 6:30 p.m. EDT. Register your class by Oct. 11.
      “Astro-Not-Yets” Virtual Classroom Connections (Grades K-4)
      Introduce your students to the Astro-Not-Yets, a series of short stories that teach students about NASA’s Commercial Crew Program. In each of these monthly virtual events, a NASA expert whose job relates to the story will read the book to students, then answer their questions.
      Wednesday, Oct. 23: The Astro-Not-Yets! Explore Sound. Students will learn how sound travels and experiment with transmitting sound through a string-cup phone. Registration deadline: Wednesday, Oct. 9. Wednesday, Nov. 20: Astro-Not-Yets! Explore Energy. Students will learn how spacecraft safely bring astronauts home from space, then design and test their own system to safely land an egg on the ground. Registration deadline: Wednesday, Nov. 6. Wednesday, Dec. 11: Astro-Not-Yets! Explore Microgravity. Students will learn all about gravity, microgravity, and the International Space Station. Registration deadline: Wednesday, Nov. 27. “First Women” Virtual Classroom Connections (Grades 5-12)
      This series introduces some of the women at NASA who have made significant achievements in STEM. Students get to hear their stories first-hand and ask them questions in a live Q&A.
      Wednesday, Oct. 16: Meet NASA’s first female launch director, Charlie Blackwell-Thompson. She led the launch team during the uncrewed Artemis I mission around the Moon in 2022. Now, she and her team are preparing for the first crewed Artemis mission, Artemis II. Registration deadline: Monday, Sept. 30. Wednesday, Nov. 6: Meet Laurie A. Grindle and learn about NASA’s first X-43A Guinness world record. Today, Grindle is deputy center director at NASA’s Armstrong Flight Research Center in Edwards, California, but in 2004, the X-43A aircraft she and her team developed set the Guinness World Record for “the fastest air-breathing aircraft” twice in one year. Registration deadline: Monday, Oct. 21. Wednesday, Dec. 4: Meet Dr. Ruth Jones, NASA’s 2024 Wings of Excellence Awardee. Jones will share her experience as a woman in STEM and tell students what it was like to become the first woman to earn a bachelor’s degree in physics from the University of Arkansas at Pine Bluff. Registration deadline: Monday, Nov. 18. Surprisingly STEM Career Explorations Virtual Events (Grades 5-12)
      The Surprisingly STEM video series highlights some of NASA’s many unexpected careers. In these events, experts from the videos discuss their unusual and exciting jobs and share their journeys that led them to NASA.
      Thursday, Oct. 24: Soft robotics engineer Jim Neilan explains the importance of soft robotics in human spaceflight and some of the role’s critical skills. Registration deadline: Friday, Oct. 18. Thursday, Nov. 14: Exploration geologist Angela Garcia takes students behind the scenes of her job training NASA astronauts to explore for the “crater” good of humanity. Registration deadline: Thursday, Nov. 7. Thursday, Dec. 12: Memory metal engineer Othmane Benafan explains how he “trains” metal to bend, stretch, and twist when prompted, and how this technology benefits NASA missions. Registration deadline: Thursday, Dec. 5. Bring NASA Experts Into the Classroom (All Grades)
      NASA recently launched NASA Engages, a new, database-driven platform designed to connect a wide range of audiences with experts from across the space agency – both virtually and in person. Available to classrooms from preschool to college, informal education organizations such as libraries and science centers, and other eligible groups, NASA Engages enables educators and group leaders to find inspirational guest speakers, knowledgeable science fair judges, and more.
      There’s More to Explore
      Find student challenges, hands-on activities, and more opportunities on the Learning Resources website managed by NASA’s Office of STEM Engagement. Visit How Do I Navigate NASA Learning Resources and Opportunities? to explore additional platforms and offerings to enhance your STEM curriculum. Subscribe to the weekly NASA EXPRESS e-newsletter to discover the latest events, resources, and other opportunities to bring NASA into your classroom. Explore More
      7 min read NASA Project in Puerto Rico Trains Students in Marine Biology
      Article 20 hours ago 3 min read Eclipse Soundscapes AudioMoth Donations Will Study Nature at Night
      During the April 8, 2024 total solar eclipse, approximately 770 AudioMoth recording devices were used…
      Article 22 hours ago 10 min read 40 Years Ago: President Reagan Announces Teacher in Space Project
      Article 2 days ago View the full article
  • Check out these Videos

×
×
  • Create New...