Members Can Post Anonymously On This Site
Clare Luckey: Shaping the Future of Mars Missions and Inspiring the Artemis Generation
-
Similar Topics
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
This mosaic showing the Martian surface outside of Jezero Crater was taken by NASA’s Perseverance on Dec. 25, 2024, at the site where the rover cored a sample dubbed “Silver Mountain” from a rock likely formed during Mars’ earliest geologic period.NASA/JPL-Caltech/ASU/MSSS The diversity of rock types along the rim of Jezero Crater offers a wide glimpse of Martian history.
Scientists with NASA’s Perseverance rover are exploring what they consider a veritable Martian cornucopia full of intriguing rocky outcrops on the rim of Jezero Crater. Studying rocks, boulders, and outcrops helps scientists understand the planet’s history, evolution, and potential for past or present habitability. Since January, the rover has cored five rocks on the rim, sealing samples from three of them in sample tubes. It’s also performed up-close analysis of seven rocks and analyzed another 83 from afar by zapping them with a laser. This is the mission’s fastest science-collection tempo since the rover landed on the Red Planet more than four years ago.
Perseverance climbed the western wall of Jezero Crater for 3½ months, reaching the rim on Dec. 12, 2024, and is currently exploring a roughly 445-foot-tall (135-meter-tall) slope the science team calls “Witch Hazel Hill.” The diversity of rocks they have found there has gone beyond their expectations.
“During previous science campaigns in Jezero, it could take several months to find a rock that was significantly different from the last rock we sampled and scientifically unique enough for sampling,” said Perseverance’s project scientist, Katie Stack Morgan of NASA’s Jet Propulsion Laboratory in Southern California. “But up here on the crater rim, there are new and intriguing rocks everywhere the rover turns. It has been all we had hoped for and more.”
One of Perseverance’s hazard cameras captured the rover’s coring drill collecting the “Main River” rock sample on “Witch Hazel Hill” on March 10, 2025, the 1,441st Martian day, or sol, of the mission. NASA/JPL-Caltech That’s because Jezero Crater’s western rim contains tons of fragmented once-molten rocks that were knocked out of their subterranean home billions of years ago by one or more meteor impacts, including possibly the one that produced Jezero Crater. Perseverance is finding these formerly underground boulders juxtaposed with well-preserved layered rocks that were “born” billions of years ago on what would become the crater’s rim. And just a short drive away is a boulder showing signs that it was modified by water nestled beside one that saw little water in its past.
Oldest Sample Yet?
Perseverance collected its first crater-rim rock sample, named “Silver Mountain,” on Jan. 28. (NASA scientists informally nickname Martian features, including rocks and, separately, rock samples, to help keep track of them.) The rock it came from, called “Shallow Bay,” most likely formed at least 3.9 billion years ago during Mars’ earliest geologic period, the Noachian, and it may have been broken up and recrystallized during an ancient meteor impact.
About 360 feet (110 meters) away from that sampling site is an outcrop that caught the science team’s eye because it contains igneous minerals crystallized from magma deep in the Martian crust. (Igneous rocks can form deep underground from magma or from volcanic activity at the surface, and they are excellent record-keepers — particularly because mineral crystals within them preserve details about the precise moment they formed.) But after two coring attempts (on Feb. 4 and Feb. 8) fizzled due to the rock being so crumbly, the rover drove about 520 feet (160 meters) northwest to another scientifically intriguing rock, dubbed “Tablelands.”
Data from the rover’s instruments indicates that Tablelands is made almost entirely of serpentine minerals, which form when large amounts of water react with iron- and magnesium-bearing minerals in igneous rock. During this process, called serpentinization, the rock’s original structure and mineralogy change, often causing it to expand and fracture. Byproducts of the process sometimes include hydrogen gas, which can lead to the generation of methane in the presence of carbon dioxide. On Earth, such rocks can support microbial communities.
Coring Tablelands went smoothly. But sealing it became an engineering challenge.
Sealing the “Green Gardens” sample — collected by NASA’s Perseverance Mars rover from a rock dubbed “Tablelands” along the rim of Jezero Crater on Feb. 16, 2025 — pre-sented an engineering challenge. The sample was finally sealed on March 2.NASA/JPL-Caltech/ASU/MSSS Flick Maneuver
“This happened once before, when there was enough powdered rock at the top of the tube that it interfered with getting a perfect seal,” said Kyle Kaplan, a robotics engineer at JPL. “For Tablelands, we pulled out all the stops. Over 13 sols,” or Martian days, “we used a tool to brush out the top of the tube 33 times and made eight sealing attempts. We even flicked it a second time.”
During a flick maneuver, the sample handling arm — a little robotic arm in the rover’s belly — presses the tube against a wall inside the rover, then pulls the tube away, causing it to vibrate. On March 2, the combination of flicks and brushings cleaned the tube’s top opening enough for Perseverance to seal and store the serpentine-laden rock sample.
Eight days later, the rover had no issues sealing its third rim sample, from a rock called “Main River.” The alternating bright and dark bands on the rock were like nothing the science team had seen before.
Up Next
Following the collection of the Main River sample, the rover has continued exploring Witch Hazel Hill, analyzing three more rocky outcrops (“Sally’s Cove,” “Dennis Pond,” and “Mount Pearl”). And the team isn’t done yet.
“The last four months have been a whirlwind for the science team, and we still feel that Witch Hazel Hill has more to tell us,” said Stack. “We’ll use all the rover data gathered recently to decide if and where to collect the next sample from the crater rim. Crater rims — you gotta love ’em.”
More About Perseverance
A key objective for Perseverance’s mission on Mars is astrobiology, including the search for signs of ancient microbial life. The rover is characterizing the planet’s geology and past climate, to help pave the way for human exploration of the Red Planet and is the first mission to collect and cache Martian rock and regolith.
NASA’s Mars Sample Return Program, in cooperation with ESA (European Space Agency), is designed to send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.
The Mars 2020 Perseverance mission is part of NASA’s Mars Exploration Program portfolio and the agency’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.
NASA’s Jet Propulsion Laboratory, managed for the agency by Caltech in Pasadena, California, built and manages operations of the Perseverance rover.
For more about Perseverance:
https://science.nasa.gov/mission/mars-2020-perseverance
News Media Contacts
DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
2025-051
Share
Details
Last Updated Apr 10, 2025 Related Terms
Perseverance (Rover) Mars Mars 2020 Explore More
5 min read Perseverance Rover Witnesses One Martian Dust Devil Eating Another
Article 7 days ago 6 min read How NASA’s Perseverance Is Helping Prepare Astronauts for Mars
Article 2 weeks ago 6 min read NASA’s Curiosity Rover Detects Largest Organic Molecules Found on Mars
Lee esta historia en español aquí. Researchers analyzing pulverized rock onboard NASA’s Curiosity rover have found…
Article 2 weeks ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
NASA astronauts (left to right) Christina Koch, Victor Glover, Reid Wiseman, Canadian Space Agency Astronaut Jeremy Hansen. Credit: NASA/Josh Valcarcel The Artemis II test flight will be NASA’s first mission with crew under Artemis. Astronauts on their first flight aboard NASA’s Orion spacecraft will confirm all of the spacecraft’s systems operate as designed with crew aboard in the actual environment of deep space. Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all.
The unique Artemis II mission profile will build upon the uncrewed Artemis I flight test by demonstrating a broad range of SLS (Space Launch System) and Orion capabilities needed on deep space missions. This mission will prove Orion’s critical life support systems are ready to sustain our astronauts on longer duration missions ahead and allow the crew to practice operations essential to the success of Artemis III and beyond.
Leaving Earth
The mission will launch a crew of four astronauts from NASA’s Kennedy Space Center in Florida on a Block 1 configuration of the SLS rocket. Orion will perform multiple maneuvers to raise its orbit around Earth and eventually place the crew on a lunar free return trajectory in which Earth’s gravity will naturally pull Orion back home after flying by the Moon. The Artemis II astronauts are NASA’s Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen.
The initial launch will be similar to Artemis I as SLS lofts Orion into space, and then jettisons the boosters, service module panels, and launch abort system, before the core stage engines shut down and the core stage separates from the upper stage and the spacecraft. With crew aboard this mission, Orion and the upper stage, called the interim cryogenic propulsion stage (ICPS), will then orbit Earth twice to ensure Orion’s systems are working as expected while still close to home. The spacecraft will first reach an initial orbit, flying in the shape of an ellipse, at an altitude of about 115 by 1,400 miles. The orbit will last a little over 90 minutes and will include the first firing of the ICPS to maintain Orion’s path. After the first orbit, the ICPS will raise Orion to a high-Earth orbit. This maneuver will enable the spacecraft to build up enough speed for the eventual push toward the Moon. The second, larger orbit will take approximately 23.5 hours with Orion flying in an ellipse between about 115 and 46,000 miles above Earth. For perspective, the International Space Station flies a nearly circular Earth orbit about 250 miles above our planet.
After the burn to enter high-Earth orbit, Orion will separate from the upper stage. The expended stage will have one final use before it is disposed through Earth’s atmosphere—the crew will use it as a target for a proximity operations demonstration. During the demonstration, mission controllers at NASA’s Johnson Space Center in Houston will monitor Orion as the astronauts transition the spacecraft to manual mode and pilot Orion’s flight path and orientation. The crew will use Orion’s onboard cameras and the view from the spacecraft’s windows to line up with the ICPS as they approach and back away from the stage to assess Orion’s handling qualities and related hardware and software. This demonstration will provide performance data and operational experience that cannot be readily gained on the ground in preparation for critical rendezvous, proximity operations and docking, as well as undocking operations in lunar orbit beginning on Artemis III.
Checking Critical Systems
Following the proximity operations demonstration, the crew will turn control of Orion back to mission controllers at Johnson and spend the remainder of the orbit verifying spacecraft system performance in the space environment. They will remove the Orion Crew Survival System suit they wear for launch and spend the remainder of the in-space mission in plain clothes, until they don their suits again to prepare for reentry into Earth’s atmosphere and recovery from the ocean.
While still close to Earth, the crew will assess the performance of the life support systems necessary to generate breathable air and remove the carbon dioxide and water vapor produced when the astronauts breathe, talk, or exercise. The long orbital period around Earth provides an opportunity to test the systems during exercise periods, where the crew’s metabolic rate is the highest, and a sleep period, where the crew’s metabolic rate is the lowest. A change between the suit mode and cabin mode in the life support system, as well as performance of the system during exercise and sleep periods, will confirm the full range of life support system capabilities and ensure readiness for the lunar flyby portion of the mission.
Orion will also checkout the communication and navigation systems to confirm they are ready for the trip to the Moon. While still in the elliptical orbit around Earth, Orion will briefly fly beyond the range of GPS satellites and the Tracking and Data Relay Satellites of NASA’s Space Network to allow an early checkout of agency’s Deep Space Network communication and navigation capabilities. When Orion travels out to and around the Moon, mission control will depend on the Deep Space Network to communicate with the astronauts, send imagery to Earth, and command the spacecraft.
After completing checkout procedures, Orion will perform the next propulsion move, called the translunar injection (TLI) burn. With the ICPS having done most of the work to put Orion into a high-Earth orbit, the service module will provide the last push needed to put Orion on a path toward the Moon. The TLI burn will send crew on an outbound trip of about four days and around the backside of the Moon where they will ultimately create a figure eight extending over 230,000 miles from Earth before Orion returns home.
To the Moon and “Free” Ride Home
On the remainder of the trip, astronauts will continue to evaluate the spacecraft’s systems, including demonstrating Earth departure and return operations, practicing emergency procedures, and testing the radiation shelter, among other activities.
The Artemis II crew will travel approximately 4,600 miles beyond the far side of the Moon. From this vantage point, they will be able to see the Earth and the Moon from Orion’s windows, with the Moon close in the foreground and the Earth nearly a quarter-million miles in the background.
With a return trip of about four days, the mission is expected to last about 10 days. Instead of requiring propulsion on the return, this fuel-efficient trajectory harnesses the Earth-Moon gravity field, ensuring that—after its trip around the far side of the Moon—Orion will be pulled back naturally by Earth’s gravity for the free return portion of the mission.
Two Missions, Two Different Trajectories
Following Artemis II, Orion and its crew will once again travel to the Moon, this time to make history when the next astronauts walk on the lunar surface. Beginning with Artemis III, missions will focus on establishing surface capabilities and building Gateway in orbit around the Moon.
Through Artemis, NASA will explore more of the Moon than ever before and create an enduring presence in deep space.
View the full article
-
By European Space Agency
The first of the new generation of MetOp satellites, MetOp-SG Satellite-A, together with the instrument for the Copernicus Sentinel-5 mission, are now ready to be shipped to their launch site. But before the last leg of their terrestrial journey, they were on display to the media at Airbus’s facilities in Toulouse, France.
View the full article
-
By NASA
On April 8, 2025, Bangladesh became the 54th nation to sign the accords. The commitments of the Artemis Accords and efforts by the signatories to advance implementation of these principles support the safe and sustainable exploration of space.NASA Following a signing ceremony Tuesday in Bangladesh’s capital city of Dhaka, NASA congratulates Bangladesh as the 54th nation to commit to the safe and responsible exploration of space that benefits humanity.
“We are thrilled by Bangladesh’s signature of the Accords,” said NASA acting Administrator Janet Petro. “Bangladesh affirms its role in shaping the future of space exploration. This is about ensuring that our journey to the Moon – and beyond – is peaceful, sustainable, and transparent. We look forward to working together, to learning from one another, and to seeing how Bangladesh’s incredible talent and vision contribute to humanity’s next great chapter in space.”
Ashraf Uddin, the secretary of defense for Bangladesh,signed the Artemis Accords on behalf of the country. Charge d’Affaires Tracey Jacobson for the U.S. Embassy in Dhaka, Bangladesh, participated in the event, and Petro contributed remarks in a pre-recorded video message.
“Bangladesh’s commitment to the Artemis Accords will enhance the country’s engagement with NASA and the international community,” said Bangladesh’s Chief Advisor Muhammad Yunus. “By signing the accords, Bangladesh builds upon an important foundation for the open, responsible and peaceful exploration of space.”
In 2020, the United States, led by NASA and the U.S. Department of State, and seven other initial signatory nations established the Artemis Accords, a first-ever set of practical guidelines for nations to increase safety of operations and reduce risk and uncertainty in their civil exploration activities. That group of signatories has grown to more than 50 countries today.
The Artemis Accords are grounded in the Outer Space Treaty and other agreements, including the Registration Convention and the Rescue and Return Agreement, as well as best practices for responsible behavior that NASA and its partners have supported, including the public release of scientific data.
Learn more about the Artemis Accords at:
https://www.nasa.gov/artemis-accords
-end-
Amber Jacobson / Jennifer Dooren
Headquarters, Washington
202-358-1600
amber.c.jacobson@nasa.gov / jennifer.m.dooren@nasa.gov
Share
Details
Last Updated Apr 08, 2025 EditorJennifer M. DoorenLocationNASA Headquarters Related Terms
Office of International and Interagency Relations (OIIR) Artemis Accords View the full article
-
By NASA
Since joining NASA in 2017 as a contractor supporting the International Space Station, Caroline Cawthon has held many roles supporting real-time operations as a certified flight controller, team lead, and lead systems engineer.
Caroline Cawthon’s official NASA portrait. NASA is one of the biggest most impressive networks of engineering, science, and space program expertise in the world and to not leverage that experience in mentorship would be a waste.
Caroline Cawthon
CLDP Engineering and Integration Lead
Now, she is supporting America’s future in orbit as the systems engineering and integration lead for NASA’s Commercial Low Earth Orbit Development Program engineering technical authority. Cawthon supports the program’s chief engineer office. In this position, she plays a key role in the oversight of phase 1 partner requirements and processes as part of the program’s two-phase approach to support the development of commercial space stations.
Growing up in military and NASA communities, Cawthon was fascinated with aviation and aerospace from a young age and aspired to become a fighter pilot and engineer. She first met an astronaut while attending Space Camp at the Euro Space Center in Belgium, sparking her interest in human spaceflight and solidifying her goals to work for NASA, make an impact, and be a part of making history. She later earned her bachelor’s degree in chemical and materials engineering and her master’s degree in aeronautics and space systems.
Cawthon attending Space Camp as a child at the Euro Space Center in Belgium. Image courtesy of Caroline Cawthon Cawthon describes the best part of her day as the people she works with, and her passionate and mission-driven team reminds her that the mission she’s working toward will make a difference in the future of human spaceflight.
“Between the program, engineering team, and our industry partners, there are thousands of years of experience with human spaceflight that I get to leverage every day to learn and grow in my role and to help NASA accomplish our mission,” shared Cawthon.
A recent example of this mission-driven teamwork was the development of the program’s technical standards design evaluation document. As the lead for this task, Cawthon was proud of how everyone’s hard work and contributions came together.
The biggest lesson Cawthon has learned while working with NASA is to continue being curious, learning, and growing both personally and professionally.
“NASA is one of the biggest most impressive networks of engineering, science, and space program expertise in the world and to not leverage that experience in mentorship would be a waste,” Cawthon said.
Cawthon pictured with her husband and daughter. Image courtesy of Caroline Cawthon Outside of work, Cawthon enjoys spending time outdoors with her husband and daughter. She and her family also like to be on the road, exploring new places and meeting new people. They enjoy international travel and small weekend adventures like the local zoo and aquarium.
Learn more about NASA’s Commercial Low Earth Orbit Development Program at:
Commercial Space Stations
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.