Members Can Post Anonymously On This Site
NASA’s SpaceX Crew-8 Dragon Spacecraft Port Relocation
-
Similar Topics
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The Orion Environmental Test Article photographed inside the Thermal Vacuum Chamber on April 11, 2024, in the Space Environments Complex at NASA’s Neil Armstrong Test Facility in Sandusky, Ohio. Credit: NASA/Quentin Schwinn Making the voyage 1.4 million miles around the Moon and back — the farthest a spacecraft built for humans has ever gone — the Orion spacecraft has faced a battery of tests over the years. Though Orion successfully proved its capabilities in the harsh environment of space during the Artemis I mission, Orion’s evaluation did not end at splashdown.
The crew module, now known as the Orion Environmental Test Article (ETA), returned to NASA’s Neil Armstrong Test Facility in Sandusky, Ohio, in January 2024 and completed an 11-month test campaign necessary for the safety and success of Artemis II, the first crewed mission under NASA’s Artemis campaign.
Engineers and technicians from NASA and Lockheed Martin subjected the test article to the extreme conditions Orion may experience in a launch abort scenario. In the event of an emergency, Orion — and astronauts inside — will jettison away from the SLS (Space Launch System) rocket for a safe landing in the ocean.
Experts at NASA’s Neil Armstrong Test Facility in Sandusky, Ohio, conducted a lightning test, which simulates the electromagnetic effects of a lightning strike to the vehicle on the launch pad awaiting liftoff. The Feb. 20, 2024 test proved the grounding path of the vehicle is operating as designed and protecting the vehicle from damage to any of its equipment or systems. Credit: NASA/Quentin Schwinn Experts installed NASA’s Launch Abort System, designed to carry the crew to safety in the event of an emergency during launch or ascent. The Orion test article was subjected to acoustic levels simulating both a nominal ascent and a launch abort scenario. The acoustic test chamber at NASA’s Neil Armstrong Test Facility in Sandusky, Ohio, blasted the test article at a volume of almost 164 decibels on Sept. 9, 2024. Credit: NASA/Jordan Salkin On Nov. 11, 2024, experts successfully at NASA’s Neil Armstrong Test Facility completed the docking mechanism jettison test, designed to connect and disconnect the Orion spacecraft to Gateway, a small space station that will orbit the Moon. They also completed the forward bay cover jettison test on Nov. 23, 2024, which is the last piece that must eject right before parachutes deploy, and successfully tested Orion’s uprighting system. Credit: NASA/Jordan Salkin “This event would be the maximum stress and highest load that any of the systems would see,” said Robert Overy, Orion ETA project manager, NASA’s Glenn Research Center in Cleveland. “We’re taking a proven vehicle from a successful flight and pushing it to its limits. The safety of the astronaut crew depends on this test campaign.”
Experts conducted tests that simulated the noise levels of an abort during launch in addition to the electromagnetic effects of lightning strikes. The test campaign also jettisoned the test article’s docking module and parachute covers, as well as the crew module uprighting system, which consists of five airbags on top of the spacecraft that inflate upon splashdown.
“It’s been a successful test campaign,” Overy said. “The data has matched the prediction models, and everything operated as expected after being subjected to nominal and launch abort acoustic levels. We are still analyzing data, but the preliminary results show the vehicle and facility operated as desired.”
On. Nov. 23, 2024, after subjecting the Orion test article to launch abort-level acoustics, experts tested the functionality of the forward bay cover, which is the last piece that must eject before parachutes deploy. Credit: NASA/Jordan Salkin and Quentin Schwinn Testing Orion at such high acoustic levels was a major milestone for Artemis. The Reverberant Acoustic Test Facility, the world’s most powerful spacecraft acoustic test chamber, was built in 2011 in anticipation of this specific test campaign.
“These tests are absolutely critical because we have to complete all of these tests to say the spacecraft design is safe and we’re ready to fly a crew for the first time on Artemis II,” said Michael See, ETA vehicle manager, Orion Program. “This is the first time we’ve been able to test a spacecraft on the ground in such an extreme abort-level acoustic environment.”
The Orion Environmental Test Article with Launch Abort System installed moves to the Reverberant Acoustic Test Facility, the most powerful spacecraft acoustic test chamber in the world, on Sept. 9, 2024, at NASA’s Neil Armstrong Test Facility in Sandusky, Ohio. Credit: NASA/Jordan Salkin and Quentin Schwinn Part of NASA Glenn, Armstrong Test Facility is home to the world’s largest and most powerful space environment simulation chambers capable of testing full-sized spacecraft for all the extreme conditions of launch and spaceflight. The facility not only houses an acoustic test chamber, but also a thermal-vacuum chamber and spacecraft vibration system.
“The facility is unique because there’s no other place in the world capable of testing spacecraft like this,” Overy said. “Armstrong Test Facility is a one-stop-shop for all your testing needs to prepare your spacecraft for the severe and challenging journey to and from space.”
Orion’s Round-Trip Journey to Ohio
This is not the first time Orion has been inside the walls of the Space Environments Complex at Armstrong Test Facility. The spacecraft underwent mission-critical testing in 2019, where it was subjected to extreme temperatures and an electromagnetic environment before it launched on Artemis I in 2022.
“I remember when it first arrived, the gravity of its importance really hit home,” said Joshua Pawlak, test manager, NASA Glenn. “I thought to myself, on future Artemis missions, astronauts will be inside Orion heading to the Moon, and they’ll be depending on it for survival.”
Pawlak was a mechanical test engineer when Orion made its first trip to the Sandusky facility. He participated in planning and coordinating testing of the vehicle and trained personnel. He managed the vehicle from the moment it arrived, through testing, and up until it departed for NASA’s Kennedy Space Center in Florida.
Joshua Pawlak poses in front of the Artemis I Space Launch System rocket on Nov. 16, 2022, in Cape Canaveral, Florida. Credit: Joshua Pawlak “When it returned, I felt like I had a small part in this really big and exciting thing,” Pawlak said. “Seeing it come back blackened and scarred from the harsh environment of space was incredible. Space is not a friendly space, and I felt proud knowing that if there were astronauts on that vehicle, they would have survived.
After the Orion test article departs from Glenn, it will head to Kennedy for additional testing.
“When Artemis II launches and those astronauts are sitting on board, I’ll know that I did everything I could to ensure the vehicle is ready for them and going to perform as expected,” Pawlak said. “That’s why I do what I do.”
Explore More
2 min read Station Science Top News: Dec. 13, 2024
Article 17 hours ago 3 min read NASA Sees Progress on Starlab Commercial Space Station Development
Article 17 hours ago 7 min read NASA Kennedy Top 24 Stories of 2024
Article 5 days ago View the full article
-
By NASA
On Thursday, Dec. 5, 2024, a team returns the Artemis II Orion spacecraft to the Final Assembly and Test cell from a vacuum chamber inside the Neil A. Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida where it underwent vacuum testing. NASA/Eric Hernandez NASA’s Orion spacecraft for the Artemis II test flight returned to the Final Assembly and System Testing (FAST) cell following completion of the second round of vacuum chamber testing on Dec. 5 inside the Neil A. Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida.
After returning to the FAST cell, the four main batteries – which supply power to many Orion systems – were installed in the crew module. The batteries returned to NASA Kennedy from their supplier, EaglePicher Technologies, earlier this month. Solar array wings will also be installed onto the spacecraft by international partner ESA (European Space Agency) and its contractor Airbus in early 2025.
The Artemis II test flight will be NASA’s first mission with crew under the Artemis campaign, sending NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, as well as CSA (Canadian Space Agency) astronaut Jeremy Hansen, on a 10-day journey around the Moon and back.
Image credit: NASA/Eric Hernandez
View the full article
-
By NASA
The SpaceX Dragon spacecraft departs the International Space Station as it orbits 264 miles above the south Pacific Ocean northeast of New Zealand.Credit: NASA NASA and its international partners are set to receive scientific research samples and hardware as a SpaceX Dragon spacecraft departs the International Space Station on Thursday, Dec. 5, for its return to Earth.
NASA’s live coverage of undocking and departure begins at 10:50 a.m. EST on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
The Dragon spacecraft will undock from the forward port of the space station’s Harmony module at 11:05 a.m., and fire its thrusters to move a safe distance away from the station after receiving a command from ground controllers at SpaceX.
After re-entering Earth’s atmosphere, the spacecraft will splash down off the coast of Florida. NASA will not stream the splashdown and will post updates on the agency’s space station blog.
Filled with nearly 6,000 pounds of crew supplies, science investigations, and equipment, the spacecraft arrived to the orbiting laboratory Nov. 5 after it launched Nov. 4 on a Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida for the agency’s SpaceX 31st commercial resupply services mission.
Dragon will carry back to Earth thousands of pounds of supplies and scientific experiments designed to take advantage of the space station’s microgravity environment. Splashing down off the coast of Florida enables quick transportation of the experiments to NASA’s Space Systems Processing Facility at Kennedy Space Center, allowing researchers to collect data with minimal sample exposure to Earth’s gravity.
Scientific hardware and samples returning to Earth include GISMOS (Genes in Space Molecular Operations and Sequencing), which successfully conducted in-orbit sequencing of microbial DNA from the space station water system, and marks the first real look at the microbial population of the water system. In addition, SpaceTED (Space Tissue Equivalent Dosimeter) returns to Earth after collecting data on crew radiation exposure and characterizes the space radiation environment. The dosimeter is a student-developed technology demonstration and effectively operated for 11 months on station – six months longer than intended because of its success.
Additionally, two specimens printed with ESA’s (European Space Agency) Metal 3D Printer, will go to researchers for post-processing and analysis. Researchers will compare the specimens printed in microgravity with those printed on Earth. The goal is to demonstrate the capability to perform metal deposition, or the layering of metals, in 3D under sustained microgravity conditions and manufacture test specimens. Researchers aim to understand the performance and limitations of the chosen technology and become familiar with crewed and remote operations of the instrument onboard a space habitat.
Also returning on spacecraft is the International Space Art and Poetry Contest, which invited students and educators around the world to submit drawings, paintings, or poems. Winning art submissions were printed on station, photographed in the cupola, and will be returned to their creators on Earth. In addition, Plasmonic Bubbles researchers will observe high-speed video of bubble behavior in microgravity to understand fundamental processes that occur on a heated bubble surface. Results may improve understanding of how molecules are deposited on bubble surfaces and enhance detection methods for health care and environmental industries.
For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge, and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA is focusing more resources on deep space missions to the Moon as part of its Artemis campaign in preparation for future human missions to Mars.
Get breaking news, images and features from the space station on Instagram, Facebook, and X.
Learn more about the International Space Station at:
https://www.nasa.gov/international-space-station
-end-
Claire O’Shea / Joshua Finch
Headquarters, Washington
202-358-1100
claire.a.o’shea@nasa.gov / joshua.a.finch@nasa.gov
Sandra Jones
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov
Share
Details
Last Updated Dec 02, 2024 LocationNASA Headquarters Related Terms
International Space Station (ISS) Commercial Resupply ISS Research Johnson Space Center SpaceX Commercial Resupply View the full article
-
By NASA
jsc2024e064444 (Sept. 30, 2024) — The crew members of NASA’s SpaceX Crew-10 mission (from left) mission specialist Kirill Peskov of Roscosmos, NASA astronauts Nichole Ayers, pilot, and Anne McClain, commander, along with Mission Specialist Takuya Onishi of JAXA (Japan Aerospace Exploration Agency), pose for a picture during training at SpaceX in Hawthorne, California. SpaceX Digital content creators are invited to register to attend the launch of NASA’s SpaceX Crew-10 mission to carry astronauts to the International Space Station for a science expedition mission as part of NASA’s Commercial Crew Program. This will be the 14th time a SpaceX Dragon spacecraft launched by a Falcon 9 rocket takes crews to the orbital laboratory.
Launch of NASA’s SpaceX Crew-10 mission is targeted for no earlier than February 2025 on a SpaceX Falcon 9 rocket from Florida. The launch will carry NASA astronauts Anne McClain, commander, and Nichole Ayers, pilot, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, mission specialist, along with Roscosmos cosmonaut Kirill Peskov.
If your passion is to communicate and engage the world online, then this is the event for you! Seize the opportunity to see and share the #Crew10 mission launch.
A maximum of 50 social media users will be selected to attend this two-day event and will be given exclusive access to Kennedy.
NASA Social participants will have the opportunity to:
View a crewed launch of the SpaceX Falcon 9 rocket and Dragon spacecraft Tour NASA facilities at Kennedy Space Center Meet and interact with Crew-10 subject matter experts Meet fellow space enthusiasts who are active on social media NASA Social registration for the Crew-10 launch opens on Monday, Dec. 2, and the deadline to apply is at 10 a.m. EDT on Monday, Dec. 16. All social applications will be considered on a case-by-case basis.
APPLY NOW
Do I need to have a social media account to register?
Yes. This event is designed for people who:
Actively use multiple social networking platforms and tools to disseminate information to a unique audience. Regularly produce new content that features multimedia elements. Have the potential to reach a large number of people using digital platforms, or reach a unique audience, separate and distinctive from traditional news media and/or NASA audiences. Must have an established history of posting content on social media platforms. Have previous postings that are highly visible, respected and widely recognized. Users on all social networks are encouraged to use the hashtag #NASASocial and #Crew10. Updates and information about the event will be shared on X via @NASASocial and @NASAKennedy, and via posts to Facebook and Instagram.
How do I register?
Registration for this event opens on Monday, Dec. 2, and closes at 10 a.m. EDT on Monday, Dec. 16. Registration is for one person only (you) and is non-transferable. Each individual wishing to attend must register separately. Each application will be considered on a case-by-case basis.
Can I register if I am not a U.S. citizen?
Yes, this event is open for all to apply.
When will I know if I am selected?
After registrations have been received and processed, an email with confirmation information and additional instructions will be sent to those selected. We expect to send the acceptance notifications by Jan. 24.
What are NASA Social credentials?
All social applications will be considered on a case-by-case basis. Those chosen must prove through the registration process they meet specific engagement criteria.
If you do not make the registration list for this NASA Social, you still can attend the launch offsite and participate in the conversation online. Find out about ways to experience a launch here.
What are the registration requirements?
Registration indicates your intent to travel to NASA’s Kennedy Space Center in Florida and attend the two-day event in person. You are responsible for your own expenses for travel, accommodations, food, and other amenities.
Some events and participants scheduled to appear at the event are subject to change without notice. NASA is not responsible for loss or damage incurred as a result of attending. NASA, moreover, is not responsible for loss or damage incurred if the event is cancelled with limited or no notice. Please plan accordingly.
Kennedy is a government facility. Those who are selected will need to complete an additional registration step to receive clearance to enter the secure areas.
IMPORTANT: To be admitted, you will need to provide two forms of unexpired government-issued identification; one must be a photo ID and match the name provided on the registration. Those without proper identification cannot be admitted.
For a complete list of acceptable forms of ID, please visit: NASA Credentialing Identification Requirements.
All registrants must be at least 18 years old.
What if the launch date changes?
Many different factors can cause a scheduled launch date to change multiple times. If the launch date changes, NASA may adjust the date of the NASA Social accordingly to coincide with the new target launch date. NASA will notify registrants of any changes by email.
If the launch is postponed, attendees may be invited to attend a later launch date, but is not guaranteed.
NASA Social attendees are responsible for any additional costs they incur related to any launch delay. We strongly encourage participants to make travel arrangements that are refundable and/or flexible.
What if I cannot come to the Kennedy Space Center?
If you cannot come to the Kennedy Space Center and attend in person, you should not register for the NASA Social. You can follow the conversation online using #NASASocial.
You can watch the launch on NASA+ or plus.nasa.gov. NASA will provide regular launch and mission updates on @NASA, @NASAKennedy, and @Commercial_Crew, as well as on NASA’s Commercial Crew Program blog.
If you cannot make this NASA Social, don’t worry; NASA is planning many other Socials in the near future at various locations!
Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
ISS National Laboratory
Commercial Crew Spacecraft
View the full article
-
By European Space Agency
What’s harder than flying a single satellite in Earth orbit? Flying two – right beside each other, at proximities that would normally trigger collision avoidance manoeuvres.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.