Jump to content

Recommended Posts

Posted
Spacemanic will use its space-based WaterCube to measure water pollution hotspots

Spacemanic, a Slovak and Czech startup company, won this year’s Prix Bulles Cardin award of €20 000 on 17 May for its ocean WaterCube.

This device, which is based on space hardware, has sensors which measure pollution levels in sea water allowing the identification of pollution hotspots. With this data, action can be taken to safeguard habitats and species critical for the long-term sustainability of marine ecosystems and fisheries.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      Natalia Serna, daughter of Space Launch Delta 30’s senior enlisted leader Chief Master Sgt. Jay Harris and Maria Tapia, wins U.S. Space Force's Military Child of the Year.

      View the full article
    • By NASA
      The innovative team of engineers and scientists from NASA, the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, and more than 40 other partner organizations across the country that created the Parker Solar Probe mission has been awarded the 2024 Robert J. Collier Trophy by the National Aeronautic Association (NAA). This annual award recognizes the most exceptional achievement in aeronautics and astronautics in America with respect to improving the performance, efficiency, and safety of air or space vehicles in the previous year.   
      “Congratulations to the entire Parker Solar Probe team for this well-earned recognition,” said NASA acting Administrator Janet Petro. “This mission’s trailblazing research is rewriting the textbooks on solar science by going to a place no human-made object has ever been and advancing NASA’s efforts to better understand our solar system and the Sun’s influence, with lasting benefits for us all. As the first to touch the Sun and fastest human-made object ever built, Parker Solar Probe is a testament to human ingenuity and discovery.”
      An artist’s concept of NASA’s Parker Solar Probe. NASA On Dec. 24, 2024, Parker Solar Probe made its closest approach to the Sun, passing deep within the Sun’s corona, just 3.8 million miles above the Sun’s surface and at a top speed of close to 430,000 mph, ushering in a new era of scientific discovery and space exploration.
      “This award is a recognition of the unrelenting dedication and hard work of the Parker Solar Probe team. I am so proud of this team and honored to have been a part of it,” said Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters in Washington. “By studying the Sun closer than ever before, we continue to advance our understanding of not only our closest star, but also stars across our universe. Parker Solar Probe’s historic close approaches to the Sun are a testament to the incredible engineering that made this record-breaking journey possible.”
      Three novel aerospace technology advancements were critical to enabling this record performance: The first is the Thermal Protection System, or heat shield, that protects the spacecraft and is built to withstand brutal temperatures as high as 2,500 degrees Fahrenheit. The Thermal Protection System allows Parker’s electronics and instruments to operate close to room temperature.
      Additional Parker innovations included first-of-their-kind actively cooled solar arrays that protect themselves from overexposure to intense solar energy while powering the spacecraft, and a fully autonomous spacecraft system that can manage its own flight behavior, orientation, and configuration for months at a time. Parker has relied upon all of these vital technologies every day since its launch almost seven years ago, in August 2018.
      “I am thrilled for the Parker Solar Probe team on receiving this well-deserved award,” said Joe Westlake, director of the Heliophysics Division at NASA Headquarters. “The new information about the Sun made available through this mission will improve our ability to prepare for space weather events across the solar system, as well as better understand the very star that makes life possible for us on Earth.”
      Parker’s close-up observations of solar events, such as coronal mass ejections and solar particle events, are critical to advancing our understanding of the science of our Sun and the phenomena that drive high-energy space weather events that pose risks to satellites, air travel, astronauts, and even power grids on Earth. Understanding the fundamental physics behind events which drive space weather will enable more reliable predictions and lower astronaut exposure to hazardous radiation during future deep space missions to the Moon and Mars.
      “This amazing team brought to life an incredibly difficult space science mission that had been studied, and determined to be impossible, for more than 60 years. They did so by solving numerous long-standing technology challenges and dramatically advancing our nation’s spaceflight capabilities,” said APL Director Ralph Semmel. “The Collier Trophy is well-earned recognition for this phenomenal group of innovators from NASA, APL, and our industry and research partners from across the nation.”
      First awarded in 1911, the Robert J. Collier Trophy winner is selected by a group of aviation leaders chosen by the NAA. The Collier Trophy is housed in the Smithsonian’s National Air and Space Museum in Washington.
      “Traveling three times closer to the Sun and seven times faster than any spacecraft before, Parker’s technology innovations enabled humanity to reach inside the Sun’s atmosphere for the first time,” said Bobby Braun, head of APL’s Space Exploration Sector. “We are all immensely proud that the Parker Solar Probe team will join a long legacy of prestigious aerospace endeavors that redefined technology and changed history.”
      “The Parker Solar Probe team’s achievement in earning the 2024 Collier is a shining example of determination, genius, and teamwork,” said NAA President and CEO Amy Spowart. “It’s a distinct honor for the NAA to acknowledge and celebrate the remarkable team that turned the impossible into reality.”
      Parker Solar Probe was developed as part of NASA’s Living With a Star program to explore aspects of the Sun-Earth system that directly affect life and society. The Living With a Star program is managed by the agency’s Goddard Space Flight Center in Greenbelt, Maryland, for NASA’s Science Mission Directorate in Washington. The Applied Physics Laboratory designed, built, and operates the spacecraft and manages the mission for NASA.
      By Geoff Brown
      Johns Hopkins University Applied Physics Laboratory
      Share








      Details
      Last Updated Mar 25, 2025 Editor Sarah Frazier Contact Abbey Interrante abbey.a.interrante@nasa.gov Location Goddard Space Flight Center Related Terms
      Heliophysics Goddard Space Flight Center Heliophysics Division Parker Solar Probe (PSP) The Sun Explore More
      5 min read NASA’s Parker Solar Probe Makes History With Closest Pass to Sun


      Article


      3 months ago
      4 min read Final Venus Flyby for NASA’s Parker Solar Probe Queues Closest Sun Pass


      Article


      5 months ago
      11 min read NASA Enters the Solar Atmosphere for the First Time, Bringing New Discoveries
      A major milestone and new results from NASA’s Parker Solar Probe were announced on Dec.…


      Article


      3 years ago
      View the full article
    • By NASA
      Explore This Section Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 3 min read
      In Memoriam: Pierre Morel [1933–2024]
      Pierre Morel [1933–2024] Photo Credit: Morel’s obituary on the Ecole Normale Supérieure website Pierre Morel, the first director of the World Climate Research Programme (WCRP) and founding member of WCRP’s Global Energy and Water Exchanges (GEWEX) Core project, died on December 10, 2024.
      Pierre began his research as a theoretical physicist. His doctoral thesis examined the existence and properties of a condensed superfluid state of liquid Helium 3 at very low temperature. He lectured on basic physics, geophysical fluid dynamics, and climate science. As his career progressed, he focused his research on studying the circulation of the atmosphere. He was devoted to the development of numerical modelling of atmospheric flow that laid the groundwork for the study of climatology.
      Pierre’s work played an integral role in the development of tools used to study the atmosphere, many of which are still active today. Examples include Project Éole – an experimental wind energy plant conceived in the 1980s and created in Quebec, Canada that closed down in 1993; the ARGOS satellite, a collaboration between the Centre National d’Études Spatiale (CNES) [French Space Agency], National Oceanic and Atmospheric Administration (NOAA), and NASA, to collect and relay meteorological and oceanographic data around the world that launched in 1978; the Search and Rescue Satellite Aided Tracking (SARSAT) system, which was developed by the U.S. – specifically NOAA, NASA, and the U.S. Coast Guard and Air Force – Canada, and France, with the first satellite launch in 1982; and the European Organization for the Exploitation of Meteorological Satellites’ METEOSAT series of geostationary satellites, which launched in 1977 and remain active today. The launch of Meteosat–12 in 2022 was the first METEOSAT Third Generation (MTG) launch.
      Early in his career, Pierre was the director of the French Laboratoire de Météorologie Dynamique (LMD) before he became the director of the Centre National d’Études Spatiales (CNES). In 1980 he became the first chairman of the WCRP, where he steered a broad interdisciplinary research program in global climate and Earth system science that involved the participation of atmospheric, oceanic, hydrological, and polar scientists worldwide. Pierre was later in charge of planetary programs at NASA and was involved in discussions about the future of NASA’s Earth Observing System (EOS) in the mid-to-late 1990s. As an example, the Earth Observer article, “Minutes Of The Fourteenth Earth Science Enterprise/Earth Observing System (ESE/EOS) Investigators Working Group Meeting,” includes a summary of a presentation Pierre gave that focused on flight mission planning for the EOS “second series,” which was NASA’s plan at the time although ultimately not pursued, with the “first series” (i.e., Terra, Aqua, Aura) enduring much longer than anticipated.
      Pierre was the recipient of the 2008 Alfred Wegener Medal & Honorary Membership for his outstanding contributions to geophysical fluid dynamics, his leadership in the development of climate research, and the applications of space observation to meteorology and the Earth system science.
      View the full article
    • By Space Force
      Personnel at the Air Force Accessions Center demonstrated their ability to adapt quickly to evolving accession requirements, resulting in dozens of highly qualified cadets being notified of a pilot career field selection.

      View the full article
    • By NASA
      The Space Technology Payload Challenge invites individuals, teams, and organizations to submit applications for systems that advance technology to address one or more of NASA’s shortfalls. These shortfalls identify technology areas where further technology development is required to meet future exploration, science, and other mission needs. In addition, technologies to address these select shortfalls are also potentially well suited for a suborbital or hosted orbital flight demonstration to help mature the innovation. The expectation is that the technology will be tested at the end of the challenge aboard a suborbital vehicle, rocket-powered lander, high altitude balloon, aircraft following a reduced gravity profile (i.e., parabolic flight), or orbital vehicle that can host payloads. The shortfalls selected for this challenge are divided into two groups. The first group is derived from the Space Technology Mission Directorate (STMD) civil space shortfall list. The second group is in partnership with NASA’s Biological and Physical Sciences (BPS) Division and is derived from the Commercially Enabled Rapid Space Science Initiative (CERISS) program needs. 
      Award: $4,500,000 in total prizes
      Open Date: December 10, 2024
      Close Date: March 4, 2025
      For more information, visit: https://www.stpc.nasatechleap.org/
      View the full article
  • Check out these Videos

×
×
  • Create New...