Jump to content

Unravelling the mysteries of clouds


Recommended Posts

Unravelling_the_mysteries_of_clouds_card Video: 00:04:07

Clouds are one of the biggest mysteries in the climate system. They play a key role in the regulating the temperature of our atmosphere. But we don’t know how their behaviour will change over time as Earth’s atmosphere gets warmer. This is where EarthCARE comes in.

Launching on 28 May 2024, ESA’s Earth Cloud, Aerosol and Radiation Explorer will help quantify the role that clouds and aerosols play in heating and cooling Earth’s atmosphere. With its suite of four cutting-edge instruments, EarthCARE is a groundbreaking advancement in satellite technology.

It promises to deliver unprecedented data – unravelling the complexities of both clouds and aerosols. With this, we can refine our atmospheric models and climate forecasts, giving us the tools to tackle the challenges of a changing climate with greater accuracy and precision.

Watch EarthCARE launch live on ESA WebTV or ESA YouTube. For more information on how to stream the launch, click here.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By USH
      The world is full of mysterious places, and Vottovaara Mountain in Russia's Republic of Karelia is one of them. This site has been revered for thousands of years by ancient Saami tribes and shamans, who considered it a sacred place surrounded with powerful energy. 
      Image credit: Universe Inside You
      Vottovaara is home to numerous strange megalithic structures and ruins that many believe couldn't have formed naturally. Among these are around 1,600 sacred stones, known as "seids," arranged in a puzzling pattern. These stones, often unusually shaped, are precariously balanced on small rocks in ways that defy simple explanations. While scientists suggest that this was the result of natural processes during the Ice Age, the sheer number and precision of these balanced stones challenge the idea that they occurred by chance. 
      Another intriguing feature of Vottovaara is a structure referred to as "the well," which locals believe to be an ancient, man-made water reservoir. 
      As you climb Vottovaara, you'll notice an eerie transformation in the trees. None of the trees on the summit are older than a few decades, and while young pines and firs start growing normally, they soon begin to twist and deform in bizarre ways. This phenomenon is thought to be caused by some unknown energy affecting the trees. 
      Known as Death Mountain, Vottovaara also is believed to be connected to ancient spirits that are said to inhabit the area, adding to its aura of mystery.
        View the full article
    • By Amazing Space
      Unveiling the Mysteries of Dark Energy
    • By European Space Agency
      Launched less than two months ago, ESA’s EarthCARE satellite has already returned images from two of its four instruments. Now, it has also delivered the first images from its multispectral imager, showcasing various types of clouds and cloud temperatures worldwide. This instrument is set to add valuable context to the data from EarthCARE’s other instruments.
      View the full article
    • By NASA
      Image data: NASA/JPL-Caltech/SwRI/MSSS
      Image processing by Gary Eason © CC BY During its 61st close flyby of Jupiter on May 12, 2024, NASA’s Juno spacecraft captured this color-enhanced view of the giant planet’s northern hemisphere. It provides a detailed view of chaotic clouds and cyclonic storms in an area known to scientists as a folded filamentary region. In these regions, the zonal jets that create the familiar banded patterns in Jupiter’s clouds break down, leading to turbulent patterns and cloud structures that rapidly evolve over the course of only a few days.
      Citizen scientist Gary Eason made this image using raw data from the JunoCam instrument, applying digital processing techniques to enhance color and clarity.
      At the time the raw image was taken, the Juno spacecraft was about 18,000 miles (29,000 kilometers) above Jupiter’s cloud tops, at a latitude of about 68 degrees north of the equator.
      JunoCam’s raw images are available for the public to peruse and process into image products at https://missionjuno.swri.edu/junocam/processing. More information about NASA citizen science can be found at https://science.nasa.gov/citizenscience and https://www.nasa.gov/solve/opportunities/citizenscience.
      More information about Juno is at https://www.nasa.gov/juno and https://missionjuno.swri.edu. For more about this finding and other science results, see https://www.missionjuno.swri.edu/science-findings.
      View the full article
    • By NASA
      Rebekah Hounsell is an assistant research scientist working on ways to optimize and build infrastructure for future observations made by the Nancy Grace Roman Space Telescope. The mission will shed light on many astrophysics topics, like dark energy, which are currently shrouded in mystery. Rebekah also works as a support scientist for the TESS (Transiting Exoplanet Survey Satellite) mission, helping scientists access and analyze data.
      Name: Rebekah Hounsell
      Title: Assistant Research Scientist
      Formal Job Classification: Support Scientist for the TESS mission and Co-Principal Investigator of the Roman Supernova Project Infrastructure Team (PIT)
      Organization: Code 667.0
      Rebekah Hounsell knew she wanted to study space from a very young age. Now, she’s a scientist at NASA’s Goddard Space Flight Center in Greenbelt, Md. NASA/Chris Gunn What do you do and what is most interesting about your role at Goddard?
      I am fortunate to have several roles at Goddard. I am a support scientist for TESS. Here I aid the community in accessing and analyzing TESS data. I am a co-principal investigator of a Roman project infrastructure team, focusing on building infrastructure to support supernova cosmology with the Roman HLTDS (High Latitude Time-Domain Survey). In addition, I am part of the Physics of the Cosmos program analysis group executive committee, co-chairing both the Cosmic Structure Science interest group and the Time-Domain and Multi-Messenger Astrophysics Science interest group. In these roles I have been fortunate enough to get a glimpse into how missions such as TESS and Roman work and how we can make them a success for the community. Missions like TESS are paving the way for future wide area surveys like Roman, providing a plethora of high cadence transient and variable star data, which can be used to gain a better understanding of our universe and our place within it.
      How will your current work influence the Nancy Grace Roman Space Telescope’s future observations?
      The Roman team I am leading is tasked with developing a pixels-to-cosmology pipeline for the analysis of supernova data from the HLTDS. What this means is that we will develop tools to aid the community in obtaining supernova lightcurves and prism spectra, which are precise enough to be used in testing various cosmological modes. We are also working to develop tools which will allow the community to test various HLTDS designs, adjusting cadence, filters, exposure times, etc., to best optimize its output for their science.
      What got you interested in astrophysics? What was your path to your current role?
      When I was a child I lived in a very rural area in England, with little to no light pollution. I had a wonderful view of the night sky and was fascinated by stars. I remember when I found out that the universe was expanding and my first thought was “into what?” I think it was that which fueled my curiosity about space and pushed me into astrophysics. At about 10 years old, I decided astrophysics was the path for me, and after that I really started to focus on physics and math at school.
      At 18, 19 I went to Liverpool University/Liverpool John Moores and completed my master’s in astrophysics in 2008. I then went on to obtain my Ph.D., focusing on classical and recurrent novae. In 2012 I received my first postdoc at STScI (the Space Telescope Science Institute in Baltimore). It was at STScI that I learned about how the instruments operating on Hubble worked and figured out that what I really loved doing was working on data and improving it. At the time however, I wasn’t ready to leave academia altogether, so I took another postdoc at the University of Illinois Champaign Urbana/UC Santa Cruz. It was here that I first started working on Roman, only back then it was known as WFIRST. I was a member of a Supernova Science Investigation Team for WFIRST and worked to optimize the design of what was then known as the SN survey, later to become the HLTDS. During this time I published a paper that created some of the most realistic simulations of the survey, including various statistical and systematic effects. After this I headed to the University of Pennsylvania to work on core collapse supernovae from the Dark Energy Survey. This was an exciting data set, but again I realized what I really liked doing was working on data from or for a mission. As such I took my current job at NASA.
      Rebekah stands by a model of NASA’s upcoming Nancy Grace Roman Space Telescope. The observatory’s deployable aperture cover, or sun shade, is visible in the background in the largest clean room at Goddard.NASA/David Friedlander What are you most looking forward to exploring through Roman’s eyes?
      Given the nature of the mission, Roman is going to discover a plethora of transient events. Some of these will be extremely rare and if caught in one of Roman’s high cadenced, deep fields, the data obtained will be able to shed new light on the physics driving these phenomena. I am also excited about these data being used with those from other observatories including the Vera C. Rubin Observatory and NASA’s James Webb Space Telescope.
      What has surprised you the most about the universe as you’ve learned more about it?
      We are still discovering so many new things which shed new light on the universe, its evolution, and our place in it. In recent years we have learned about kilonovae, gravitational waves, and we’ve discovered various diverse supernovae. There are so many extreme and complex events that we are still trying to understand, and I suspect that Roman will reveal even more.
      What is your favorite thing about working for NASA?
      There is no one path to working at NASA. I have met so many people who entered into the field following completely different paths than myself. I love this. We all have something different to bring to the table and those differences are what makes NASA what it is today.
      A portrait of Rebekah in front of the NASA meatball.NASA/David Friedlander What hobbies fill your time outside of work?
      I like to paint and draw. I also enjoy looking after animals. I also love participating in outreach events. When I lived in Philly I helped to set up the Astronomy on Tap branch there. I think it is important to talk about what we do and why it is needed.
      What advice do you have for others who are interested in working in astronomy?
      There is no one path. Don’t think you have to complete x, y, z steps and then you make it. That is not true. Do what you are passionate about, what you enjoy to learn about. And most importantly ask questions! Learn about what others are doing in the field, how they got there, and figure out what works for you.
      By Ashley Balzer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
      Share
      Details
      Last Updated Jul 16, 2024 ContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
      People of NASA Careers Goddard Space Flight Center Nancy Grace Roman Space Telescope People of Goddard Women at NASA Explore More
      10 min read Ken Carpenter: Ensuring Top-Tier Science from Moon to Stars
      Article 2 months ago 8 min read Joshua Schlieder: Feet on the Ground, Head in the Stars
      Goddard astrophysicist Dr. Joshua Schlieder supports NASA's Roman Space Telescope and Swift Observatory with creativity,…
      Article 6 months ago 8 min read Melissa Vess: Triathlete and Roman Spacecraft Systems Engineer
      Article 3 years ago View the full article
  • Check out these Videos

×
×
  • Create New...