Members Can Post Anonymously On This Site
Demonic face appears above surface of sun during biggest geomagnetic storm in almost 20 year
-
Similar Topics
-
By European Space Agency
Video: 00:09:01 Proba-3 is such an ambitious mission that it needs more than one single spacecraft to succeed. In order for Proba-3’s Coronagraph spacecraft to observe the Sun’s faint surrounding atmosphere, its disk-bearing Occulter spacecraft must block out the fiery solar disk. This means Proba-3’s Occulter ends up facing the Sun continuously, making it a valuable platform for science in its own right.
Proba-3 is scheduled for launch on a PSLV-XL rocket from Satish Dhawan Space Centre in Sriharikota, India, on Wednesday, 4 December, at 11:38 CET (10:38 GMT, 16:08 local time).
View the full article
-
By USH
A rare and intriguing phenomenon has been observed in China. On the night of October 27th, Chinese astrophotographer Shengyu Li set up his camera to capture star trails over Mount Xiannairi in Sichuan Province. To his surprise, he recorded mysterious blue flashes accompanying an avalanche.
The exact cause of these "blue lights" remains unclear, sparking various theories. Some speculate they could stem from geomagnetic activity, interactions of cosmic rays in the upper atmosphere, or rare atmospheric phenomena like blue jets or elves. However, Li offers another explanation: the flashes might result from triboluminescence—light produced by friction during ice fragmentation.
Triboluminescence occurs when certain materials emit light as they are fractured, scratched, or rubbed. This phenomenon happens due to the breaking of chemical bonds or the sudden separation of surfaces, which generates electrical charges. These charges can ionize the surrounding air or excite the material itself, creating visible light.
The hypothesis suggests that this event could be an example of triboluminescence. However, it also raises the intriguing possibility of a connection to UFO phenomena, such as orbs or other unexplained lights that have been observed around the world over the years.
Hypothesis: The sighting depicts what appears to be a blue light descending onto a snowbank, following the avalanche as it moves downward, and then vanishing before seemingly ascending again.
Did the avalanche trigger the blue light, or did the blue light crash into the snow, causing the avalanche?
Whether this phenomenon is a rare case of triboluminescence, potentially the first instance of it being captured on camera or something linked to unexplained UFO activity, the recording of this light remains a unique and fascinating occurrence. View the full article
-
By European Space Agency
Hidden in plain sight within the Sun’s glare is the ultra-hot yet ghostly faint solar corona, source of the solar wind and solar storms. The only way to see this key element of the Solar System is either through the remarkable cosmic coincidence that gives rise to total solar eclipses – the fact that the Sun is not only 400 times bigger than our Moon but also about 400 times further away, allowing it to cover the solar disc entirely – or else through artificial Sun-obscuring telescopes.
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
A 3D simulation showing the evolution of turbulent flows in the upper layers of the Sun. The more saturated and bright reds represent the most vigorous upward or downward twisting motions. Clear areas represent areas where there is only relatively slow up-flows, with very little twisting.NASA/Irina Kitiashvili and Timothy A. Sandstrom NASA supercomputers are shedding light on what causes some of the Sun’s most complex behaviors. Using data from the suite of active Sun-watching spacecraft currently observing the star at the heart of our solar system, researchers can explore solar dynamics like never before.
The animation shows the strength of the turbulent motions of the Sun’s inner layers as materials twist into its atmosphere, resembling a roiling pot of boiling water or a flurry of schooling fish sending material bubbling up to the surface or diving it further down below.
“Our simulations use what we call a realistic approach, which means we include as much as we know to-date about solar plasma to reproduce different phenomena observed with NASA space missions,” said Irina Kitiashvili, a scientist at NASA’s Ames Research Center in California’s Silicon Valley who helped lead the study.
Using modern computational capabilities, the team was able, for the first time to reproduce the fine structures of the subsurface layer observed with NASA’s Solar Dynamics Observatory.
“Right now, we don’t have the computational capabilities to create realistic global models of the entire Sun due to the complexity,” said Kitiashvili. “Therefore, we create models of smaller areas or layers, which can show us structures of the solar surface and atmosphere – like shock waves or tornado-like features measuring only a few miles in size; that’s much finer detail than any one spacecraft can resolve.”
Scientists seek to better understand the Sun and what phenomena drive the patterns of its activity. The connection and interactions between the Sun and Earth drive the seasons, ocean currents, weather, climate, radiation belts, auroras and many other phenomena. Space weather predictions are critical for exploration of space, supporting the spacecraft and astronauts of NASA’s Artemis campaign. Surveying this space environment is a vital part of understanding and mitigating astronaut exposure to space radiation and keeping our spacecraft and instruments safe.
This has been a big year for our special star, studded with events like the annular eclipse, a total eclipse, and the Sun reaching its solar maximum period. In December 2024, NASA’s Parker Solar Probe mission – which is helping researchers to understand space weather right at the source – will make its closest-ever approach to the Sun and beat its own record of being the closest human-made object to reach the Sun.
The Sun keeps surprising us. We are looking forward to seeing what kind of exciting events will be organized by the Sun."
Irina Kitiashvili
NASA Scientist
“The Sun keeps surprising us,” said Kitiashvili. “We are looking forward to seeing what kind of exciting events will be organized by the Sun.”
These simulations were run on the Pleaides supercomputer at the NASA Advanced Supercomputing facility at NASA Ames over several weeks of runtime, generating terabytes of data.
NASA is showcasing 29 of the agency’s computational achievements at SC24, the international supercomputing conference, Nov. 17-22, 2023, in Atlanta, Georgia. For more technical information, visit:
https://www.nas.nasa.gov/sc24
For news media: Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.
Share
Details
Last Updated Nov 21, 2024 Related Terms
General Ames Research Center Heliophysics Solar Dynamics Observatory (SDO) Sunspots The Sun Explore More
2 min read Weld-ASSIST: Weldability Assessment for In-Space Conditions using a Digital Twin
Article 5 hours ago 5 min read NASA’s Chandra, Hubble Tune Into ‘Flame-Throwing’ Guitar Nebula
Article 23 hours ago 4 min read Protected: 2024 Blue Marble Awards
Article 24 hours ago Keep Exploring Discover More Topics From NASA
Parker Solar Probe
On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
Solar Storms and Flares
Solar storms and flares are eruptions from the Sun that can affect us here on Earth.
Solar System
Track the Solar Cycle with Sunspots
Participate in sunspot-counting activities using NASA telescopes or your own.
View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
ESI24 Zhai Quadchart
Lei Zhai
University of Central Florida
Lunar dust, with its chemical reactivity, electrostatic charge, and potential magnetism, poses a serious threat to astronauts and equipment on the Moon’s surface. To address this, the project proposes developing structured coatings with anisotropic surface features and electrostatic dissipative properties to passively mitigate lunar dust. By analyzing lunar dust-surface interactions at multiple scales, the team aims to optimize the coatings’ surface structures and physical properties, such as Young’s modulus, electrical conductivity, and polarity. The project will examine tribocharging, external electric fields, and the effects of particle shapes and sizes. Numerical sensitivity analyses will complement simulations to better understand lunar dust dynamics. Once fabricated, the coatings will be tested under simulated lunar conditions. The team will employ a state-of-the-art nanoscale force spectroscopy system, using atomic force microsope (AFM) microcantilevers functionalized with regolith to measure dust-surface interactions. Additional experiments will assess particle adhesion and removal, with scanning electron microscopy used to analyze remaining dust. This project aims to provide insights into surface structure effects on dust adhesion, guiding the creation of lightweight, durable coatings for effective dust mitigation. The findings will foster collaborations with NASA and the aerospace industry, while offering training opportunities for students entering the field.
Back to ESI 2024
Keep Exploring Discover More Topics From STRG
Space Technology Mission Directorate
STMD Solicitations and Opportunities
Space Technology Research Grants
About STRG
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.