Members Can Post Anonymously On This Site
An extinction threat to many species "The coming magnetic pole shift"
-
Similar Topics
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
A thick torus of gas and dust surrounding a supermassive black hole is shown in this artist’s concept. The torus can obscure light that’s generated by material falling into the black hole. Observations by NASA telescopes have helped scientists identify more of these hidden black holes.NASA/JPL-Caltech An effort to find some of the biggest, most active black holes in the universe provides a better estimate for the ratio of hidden to unhidden behemoths.
Multiple NASA telescopes recently helped scientists search the sky for supermassive black holes — those up to billions of times heavier than the Sun. The new survey is unique because it was as likely to find massive black holes that are hidden behind thick clouds of gas and dust as those that are not.
Astronomers think that every large galaxy in the universe has a supermassive black hole at its center. But testing this hypothesis is difficult because researchers can’t hope to count the billions or even trillions of supermassive black holes thought to exist in the universe. Instead they have to extrapolate from smaller samples to learn about the larger population. So accurately measuring the ratio of hidden supermassive black holes in a given sample helps scientists better estimate the total number of supermassive black holes in the universe.
The new study published in the Astrophysical Journal found that about 35% of supermassive black holes are heavily obscured, meaning the surrounding clouds of gas and dust are so thick they block even low-energy X-ray light. Comparable searches have previously found less than 15% of supermassive black holes are so obscured. Scientists think the true split should be closer to 50/50 based on models of how galaxies grow. If observations continue to indicate significantly less than half of supermassive black holes are hidden, scientists will need to adjust some key ideas they have about these objects and the role they play in shaping galaxies.
Hidden Treasure
Although black holes are inherently dark — not even light can escape their gravity — they can also be some of the brightest objects in the universe: When gas gets pulled into orbit around a supermassive black hole, like water circling a drain, the extreme gravity creates such intense friction and heat that the gas reaches hundreds of thousands of degrees and radiates so brightly it can outshine all the stars in the surrounding galaxy.
The clouds of gas and dust that surround and replenish the bright central disk may roughly take the shape of a torus, or doughnut. If the doughnut hole is facing toward Earth, the bright central disk within it is visible; if the doughnut is seen edge-on, the disk is obscured.
A supermassive black hole surrounded by a torus of gas and dust is depicted in four different wavelengths of light in this artist’s concept. Visible light (top right) and low-energy X-rays (bottom left) are blocked by the torus; infrared (top left) is scattered and reemitted; and some high energy X-rays (bottom right) can penetrate the torus. NASA/JPL-Caltech Most telescopes can rather easily identify face-on supermassive black holes, though not edge-on ones. But there’s an exception to this that the authors of the new paper took advantage of: The torus absorbs light from the central source and reemits lower-energy light in the infrared range (wavelengths slightly longer than what human eyes can detect). Essentially, the doughnuts glow in infrared.
These wavelengths of light were detected by NASA’s Infrared Astronomical Satellite, or IRAS, which operated for 10 months in 1983 and was managed by NASA’s Jet Propulsion Laboratory in Southern California. A survey telescope that imaged the entire sky, IRAS was able to see the infrared emissions from the clouds surrounding supermassive black holes. Most importantly, it could spot edge-on and face-on black holes equally well.
IRAS caught hundreds of initial targets. Some of them turned out to be not heavily obscured black holes but galaxies with high rates of star formation that emit a similar infrared glow. So the authors of the new study used ground-based, visible-light telescopes to identify those galaxies and separate them from the hidden black holes.
To confirm edge-on, heavily obscured black holes, the researchers relied on NASA’s NuSTAR (Nuclear Spectroscopic Telescope Array), an X-ray observatory also managed by JPL. X-rays are radiated by some of the hottest material around the black hole. Lower-energy X-rays are absorbed by the surrounding clouds of gas and dust, while the higher-energy X-rays observed by NuSTAR can penetrate and scatter off the clouds. Detecting these X-rays can take hours of observation, so scientists working with NuSTAR first need a telescope like IRAS to tell them where to look.
NASA’s NuSTAR X-ray telescope, depicted in this artist’s concept, has helped astronomers get a better sense of how many supermassive black holes are hidden from view by thick clouds of gas and dust that surround them.NASA/JPL-Caltech “It amazes me how useful IRAS and NuSTAR were for this project, especially despite IRAS being operational over 40 years ago,” said study lead Peter Boorman, an astrophysicist at Caltech in Pasadena, California. “I think it shows the legacy value of telescope archives and the benefit of using multiple instruments and wavelengths of light together.”
Numerical Advantage
Determining the number of hidden black holes compared to nonhidden ones can help scientists understand how these black holes get so big. If they grow by consuming material, then a significant number of black holes should be surrounded by thick clouds and potentially obscured. Boorman and his coauthors say their study supports this hypothesis.
In addition, black holes influence the galaxies they live in, mostly by impacting how galaxies grow. This happens because black holes surrounded by massive clouds of gas and dust can consume vast — but not infinite — amounts of material. If too much falls toward a black hole at once, the black hole starts coughing up the excess and firing it back out into the galaxy. That can disperse gas clouds within the galaxy where stars are forming, slowing the rate of star formation there.
“If we didn’t have black holes, galaxies would be much larger,” said Poshak Gandhi, a professor of astrophysics at the University of Southampton in the United Kingdom and a coauthor on the new study. “So if we didn’t have a supermassive black hole in our Milky Way galaxy, there might be many more stars in the sky. That’s just one example of how black holes can influence a galaxy’s evolution.”
More About NuSTAR
A Small Explorer mission led by Caltech and managed by NASA’s Jet Propulsion Laboratory in Southern California for the agency’s Science Mission Directorate in Washington, NuSTAR was developed in partnership with the Danish Technical University and the Italian Space Agency (ASI). The spacecraft was built by Orbital Sciences Corp. in Dulles, Virginia. NuSTAR’s mission operations center is at the University of California, Berkeley, and the official data archive is at NASA’s High Energy Astrophysics Science Archive Research Center at NASA’s Goddard Space Flight Center. ASI provides the mission’s ground station and a mirror data archive. Caltech manages JPL for NASA.
For more information on NuSTAR, visit:
www.nustar.caltech.edu
News Media Contact
Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
626-808-2469
calla.e.cofield@jpl.nasa.gov
2025-002
Share
Details
Last Updated Jan 13, 2025 Related Terms
NuSTAR (Nuclear Spectroscopic Telescope Array) Astrophysics Black Holes Galaxies, Stars, & Black Holes Jet Propulsion Laboratory The Universe Explore More
6 min read NASA Research To Be Featured at American Astronomical Society Meeting
From new perspectives on the early universe to illuminating the extreme environment near a black…
Article 3 days ago 2 min read Hubble Rings In the New Year
This NASA/ESA Hubble Space Telescope image reveals a tiny patch of sky in the constellation…
Article 3 days ago 4 min read Astronaut Set to Patch NASA’s X-ray Telescope Aboard Space Station
NASA astronaut Nick Hague will install patches to the agency’s NICER (Neutron star Interior Composition…
Article 5 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Humans are returning to the Moon—this time, to stay. Because our presence will be more permanent, NASA has selected a location that maximizes line-of-sight communication with Earth, solar visibility, and access to water ice: the Lunar South Pole (LSP). While the Sun is in the lunar sky more consistently at the poles, it never rises more than a few degrees above the horizon; in the target landing regions, the highest possible elevation is 7°. This presents a harsh lighting environment never experienced during the Apollo missions, or in fact, in any human spaceflight experience. The ambient lighting will severely affect the crews’ ability to see hazards and to perform simple work. This is because the human vision system, which despite having a high-dynamic range, cannot see well into bright light and cannot adapt quickly from bright to dark or vice versa. Functional vision is required to perform a variety of tasks, from simple tasks (e.g., walking, operating simple tools) through managing complex machines (e.g., lander elevator, rovers). Thus, the environment presents an engineering challenge to the Agency: one that must be widely understood before it can be effectively addressed.
In past NASA missions and programs, design of lighting and functional vision support systems for extravehicular activity (EVA) or rover operations have been managed at the lowest program level. This worked well for Apollo and low Earth orbit because the Sun angle was managed by mission planning and astronaut self-positioning; helmet design alone addressed all vision challenges. The Artemis campaign presents new challenges to functional vision, because astronauts will be unable to avoid having the sun in their eyes much of the time they are on the lunar surface. This, combined with the need for artificial lighting in the extensive shadowing at the LSP, means that new functional vision support systems must be developed across projects and programs. The design of helmets, windows, and lighting systems must work in a complementary fashion, within and across programs, to achieve a system of lighting and vision support that enables crews to see into darkness while their eyes are light-adapted, in bright light while still dark-adapted, and protects their eyes from injury.
Many of the findings of the assessment were focused on the lack of specific requirements to prevent functional vision impairment by the Sun’s brilliance (which is different from preventing eye injury), while enabling astronauts to see well enough to perform specific tasks. Specifically, tasks expected of astronauts at the LSP were not incorporated into system design requirements to enable system development that ensures functional vision in the expected lighting environment. Consequently, the spacesuit, for example, has flexibility requirements for allowing the astronauts to walk but not for ensuring they can see well enough to walk from brilliant Sun into a dark shadow and back without the risk of tripping or falling. Importantly, gaps were identified in allocation of requirements across programs to ensure that the role of the various programs is for each to understand functional vision. NESC recommendations were offered that made enabling functional vision in the harsh lighting environment a specific and new requirement for the system designers. The recommendations also included that lighting, window, and visor designs be integrated.
The assessment team recommended that a wide variety of simulation techniques, physical and virtual, need to be developed, each with different and well-stated capabilities with respect to functional vision. Some would address the blinding effects of sunlight at the LSP (not easily achieved through virtual approaches) to evaluate performance of helmet shields and artificial lighting in the context of the environment and adaptation times. Other simulations would add terrain features to identify the threats in simple (e.g., walking, collection of samples) and complex (e.g., maintenance and operation of equipment) tasks. Since different facilities have different strengths, they also have different weaknesses. These strengths and limitations must be characterized to enable verification of technical solutions and crew training.
NESC TB 2024- discipline-focus-hfView the full article
-
By NASA
5 Min Read NASA DAVINCI Mission’s Many ‘Firsts’ to Unlock Venus’ Hidden Secrets
The surface of Venus is an inferno with temperatures hot enough to melt lead. This image is a composite of data from NASA’s Magellan spacecraft and Pioneer Venus Orbiter. Credits:
NASA/JPL-Caltech NASA’s DAVINCI — Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging — mission embodies the spirit of innovation and exploration that its namesake, Leonardo da Vinci, was famous for.
Scheduled to launch in the early 2030s, DAVINCI will explore Venus with both a spacecraft and a descent probe. DAVINCI’s probe will be the first in the 21st century to brave Venus’ atmosphere as it descends from above the planet’s clouds down to its surface. Two other missions, NASA’s VERITAS and ESA’s (European Space Agency) Envision, will also explore Venus in the 2030s from the planet’s orbit.
The DAVINCI spacecraft will study Venus’ clouds and highlands during two flybys. It also will release a spherical probe, about 3 feet wide, that will plunge through the planet’s thick atmosphere and corrosive clouds, taking measurements and capturing high-resolution images of the Venusian surface as it descends below the clouds.
Here are some of DAVINCI’s coming “firsts” in Venus exploration:
Exploring Solar System’s One-of-a-Kind Terrain
The DAVINCI mission will be the first to closely explore Alpha Regio, a region known as a “tessera.” So far found only on Venus, where they make up about 8% of the surface, tesserae are highland regions similar in appearance to rugged mountains on Earth. Previous missions discovered these features using radar instruments, but of the many international spacecraft that dove through Venus’ atmosphere between 1966 and 1985, none studied or photographed tesserae.
Thought to be ancient continents, tesserae like Alpha Regio may be among the oldest surfaces on the planet, offering scientists access to rocks that are billions of years old.
By studying these rocks from above Alpha Regio, DAVINCI scientists may learn whether ancient Venus had continents and oceans, and how water may have influenced the surface.
Photographing One of the Oldest Surfaces on Venus
The DAVINCI probe will capture the first close-up views of Alpha Regio with its infrared and optical cameras; these will also be the first photos of the planet’s surface taken in more than 40 years.
With surface temperatures reaching 900° F and air pressure 90 times that of Earth’s, Venus’ harsh environment makes exploration challenging, while its opaque atmosphere obscures direct views. Typically, scientists rely on radar instruments from Earth or Venus-orbiting spacecraft to study its terrain.
But DAVINCI’s probe will descend through the atmosphere and below the clouds for a clear view of the mountains and plains. It will capture images comparable to an airplane’s landing view of Earth’s surface. Scientists will use the photos to compile 3D maps of Alpha Regio that will provide more detail than ever of Venus’ terrain, helping them look for rocks that are usually only made in association with water.
Unveiling Secrets of Venus’ Mysterious Lower Atmosphere
The DAVINCI mission will be the first to analyze the chemical composition of Venus’ lower atmosphere through measurements taken at regular intervals, starting from approximately 90,000 feet above the surface and continuing until just before impact.
This region is critical because it contains gases and chemical compounds that may originate from Venus’ lower clouds, surface, or even subsurface.
For example, sulfur compounds detected here could indicate whether Venusian volcanoes are currently active or were active in the recent past. Noble gases (like helium or xenon), on the other hand, remain chemically inert and maintain stable concentrations, offering invaluable clues about Venus’ ancient history, such as the planet’s past water inventory.
By comparing Venus’ noble gas composition with that of Earth and Mars, scientists can better understand why these planets — despite forming from similar starting materials — evolved into dramatically different worlds.
Moreover, DAVINCI’s measurements of isotopes and trace gases in the lower atmosphere will shed light on Venus’ water history, from ancient times to the present, and the processes that triggered the planet’s extreme greenhouse effect.
State-of-the-Art Technology to Study Venus in Detail
Thanks to modern technology, the DAVINCI probe will be able to do things 1980s-era spacecraft couldn’t.
The descent probe will be better equipped than previous probes to protect the sensitive electronics inside of it, as it will be lined on the inside with high-temperature, multi-layer insulation — layers of advanced ceramic and silica fabrics separated by aluminum sheets.
Venus’ super thick atmosphere will slow the probe’s descent, but a parachute will also be released to slow it down further. Most Earth-friendly parachute fabrics, like nylon, would dissolve in Venus’ sulfuric acid clouds, so DAVINCI will have to use a different type of material than previous Venus missions did: one that’s resistant to acids and five times stronger than steel.
Read More: Old Data Yields New Secrets as NASA’s DAVINCI Preps for Venus Trip
By Lauren Colvin, with Lonnie Shekhtman
NASA’s Goddard Space Flight Center, Greenbelt, Md.
NASA’s Goddard Space Flight Center in Greenbelt, Maryland, is the principal investigator institution for DAVINCI and will perform project management for the mission, provide science instruments, as well as project systems engineering to develop the in-situ probe flight system that will enter the atmosphere of Venus. Goddard also leads the overall science for the mission with an external science team from across the United States. Lockheed Martin Space in Denver, Colorado, will build the carrier/relay spacecraft. DAVINCI is a mission within the Discovery Program, managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington.
View the full article
-
By NASA
1 Min Read Coming Spring 2025: Planetary Defenders Documentary
David Rankin, Senior Survey Operations Specialist at Catalina Sky Survey, is seen opening the dome structure surrounding the telescope at the asteroid-hunting facility in Mt. Lemmon, AZ. Credits:
NASA How would humanity respond if we discovered an asteroid headed for Earth? NASA’s Planetary Defenders is a gripping documentary that delves into the high-stakes world of asteroid detection and planetary defense. Journey alongside a dedicated team of astronomers and scientists working tirelessly to track and monitor near-Earth asteroids, aiming to protect our planet from potential impacts. This documentary captures the intricate and collaborative efforts of these unsung heroes, blending cutting-edge science with personal stories to reveal the human spirit behind this critical global endeavor. Witness the drama, the challenges and the triumphs of those on the front lines of planetary defense.
The dinosaurs went extinct because they didn’t have a space program. We do have one.
Dr. vishnu reddy
Professor of Planetary Science, University of Arizona
Dr. Shantanu Naidu, Asteroid Radar Researcher, from NASA’s Jet Propulsion Laboratory points toward the Goldstone Solar System Radar in Barstow, CA – the most powerful planetary radar on Earth. NASA In 2016, NASA established the Planetary Defense Coordination Office (PDCO) to manage the agency’s ongoing mission of finding, tracking, and better understanding asteroids and comets that could pose an impact hazard to Earth.
I really like that I am protecting the planet. And yes, I’m not the one that’s with a cape pushing the asteroid away, that’s not what I do. In some ways, my little contribution might not help just myself, but someone in the future, and I think it’s very important to do that.
Dr. CASSANDRA LEJOLY
RESEARCHER, SPACEWATCH®
Dr. Cassandra Lejoly, a researcher with the University of Arizona’s SPACEWATCH® program, sits at a computer console at Kitt Peak National Observatory in Tuscon, AZ, where she conducts follow up observations on near-Earth objects. NASA Planetary Defenders is an original NASA documentary that showcases the challenges and the triumphs of those on the front lines of planetary defense. This documentary will be released on NASA+ and other streaming platforms in Spring 2025. Stay tuned for updates!
About the Author
efurfaro
Share
Details
Last Updated Dec 03, 2024 Related Terms
Planetary Defense Planetary Defense Coordination Office Science Mission Directorate Explore More
5 min read NASA-Led Team Links Comet Water to Earth’s Oceans
Scientists find that cometary dust affects interpretation of spacecraft measurements, reopening the case for comets…
Article
49 mins ago
2 min read Hubble Captures an Edge-On Spiral with Curve Appeal
Article
2 weeks ago
5 min read NASA’s Hubble Finds Sizzling Details About Young Star FU Orionis
Article
2 weeks ago
Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
In the unforgiving lunar environment, the possibility of an astronaut crewmember becoming incapacitated due to unforeseen circumstances (injury, medical emergency, or a mission-related accident) is a critical concern, starting with the upcoming Artemis III mission, where two astronaut crewmembers will explore the Lunar South Pole. The Moon’s surface is littered with rocks ranging from 0.15 to 20 meters in diameter and craters spanning 1 to 30 meters wide, making navigation challenging even under optimal conditions. The low gravity, unique lighting conditions, extreme temperatures, and availability of only one person to perform the rescue, further complicate any rescue efforts. Among the critical concerns is the safety of astronauts during Extravehicular Activities (EVAs). If an astronaut crewmember becomes incapacitated during a mission, the ability to return them safely and promptly to the human landing system is essential. A single crew member should be able to transport an incapacitated crew member distances up to 2 km and a slope of up to 20 degrees on the lunar terrain without the assistance of a lunar rover. This pressing issue opens the door for innovative solutions. We are looking for a cutting-edge design that is low in mass and easy to deploy, enabling one astronaut crewmember to safely transport their suited (343 kg (~755lb)) and fully incapacitated partner back to the human landing system. The solution must perform effectively in the Moon’s extreme South Pole environment and operate independently of a lunar rover. Your creativity and expertise could bridge this critical gap, enhancing the safety measures for future lunar explorers. By addressing this challenge, you have the opportunity to contribute to the next “giant leap” in human space exploration.
Award: $45,000 in total prizes
Open Date: November 14, 2024
Close Date: January 23, 2025
For more information, visit: https://www.herox.com/NASASouthPoleSafety
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.