Members Can Post Anonymously On This Site
To Make Life Multiplanetary
-
Similar Topics
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
That’s a great question. And it’s a question that NASA will seek to answer with the Europa Clipper spacecraft.
Europa is a moon of Jupiter. It’s about the same size as Earth’s Moon, but its surface looks very different. The surface of Europa is covered with a layer of ice, and below that ice, we think there’s a layer of liquid water with more water than all of Earth’s oceans combined.
So because of this giant ocean, we think that Europa is actually one of the best places in the solar system to look for life beyond the Earth.
Life as we know it has three main requirements: liquid water — all life here on Earth uses liquid water as a basis.
The second is the right chemical elements. These are elements like carbon, hydrogen, nitrogen, oxygen, phosphorus, sulfur. They’re elements that create the building blocks for life as we know it on Earth. We think that those elements exist on Europa.
The third component is an energy source. As Europa orbits around Jupiter, Jupiter’s strong gravity tugs and pulls on it. It actually stretches out the surface. And it produces a heat source called tidal heating. So it’s possible that hydrothermal systems could exist at the bottom of Europa’s ocean, and it’s possible that those could be locations for abundant life.
So could there be life on Europa? It’s possible. And Europa Clipper is going to explore Europa to help try to answer that question.
[END VIDEO TRANSCRIPT]
Full Episode List
Full YouTube Playlist
Share
Details
Last Updated Feb 25, 2025 Related Terms
Science Mission Directorate Astrobiology Europa Europa Clipper Planetary Science Planetary Science Division The Solar System Explore More
2 min read NASA Prepares Gateway Lunar Space Station for Journey to Moon
Assembly is underway for Gateway's Power and Propulsion Element, the module that will power the…
Article 2 hours ago 4 min read NASA: New Study on Why Mars is Red Supports Potentially Habitable Past
Article 5 hours ago 4 min read Five Facts About NASA’s Moon Bound Technology
Article 16 hours ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s Lunar Trailblazer approaches the Moon as it enters its science orbit in this artist’s concept. The small satellite will orbit about 60 miles (100 kilometers) above the lunar surface, producing the best-yet maps of water on the Moon.Lockheed Martin Space NASA’s Lunar Trailblazer spacecraft gets covered in anti-static wrap before being shipped from Lockheed Martin Space in Littleton, Colorado, to the agency’s Kennedy Space Center in Florida, where it arrived on Jan. 29.Lockheed Martin Space Before arriving at the Moon, the small satellite mission will use the gravity of the Sun, Earth, and Moon over several months to gradually line up for capture into lunar orbit.
NASA’s Lunar Trailblazer arrived in Florida recently in advance of its launch later this month and has been integrated with a SpaceX Falcon 9 rocket. Shipped from Lockheed Martin Space in Littleton, Colorado, the small satellite is riding along on Intuitive Machines’ IM-2 launch — part of NASA’s CLPS (Commercial Lunar Payload Services) initiative — which is slated for no earlier than Thursday, Feb. 26, from Launch Complex 39A at the agency’s Kennedy Space Center.
Approximately 48 minutes after launch, Lunar Trailblazer will separate from the rocket and begin its independent flight to the Moon. The small satellite will discover where the Moon’s water is, what form it is in, and how it changes over time, producing the best-yet maps of water on the lunar surface. Observations gathered during its two-year prime mission will contribute to the understanding of water cycles on airless bodies throughout the solar system while also supporting future human and robotic missions to the Moon by identifying where water is located.
Key to achieving these goals are the spacecraft’s two state-of-the-art science instruments: the High-resolution Volatiles and Minerals Moon Mapper (HVM3) infrared spectrometer and the Lunar Thermal Mapper (LTM) infrared multispectral imager. The HVM3 instrument was provided by NASA’s Jet Propulsion Laboratory in Southern California and LTM was built by the University of Oxford and funded by the UK Space Agency.
Lunar Trailblazer’s voyage to the Moon will take between four and seven months, de-pending on the day it launches. This orbital diagram shows the low-energy transfer trajectory of the NASA mission should it launch on Feb. 26, the earliest date in its launch period.NASA/JPL-Caltech “The small team is international in scope, which is more typical of larger projects,” said Andy Klesh, Lunar Trailblazer’s project systems engineer at JPL. “And unlike the norm for small missions that may only have a very focused, singular purpose, Lunar Trailblazer has two high-fidelity instruments onboard. We are really punching above our weight.”
Intricate Navigation
Before it can use these instruments to collect science data, Lunar Trailblazer will for several months perform a series of Moon flybys, thruster bursts, and looping orbits. These highly choreographed maneuvers will eventually position the spacecraft so it can map the surface in great detail.
Weighing only 440 pounds (200 kilograms) and measuring 11.5 feet (3.5 meters) wide when its solar panels are fully deployed, Lunar Trailblazer is about the size of a dishwasher and has a relatively small engine. To make its four-to-seven-month trip to the Moon (depending on the launch date) as efficient as possible, the mission’s design and navigation team has planned a trajectory that will use the gravity of the Sun, Earth, and Moon to guide the spacecraft — a technique called low-energy transfer.
“The initial boost provided by the rocket will send the spacecraft past the Moon and into deep space, and its trajectory will then be naturally reshaped by gravity after several lunar flybys and loops around Earth. This will allow it to be captured into lunar orbit with minimal propulsion needs,” said Gregory Lantoine, Lunar Trailblazer’s mission design and navigation lead at JPL. “It’s the most fuel-efficient way to get to where we need to go.”
As it flies past the Moon several times, the spacecraft will use small thruster bursts — aka trajectory correction maneuvers — to slowly change its orbit from highly elliptical to circular, bringing the satellite down to an altitude of about 60 miles (100 kilometers) above the Moon’s surface.
Arriving at the Moon
Once in its science orbit, Lunar Trailblazer will glide over the Moon’s surface, making 12 orbits a day and observing the surface at a variety of different times of day over the course of the mission. The satellite will also be perfectly placed to peer into the permanently shadowed craters at the Moon’s South Pole, which harbor cold traps that never see direct sunlight. If Lunar Trailblazer finds significant quantities of ice at the base of the craters, those locations could be pinpointed as a resource for future lunar explorers.
The data the mission collects will be transmitted to NASA’s Deep Space Network and delivered to Lunar Trailblazer’s new operations center at Caltech’s IPAC in Pasadena, California. Working alongside the mission’s experienced team will be students from Caltech and nearby Pasadena City College who are involved in all aspects of the mission, from operations and communications to developing software.
Lunar Trailblazer was a selection of NASA’s SIMPLEx (Small Innovative Missions for Planetary Exploration), which provides opportunities for low-cost science spacecraft to ride-share with selected primary missions. To maintain the lower overall cost, SIMPLEx missions have a higher risk posture and lighter requirements for oversight and management. This higher risk acceptance allows NASA to test pioneering technologies, and the definition of success for these missions includes the lessons learned from more experimental endeavors.
“We are a small mission with groundbreaking science goals, so we will succeed by embracing the flexibility that’s built into our organization,” said Lee Bennett, Lunar Trailblazer operations lead with IPAC. “Our international team consists of seasoned engineers, science team members from several institutions, and local students who are being given the opportunity to work on a NASA mission for the first time.”
More About Lunar Trailblazer
Lunar Trailblazer is led by Principal Investigator Bethany Ehlmann of Caltech in Pasadena, California. Caltech also leads the mission’s science investigation and mission operations. This includes planning, scheduling, and sequencing of all science, instrument, and spacecraft activities during the nominal mission. Science data processing will be done in the Bruce Murray Laboratory for Planetary Visualization at Caltech. NASA’s Jet Propulsion Laboratory in Southern California manages Lunar Trailblazer and provides system engineering, mission assurance, the HVM3 instrument, and mission design and navigation. Lockheed Martin Space provides the spacecraft, integrates the flight system, and supports operations under contract with Caltech. University of Oxford developed and provided the LTM instrument. Part of NASA’s Lunar Discovery Exploration Program, the mission is managed by NASA’s Planetary Mission Program Office at Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington.
For more information about Lunar Trailblazer, visit:
https://www.jpl.nasa.gov/missions/lunar-trailblazer
How NASA’s Lunar Trailblazer Could Decipher the Moon’s Icy Secrets NASA’s Lunar Trailblazer Gets Final Payload for Moon Water Hunt Moon Water Imager Integrated With NASA’s Lunar Trailblazer News Media Contacts
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Ian J. O’Neill
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-2649
ian.j.oneill@jpl.nasa.gov
Isabel Swafford
Caltech IPAC
626-216-4257
iswafford@ipac.caltech.edu
2025-021
Share
Details
Last Updated Feb 13, 2025 Related Terms
Lunar Trailblazer Commercial Lunar Payload Services (CLPS) Earth's Moon Jet Propulsion Laboratory Lunar Science Explore More
5 min read NASA’s SPHEREx Space Telescope Will Seek Life’s Ingredients
Article 5 hours ago 2 min read Lunar Space Station Module Will Journey to US ahead of NASA’s Artemis IV Moon Mission
A key element of the Gateway lunar space station has entered the cleanroom for final…
Article 8 hours ago 3 min read NASA’s Polar Ice Experiment Paves Way for Future Moon Missions
Article 1 day ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s SPHEREx mission will survey the Milky Way galaxy looking for water ice and other key ingredients for life. In the search for these frozen compounds, the mission will focus on molecular clouds — collections of gas and dust in space — like this one imaged by the agency’s James Webb Space Telescope. NASA, ESA, CSA Where is all the water that may form oceans on distant planets and moons? The SPHEREx astrophysics mission will search the galaxy and take stock.
Every living organism on Earth needs water to survive, so scientists searching for life outside our solar system, are often guided by the phrase “follow the water.” Scheduled to launch no earlier than Thursday, Feb. 27, NASA’s SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer) mission will help in that quest.
After its ride aboard a SpaceX Falcon 9 from Vandenberg Space Force base in California, the observatory will search for water, carbon dioxide, carbon monoxide, and other key ingredients for life frozen on the surface of interstellar dust grains in the clouds of gas and dust where planets and stars eventually form.
While there are no oceans or lakes floating freely in space, scientists think these reservoirs of ice, bound to small dust grains, are where most of the water in our universe forms and resides. Additionally, the water in Earth’s oceans as well as those of other planets and moons in our galaxy likely originated in such locations.
The Perseus Molecular Cloud, located about 1,000 light-years from Earth, was imaged by NASA’s retired Spitzer Space Telescope. NASA’s SPHEREx mission will search the galaxy for water ice and other frozen compounds in clouds of gas and dust in space like this one. NASA/JPL-Caltech The mission will focus on massive regions of gas and dust called molecular clouds. Within those, SPHEREx will also look at some newly formed stars and the disks of material around them from which new planets are born.
Although space telescopes such as NASA’s James Webb and retired Spitzer have detected water, carbon dioxide, carbon monoxide, and other compounds in hundreds of targets, the SPHEREx observatory is the first to be uniquely equipped to conduct a large-scale survey of the galaxy in search of water ice and other frozen compounds.
Get the SPHEREx Press Kit Rather than taking 2D images of a target like a star, SPHEREx will gather 3D data along its line of sight. That enables scientists to see the amount of ice present in a molecular cloud and observe how the composition of the ices throughout the cloud changes in different environments.
By making more than 9 million of these line-of-sight observations and creating the largest-ever survey of these materials, the mission will help scientists better understand how these compounds form on dust grains and how different environments can influence their abundance.
Tip of the Iceberg
It makes sense that the composition of planets and stars would reflect the molecular clouds they formed in. However, researchers are still working to confirm the specifics of the planet formation process, and the universe doesn’t always match scientists’ expectations.
For example, a NASA mission launched in 1998, the Submillimeter Wave Astronomy Satellite (SWAS), surveyed the galaxy for water in gas form — including in molecular clouds — but found far less than expected.
BAE Systems employees work on NASA’s SPHEREx observatory in the Astrotech Space Operations facility at Vandenberg Space Force Base in California on Jan. 16. Targeting a Feb. 27 launch, the mission will map the entire sky in infrared light. NASA/JPL-Caltech “This puzzled us for a while,” said Gary Melnick, a senior astronomer at the Center for Astrophysics | Harvard & Smithsonian and a member of the SPHEREx science team. “We eventually realized that SWAS had detected gaseous water in thin layers near the surface of molecular clouds, suggesting that there might be a lot more water inside the clouds, locked up as ice.”
The mission team’s hypothesis also made sense because SWAS detected less oxygen gas (two oxygen atoms bound together) than expected. They concluded that the oxygen atoms were sticking to interstellar dust grains, and were then joined by hydrogen atoms, forming water. Later research confirmed this. What’s more, the clouds shield molecules from cosmic radiation that would otherwise break those compounds apart. As a result, water ice and other materials stored deep in a cloud’s interior are protected.
As starlight passes through a molecular cloud, molecules like water and carbon dioxide block certain wavelengths of light, creating a distinct signature that SPHEREx and other missions like Webb can identify using a technique called absorption spectroscopy.
In addition to providing a more detailed accounting of the abundance of these frozen compounds, SPHEREx will help researchers answer questions including how deep into molecular clouds ice begins to form, how the abundance of water and other ices changes with the density of a molecular cloud, and how that abundance changes once a star forms.
Powerful Partnerships
As a survey telescope, SPHEREx is designed to study large portions of the sky relatively quickly, and its results can be used in conjunction with data from targeted telescopes like Webb, which observe a significantly smaller area but can see their targets in greater detail.
“If SPHEREx discovers a particularly intriguing location, Webb can study that target with higher spectral resolving power and in wavelengths that SPHEREx cannot detect,” said Melnick. “These two telescopes could form a highly effective partnership.”
More About SPHEREx
SPHEREx is managed by NASA’s Jet Propulsion Laboratory in Southern California for the Astrophysics Division within the Science Mission Directorate at NASA Headquarters in Washington. BAE Systems (formerly Ball Aerospace) built the telescope and the spacecraft bus. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions in the U.S., two in South Korea, and one in Taiwan. Data will be processed and archived at IPAC at Caltech, which manages JPL for NASA. The mission principal investigator is based at Caltech with a joint JPL appointment. The SPHEREx dataset will be publicly available at the NASA/IPAC Infrared Science Archive.
For more information about the SPHEREx mission visit:
https://www.jpl.nasa.gov/missions/spherex/
6 Things to Know About SPHEREx Why NASA’s SPHEREx Mission Will Make ‘Most Colorful’ Cosmic Map Ever News Media Contact
Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
626-808-2469
calla.e.cofield@jpl.nasa.gov
2025-020
Share
Details
Last Updated Feb 13, 2025 Related Terms
SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) Astrophysics Exoplanets Galaxies Jet Propulsion Laboratory Stars The Universe Explore More
5 min read Webb Maps Full Picture of How Phoenix Galaxy Cluster Forms Stars
Discovery proves decades-old theory of galaxy feeding cycle. Researchers using NASA’s James Webb Space Telescope…
Article 2 hours ago 4 min read NASA Successfully Joins Sunshade to Roman Observatory’s ‘Exoskeleton’
Article 1 day ago 4 min read NASA’s Mini Rover Team Is Packed for Lunar Journey
Article 2 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
For more than a decade, Tristan McKnight has been a driving force behind some of NASA’s most iconic events, orchestrating the behind-the-scenes magic that brings each historic moment to life while sharing the agency’s advancements with the public.
As a multimedia producer on the audiovisual team at Johnson Space Center in Houston, McKnight produces and directs live broadcasts and manages event planning, coordination, and execution. From overseeing resources, mitigating risks, and communicating with stakeholders, he ensures every detail aligns seamlessly.
Official portrait of Tristan McKnight.NASA/Josh Valcarcel McKnight has played an integral role in the audiovisual team’s coverage of major events including the Artemis II crew announcement, where NASA revealed the astronauts who will venture around the Moon and back, to Johnson’s 2023 Open House, which celebrated the agency’s 65th anniversary and the 25th anniversary of the International Space Station’s operations. These achievements highlight key milestones in human space exploration.
A standout achievement was contributing to the Dorothy Vaughan Center in Honor of the Women of Apollo naming ceremony, held on the eve of the 55th anniversary of the Apollo 11 Moon landing. The event honored the unsung heroes who made humanity’s first steps on the Moon possible.
The team’s dedication and passion are a testament to their commitment to sharing NASA’s legacy with the world.
“Not only have these events been impactful to Johnson, but they have also resonated across the entire agency,” McKnight said. “That is what I’m most proud of!”
Tristan McKnight at the 45th Annual Original Martin Luther King Jr. Day Parade in downtown Houston.NASA/James Blair One of McKnight’s most memorable events was the 2023 “Back in the Saddle,” an annual tradition designed to refocus Johnson’s workforce at the start of a new year and renew the center’s commitment to safety and mission excellence. McKnight recalled how the speaker transformed Johnson’s Teague Auditorium into a venue filled with drum kits, inspiring messages, and lighting displays. Each audience member, drumsticks in hand, participated in a lesson on teamwork and synchronization to create a metaphor for working in harmony toward a shared goal.
Like many high-achieving professionals. McKnight has faced moments of self-doubt. Then he realized that he is exactly where he is supposed to be. “As I settled into my role, I recognized that my contributions matter and simply being true to who I am adds value to the Johnson community,” he said.
Tristan McKnight (right) receives a Group Special Act Award from Johnson Space Center Director Vanessa Wyche for his contributions to the Dorothy Vaughn in Honor of the Women of Apollo naming ceremony.NASA Each day brings its own set of challenges, ranging from minor issues like communication gaps and scheduling conflicts to major obstacles like technology failures. One of McKnight’s most valuable lessons is recognizing that there is no one-size-fits-all solution, and each situation requires a thoughtful analysis.
McKnight understands the importance of the “check-and double-check,” a philosophy he considers crucial when working with technology. “Taking the extra time to do your due diligence, or even having someone else take a look, can make all the difference,” he said.
“The challenges I’ve faced helped me grow as a problem solver and taught me valuable lessons on resilience and adaptability in the workplace,” he said. McKnight approaches obstacles with a level head, focusing on effective solutions rather than dwelling on the problem.
Tristan McKnight (left) with his daughter Lydia McKnight and Johnson’s External Relations Director Arturo Sanchez at the 2024 Bring Your Youth To Work Day. NASA/Helen Arase Vargas As humanity looks to the stars, McKnight is energized about the future of exploration, particularly advancements in spacesuit and rocket technology that will enable us to travel farther, faster, and safer than ever before. His work, though grounded on Earth, helps create the inspiration that fuels these bold endeavors.
“My hope for the next generation is that they dive deeper into their curiosity—exploring not only the world around them but also the Moon, planets, and beyond,” he said. “I also hope they carry forward the spirit of resilience and a commitment to making the world a better place for all.”
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.