Jump to content

Planet Sizes and Locations in Our Solar System


NASA

Recommended Posts

  • Publishers

1 min read

Planet Sizes and Locations in Our Solar System

Illustration showing the planets stacked in rows.
The eight planets and dwarf planet Pluto.
NASA

Our solar system has eight planets, and five officially recognized dwarf planets. Which planet is biggest? Which is smallest? What is the order of the planets as we move out from the Sun?

This is a simple guide to the sizes of planets based on the equatorial diameter – or width – at the equator of each planet. Each planet’s width is compared to Earth’s equatorial diameter, which is about 7,926 miles (12,756 kilometers).

At the bottom of the page, there is a handy list of the order of the planets moving away from our Sun.

Unable to render the provided source
Compare Earth to other planets using NASA’s Eyes on the Solar System.

Order of Planets and Dwarf Planets – Distance From the Sun

Orange sun with colorful planets trailing out to one side.
A stylized illustration of our solar system.
NASA/JPL
  • Mercury: 36 million miles (58 million kilometers)
  • Venus: 67.2 million miles (108 million kilometers)
  • Earth: 93 million miles (149.7 million kilometers)
  • Mars: 141.6 million miles (227.9 million kilometers)
  • Dwarf planet Ceres: 257 million miles (413 million kilometers)
  • Jupiter: 483.7 million miles (778 million kilometers)
  • Saturn: 889.8 million miles (1.4 billion kilometers)
  • Uranus: 1.8 billion miles (2.9 billion kilometers)
  • Neptune: 2.8 billion miles (4.5 billion kilometers)
  • Dwarf Planet Pluto: 3.67 billion miles (5.9 billion kilometers)
  • Dwarf Planet Haumea: 4 billion miles (6.5 billion kilometers)
  • Dwarf Planet Makemake: 4.3 billion miles (6.9 billion kilometers)
  • Dwarf Planet Eris: 6.3 billion miles (10 billion kilometers)

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Artists Concept of the WASP-77 A b system. A planet swings in front of its star, dimming the starlight we see. Events like these, called transits, provide us with bounties of information about exoplanets–planets around stars other than the Sun. But predicting when these special events occur can be challenging…unless you have help from volunteers.
      Luckily, a collaboration of multiple teams of amateur planet-chasers, led by researcher Federico R. Noguer from Arizona State University and researchers from NASA’s Jet Propulsion Laboratory (JPL) and Goddard Space Flight Center (GSFC), has taken up the challenge. This collaboration has published the most precise physical and orbital parameters to date for an important exoplanet called WASP-77 A b.  These precise parameters help us predict future transit events and are crucial for planning spacecraft observations and accurate atmospheric modeling. 
      “As a retired dentist and now citizen scientist for Exoplanet Watch, research opportunities like this give me a way to learn and contribute to this amazingly exciting field of astrophysics,” said Anthony Norris, a citizen scientist working on the NASA-funded Exoplanet Watch project.
      The study combined amateur astronomy/citizen science data from the Exoplanet Watch and ExoClock projects, as well as the Exoplanet Transit Database. It also incorporated data from NASA’s Spitzer Space Telescope, the Hubble Space Telescope (HST), the James Webb Space Telescope (JWST), and La Silla Observatory. Exoplanet Watch invites volunteers to participate in groundbreaking exoplanet research, using their own telescopes to observe exoplanets or by analyzing data others have gathered. You may have read another recent article about how the Exoplanet Watch team helped validate a new exoplanet candidate.
      WASP-77 A b is a gas giant exoplanet that orbits a Sun-like star. It’s only about 20% larger than Jupiter. But that’s where the similarities to our solar system end. This blazing hot gas ball orbits right next to its star–more than 200 times closer to its star than our Jupiter!
      Want a piece of the action? Join the Exoplanet Watch project and help contribute to cutting-edge exoplanet science! Anyone can participate–participation does not require citizenship in any particular country.
      Facebook logo @DoNASAScience @DoNASAScience Share








      Details
      Last Updated Sep 19, 2024 Related Terms
      Astrophysics Citizen Science Exoplanet Science Explore More
      4 min read NASA’s Webb Provides Another Look Into Galactic Collisions


      Article


      1 day ago
      4 min read NASA’s Hubble Finds More Black Holes than Expected in the Early Universe


      Article


      2 days ago
      2 min read Hubble Examines a Spiral Star Factory


      Article


      6 days ago
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
      Sols 4307-4308: Bright Rocks Catch Our Eyes
      NASA’s Mars rover Curiosity captured this image while exploring a rock-strewn channel of Gediz Vallis on the Red Planet. Mission scientists were particularly intrigued to investigate several bright-toned rocks (at the middle-right, bottom-right and bottom-center of the image), similar to rocks that Curiosity had encountered previously that were unexpectedly rich in sulfur. This image was taken by Left Navigation Camera aboard Curiosity on Sol 4306 — Martian day 4,306 of the Mars Science Laboratory Mission — on Sept. 16, 2024 at 12:47:18 UTC. NASA/JPL-Caltech Earth planning date: Monday, Sept. 16, 2024
      We made good progress through Gediz Vallis in the weekend drive, landing in a segment of the channel containing a mix of loose rubble and other channel-filling debris. Amongst the jumbled scene, though, particular objects of interest caught our eye: bright rocks. In past workspaces in Gediz Vallis, similar bright rocks have been associated with very high to almost pure sulfur contents. As all good geologists know, however, color is not diagnostic, so we cannot assume these are the same as sulfur-rich rocks we have encountered previously. The only way to know is to collect data, and that was a significant focus of today’s plan.
      We planned multiple mosaics across the examples of bright rocks visible in the image above. Mastcam and ChemCam RMI will cover “Bright Dot Lake” and “Sheep Creek” both in the right midfield of the image. Mastcam imaged the example in the bottom right corner of the image at “Marble Falls,” and ChemCam LIBS targeted one of the small bright fragments along the bottom of the image at “Blanc Lake.” There was also a small bit of bright material in the workspace, but unfortunately, it was not reachable by APXS. APXS analyzed a spot near the bright material, at target “Frog Lake,” and MAHLI was able to tack on a few extra images around that target that should capture the bright material. MAHLI also imaged a vuggy target in the workspace at “Grasshopper Flat.”  The wider context of the channel was also of interest for imaging, so we captured the full expanse of the channel with one Mastcam mosaic, and focused another on mounds distributed through the channel at target “Copper Creek.”
      Even with all this rock imaging, we did not miss a beat with our environmental monitoring. We planned regular RAD, REMS, and DAN measurements, mid and late day atmospheric dust observations, a cloud movie, and dust devil imaging. 
      Our drive is planned to take us up onto one of the ridges in the channel. Will we find more bright rocks there? Or something new and unexpected that was delivered down Gediz Vallis by some past Martian flood or debris flow? Only the channel knows!
      Written by Michelle Minitti, Planetary Geologist at Framework
      Share








      Details
      Last Updated Sep 17, 2024 Related Terms
      Blogs Explore More
      2 min read Reaching New Heights to Unravel Deep Martian History!


      Article


      22 hours ago
      5 min read Sols 4304-4006: 12 Years, 42 Drill Holes, and Now… 1 Million ChemCam Shots!


      Article


      4 days ago
      3 min read Sols 4302-4303: West Side of Upper Gediz Vallis, From Tungsten Hills to the Next Rocky Waypoint


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By European Space Agency
      Swatch has again teamed up with ESA to give space fans a new opportunity to design a custom watch featuring breathtaking images of Earth from space.
      View the full article
    • By NASA
      NASA/Frank Michaux On Aug. 21, 2024, engineers and technicians deployed and tested NASA’s Europa Clipper giant solar arrays. Each array measures about 46.5 feet (14.2 meters) long and about 13.5 feet (4.1 meters) high.
      Europa Clipper is scheduled to launch Oct. 10, 2024, on the first mission to conduct a detailed science investigation of Jupiter’s moon Europa. Scientists predict Europa has a salty ocean beneath its icy crust that could hold the building blocks necessary to sustain life.
      Learn how this spacecraft’s solar arrays will power flybys.
      Image credit: NASA/Frank Michaux
      View the full article
    • By NASA
      NASA’s Advanced Composite Solar Sail System is seen orbiting Earth in this 13-second exposure photograph, Monday, Sept. 2, 2024, from Arlington, Virginia. The mission team confirmed the spacecraft’s unique composite boom system unfurled its reflective sail on Thursday, Aug. 29, 2024, accomplishing a critical milestone in the agency’s demonstration of next-generation solar sail technology that will allow small spacecraft to “sail on sunlight.” Just as a sailboat is powered by wind in a sail, a spacecraft can use the pressure of sunlight on a solar sail for propulsion. This technology demonstration serves as a pathfinder for future missions powered by solar sail technology.NASA/Bill Ingalls Now that its reflective sail has deployed fully open in orbit, the Advanced Composite Solar Sail System can be seen in the night sky from many locations across the world!
      Stargazers can join NASA’s #SpotTheSail campaign by using the NASA app on mobile platforms to find out when the spacecraft will be visible at their location. The app, which is free to use and available on iOS and Android, provides a location-specific schedule of upcoming sighting opportunities. A built-in augmented reality tool points users to the location of the spacecraft in real time.
      Can you spot the solar sail? Share your viewing experience online using the hashtag #SpotTheSail for a chance to be featured on NASA’s website and social media channels.
      Here’s how to use the sighting prediction tool: 
      Install and open the NASA app on an iOS or Android device. Tap on the “Featured” tab on the bottom navigation bar. Tap on the Advanced Composite Solar Sail System mission from the Featured Missions at the top of the screen. Tap on the “Sightings” tab on the bottom navigation bar. A list of all the upcoming sightings for your location will be displayed. If you are using an iOS device, you can tap on the “Sky View” link for an augmented reality guide to help you locate the spacecraft’s real-time location during the visible pass. NASA’s Advanced Composite Solar Sail System is testing new technologies in low Earth orbit, including a composite boom system that supports a four-piece sail. Not to be confused with solar panels, solar sails allow small spacecraft to “sail on sunlight,” eliminating the need for rocket fuel or other conventional propellants. This propulsion technology can enable low-cost deep space missions to increase access to space.  
      For ongoing mission updates, follow us on social media:
      X: @NASAAmes, @NASA
      Facebook: NASA Ames, NASA
      Instagram: @NASAAmes, @NASA

      NASA’s Ames Research Center in California’s Silicon Valley manages the Advanced Composite Solar Sail System project and designed and built the onboard camera diagnostic system. NASA’s Langley Research Center in Hampton, Virginia, designed and built the deployable composite booms and solar sail system. NASA’s Small Spacecraft Technology program office based at NASA Ames and led by the agency’s Space Technology Mission Directorate (STMD) in Washington, funds and manages the mission. NASA STMD’s Game Changing Development program developed the deployable composite boom technology. Rocket Lab USA, Inc of Long Beach, California, provided launch services. NanoAvionics provided the spacecraft bus.
      View the full article
  • Check out these Videos

×
×
  • Create New...