Jump to content

March-April 2024: The Next Full Moon is the Crow, Crust, Sap, Sugar, or Worm Moon


NASA

Recommended Posts

  • Publishers
29 Min Read

March-April 2024: The Next Full Moon is the Crow, Crust, Sap, Sugar, or Worm Moon

A full moon rises above snow-capped mountain peaks in this chilly image.
A full moon rises over Utah.
Credits:
NASA/Bill Dunford

The next full moon is the Crow, Crust, Sap, Sugar, or Worm Moon; the Paschal Moon; Purim; the Holi Festival Moon; Madin Poya; the Pothole Moon; a Micromoon, and a Partial Lunar Eclipse.

The next full moon will be on Monday morning, March 25, 2024, appearing opposite the Sun in Earth-based longitude at 3 AM EDT. This will be on Sunday evening from Alaska Time westward to the International Date Line. Around this time the Moon will pass through the partial shadow of the Earth (called a penumbral lunar eclipse). The slight dimming of the Moon will be difficult to notice, but see if you can tell if the lower part of the Moon is dimmer than the upper part. The Moon will begin entering the Earth’s shadow at 12:53 AM, reach greatest eclipse at 3:13 AM with 96% of the Moon in partial shadow, and exit the shadow at 5:32 AM. Since this full Moon is a little over a day after apogee (when the Moon is at its farthest from the Earth in its orbit) this is a micromoon, the opposite of a supermoon. The Moon will appear full for about 3 days around this time, from Saturday evening through Tuesday morning.

The Maine Farmers’ Almanac began publishing “Indian” names for full Moons in the 1930s and these names are now widely known and used. According to this almanac, as the full Moon in March the tribes of the northeastern United States called this the Crow, Crust, Sap, Sugar, or Worm Moon. The more northern tribes of the northeastern States knew this as the Crow Moon, with the cawing of crows signaling the end of winter. Other northern names were the Crust Moon, because the snow cover became crusted from thawing by day and freezing by night, or the Sap (or Sugar) Moon as this was the time for tapping maple trees. The more southern tribes called this the Worm Moon after the earthworm casts that appeared as the ground thawed. It makes sense that only the southern tribes called this the Worm Moon. When glaciers covered the northern part of North America they wiped out the native earthworms. After these glaciers melted about 12,000 years ago the more northern forests grew back without earthworms. Most of the earthworms in these areas are invasive species introduced from Europe and Asia.

In the western Christian ecclesiastical calendar this is the Paschal Moon, from which the date of Easter is calculated. Paschal is the Latinized version of Pesach, Hebrew for Passover. Initially, the Christian holiday of Easter, also called Pascha, was celebrated on the first Sunday after the first full Moon of spring. However, there are differences between the times of these astronomical events and the calendars now used by the Eastern and Western churches. Western Christianity will be celebrating Easter on Sunday, March 31, 2024, the Sunday after this first full Moon of spring. The date of Eastern Orthodox Easter is based on the Julian calendar and will be on Sunday, May 5.

Many lunar and lunisolar calendars start the months on the new Moon with the full Moon in the middle of the month. Lunisolar calendars add or repeat a month as needed to keep the lunar months aligned with the solar seasons. This full Moon is in the middle of the second month of Adar in the Hebrew calendar and corresponds with Purim, celebrated from sunset on March 23 to sunset on March 24, 2024, the 14th of the Adar II (a day later in Jerusalem and ancient walled cities). Purim marks the Jewish people’s deliverance from a royal death decree around the fourth century BCE as told in the Book of Esther. Purim is celebrated by exchanging gifts of food and drink, feasting, and donating to charity.

In the Islamic calendar this full Moon is near the middle of the holy month of Ramadan. Ramadan is honored as the month in which the Quran was revealed. Observing this annual month of charitable acts, prayer, and fasting from dawn to sunset is one of the Five Pillars of Islam.

As the full Moon in the Hindu month Phalguna, this Moon corresponds with the Holi festival, celebrating the victory of good over evil and the start of spring. This two-day long festival is also known as the Festival of Love, Festival of Colors, or the Festival of Spring. Holi begins with a bonfire the evening before the day of the full Moon, continues on the day of the full Moon with a free-for-all game involving the spraying of colored powders and/or colored water on whomever wanders by, and ends with evening visits with friends and family.

Every full Moon is a holiday in Sri Lanka. This full Moon is Medin or Madin Poya, marking the Buddha’s first visit to his father after his enlightenment.

Continuing the tradition of naming Moons after prominent phenomena tied to the time of year, a few years ago my friend Tom Van Wagner suggested naming this the Pothole Moon. It may be a case of confirmation bias, but whether in my car or on my bicycle I notice more potholes this time of year.

As usual, the wearing of suitably celebratory celestial attire is encouraged in honor of the full Moon.

As for other celestial events between now and the full Moon after next (with specific times and angles based on the location of NASA Headquarters in Washington, DC):

Total Eclipse of the Sun

There will be a total eclipse of the Sun on Monday, April 8, 2024. This total eclipse will be visible in a swath ranging from 142 (88 miles) wide near the start and end to 203 km (126 miles) wide near the middle of the swath. The path of the total eclipse will begin in the Pacific south of the equator, start passing over North America on the coast of Mexico near Mazatlán, cross the USA from Texas to Maine, exit North America from Canada on the coast of Newfoundland, and end in the North Atlantic. Outside of this narrow swath, most of North and Central America will see a partial solar eclipse. See https://science.nasa.gov/solar-system/skywatching/eclipses/solar-eclipses/2024-solar-eclipse/total-solar-eclipse-2024-the-moons-moment-in-the-sun/ for more information.

Assuming you can find a place with clear skies near the centerline of this swath, this eclipse, in particular, should be quite a show. Compared to the eclipse in 2017, the Moon will be nearer its closest to the Earth, making its shadow larger, the sky darker, and the eclipse longer. In addition, the Sun will be nearer its maximum in its 11-year cycle, so the corona, which can only be seen during a total eclipse, should be more spectacular. If the sky is clear during the eclipse, you will be able to see the planets and some stars that are not normally visible this time of year. Bright Jupiter will be to the upper left of the eclipse, with Venus, Saturn, and Mars to the lower right. In the unlikely event that the comet 12P/Pons-Brooks has an outburst that makes it significantly brighter (described below), you may be able to see it to the right of Jupiter (if it isn’t obvious, I recommend enjoying the eclipse rather than spending time searching for a comet you might not be able to see).

Plenty of information about this total eclipse is available elsewhere, so I will refrain from adding much more, but please read and pay attention to eye safety. The only time it is safe to look directly at the Sun is when it is completely blocked by the Moon, so that you can only see the much fainter corona. Staring directly at even a small sliver of the Sun can do permanent eye damage.

This eclipse will be passing through or near many populated areas, making it possible to trade off waiting for more accurate weather forecasts for clear skies against the difficulties of making last minute bookings or dealing with  traffic jams if you wait until the day of the eclipse to drive to the zone of totality.

Total eclipses of the Sun are rare and spectacular events. I recognize that not everyone will be able to drop everything and go see this one, but seeing at least one good, total eclipse in a clear sky should be on your bucket list. A partial eclipse is just not the same. The only other reason I can think of for not going where you can see this total eclipse (other than you absolutely can’t at this time) is that if you see this eclipse, you are likely to want to see more, and will begin making plans to go to North Africa in 2026, Australia in 2028, etc. The next three eclipses visible from parts of North America will be in 2044, 2045, and 2052.

Comet 12P/Pons-Brooks

During this lunar cycle, comet 12P/Pons-Brooks will be visible with binoculars or a telescope, and may become bright enough to be a naked eye comet. In my quick searches of the web I found visual guides that provide specific information on when and where to look from your location on any given night. However, I did not see a concise guide to when might be the best time to look for this comet, so here is my meager attempt.

Several things make a difference in how easy it is to see a comet.

The greatest uncertainty is how much dust and gas it will be giving off, as it is the sunlight illuminating these plumes that make the comet bright. This comet has already had outbursts that have made it temporarily 10 to 100 times brighter. It may be less likely such outbursts will occur as the comet moves closer to the Sun, but this is uncertain. As the astronomer David H. Levy said, “Comets are like cats; they have tails, and they do precisely what they want.”

My recommendation is to pay attention to the news and check regularly to see if the comet has had an outburst, as this may push its brightness into the visible range. In addition, I plan to look for the comet with binoculars, both on April 8 and 9 before moonlight begins to interfere and in the weeks before closest approach to the Sun on April 21. The next couple of paragraphs give my reasoning (which you are welcome to skip if you like).

We can’t predict outbursts, but we can predict other influences on the brightness of the comet.

If the gas and dust from the comet isn’t changing, an easy calculation is to assume the comet will scatter light uniformly in all directions, so that all you need to consider is the distance between the Sun and the comet and the distance between the comet and the Earth. This suggests that the comet will be at its brightest around April 20 and 21, 2024, when it will be passing its closest to the Sun and receiving (and reflecting towards Earth) the maximum amount of sunlight.

How easy the comet will be to see will also depend on how much glow there is from twilight (which depends on how far the Sun is below the horizon), whether (and how much) moonlight there is (increased moonlight will brighten the background sky), and how high the comet is above the horizon.

In the evenings, nautical twilight ends when the Sun reaches 12 degrees below the horizon (the estimate of when the horizon will be too dark for sailors at sea to use for navigation). In mid-to-late April (for the DC area), nautical twilight ends about 1 hour after sunset (the start and end of twilight I use throughout these Moon Missives is based on nautical twilight). Astronomical twilight is when the Sun is between 12 and 18 degrees below the horizon, when the sky looks dark but there can be enough residual glow that the faintest stars and diffuse objects (like nebulae, galaxies, faint meteors, and comets on the edge of visibility) may be masked. When the Sun is more than 18 degrees below the horizon the sky is about as dark as it is going to get.

When the Moon is in the sky it will add its light to the background brightness of the sky. The amount of light added will increase as the Moon waxes from a faint, thin crescent to a bright, nearly full Moon.

The evening of April 8, 2024, as nautical twilight ends (at 8:39 PM EDT), the crescent Moon will have already set and the comet will be 11.4 degrees above the west-northwestern horizon. The combined effect of the range from the Sun and the Earth gives a geometric estimate of 91% of the maximum brightness at its closest to the Sun in late April. By the time astronomical twilight ends (at 9:12 PM) the comet will still be 5 degrees above the horizon.

The evening of April 9, it might be interesting to see the comet and the thin, waxing crescent Moon low on the horizon as twilight ends, as the Moon will not be very bright and should not interfere much with seeing the comet. Nautical twilight will end (at 8:40 PM) with the Moon 4.2 degrees above the horizon and the comet above the Moon at 10.8 degrees above the horizon. The Moon will set (at 9:08 PM) just 5 minutes before astronomical twilight ends (at 9:13 PM), when the comet will be 4.6 degrees above the horizon. The distance-based estimate of brightness will have increased to 93% of the peak in late April.

Between April 10 and April 21, the geometric estimate of the brightness of the comet will gradually increase, but so will interference from the brightness of the waxing Moon, and the comet will shift closer to the horizon each evening. On the evening of April 21 the geometric brightness of the comet will be at its greatest, but the Moon will be 96% illuminated and the comet will be only 2.7 degrees above the horizon as nautical twilight ends. April 24 will be the last evening that the comet will be above the horizon before nautical twilight ends (at 8:57 PM).

Note that as our opportunity to view this comet from northern latitudes gets worse in late April, the opportunity for viewers in the Southern Hemisphere will get better.

Length of Daylight

As spring continues the daily periods of sunlight continue to lengthen, having changed at their fastest around the equinox on March 19, 2024. On Monday, March 25 (the day of the full Moon), morning twilight will begin at 6:05 AM, sunrise will be at 7:03 AM, solar noon will be at 1:14 PM when the Sun will reach its maximum altitude of 53.3 degrees, sunset will be at 7:25 PM, and evening twilight will end at 8:24 PM. By Tuesday, April 23 (the day of the full Moon after next), morning twilight will begin at 5:18 AM, sunrise will be at 6:20 AM, solar noon will be at 1:06 PM when the Sun will reach its maximum altitude of 64.0 degrees, sunset will be at 7:53 PM, and evening twilight will end at 8:56 PM.

Meteor Showers

Two meteor showers, the Lyrids (006 LYR) and the π-Puppids (137 PPU), will peak near the end of this lunar cycle but the nearly full Moon will interfere with seeing these meteors.

Evening Sky Highlights

On the evening of Sunday, March 24 (the evening before the full Moon), as twilight ends (at 8:22 PM EDT), the rising Moon will be 14 degrees above the east-southeastern horizon. The bright planet Jupiter will be 27 degrees above the western horizon and the planet Mercury will be to the lower right of Jupiter at 7 degrees above the horizon. The bright object appearing closest to overhead will be Pollux at 78 degrees above the south-southeastern horizon. Pollux is the 17th brightest star in our night sky and the brighter of the twin stars in the constellation Gemini the twins. Pollux is an orange tinted star about 34 light-years from Earth. It is not quite twice the mass of our Sun but about 9 times the diameter and 33 times the brightness.

As this lunar cycle progresses, the background of stars will appear to shift westward each evening (as the Earth moves around the Sun). Mercury will be dimming as it shifts toward the west-northwestern horizon, with April 3 the last evening it will be above the horizon as twilight ends and April 11 when it will pass between the Earth and the Sun, shifting from the evening to the morning sky. We are approaching the end of the opportunity to view Jupiter for this apparition, as it will shift lower towards the west-northwestern horizon each evening. The waxing Moon will pass by Jupiter on April 10, Pollux on April 14 and 15, Regulus on April 17 and 18, and Spica on April 22. By the evening of Tuesday, April 23 (the evening of the day of the full Moon after next), as twilight ends (at 8:56 PM EDT), the rising Moon will be 10 degrees above the east-southeastern horizon. The bright planet Jupiter will be 4 degrees above the west-northwestern horizon. The bright object appearing closest to overhead will be Regulus at 63 degrees above the southern horizon. Regulus is the 21st brightest star in our night sky and the brightest star in the constellation Leo the lion. The Arabic name for Regulus translates as “the heart of the lion.” Although we see Regulus as a single star, it is actually four stars (two pairs of stars orbiting each other). Regulus is about 79 light-years from us.

Morning Sky Highlights

On the morning of Monday, March 25 (the morning after the full Moon), as twilight begins (at 6:05 AM EDT), the setting Moon will be 12 degrees above the west-southwestern horizon. The planet Mars will be 3 degrees above the east-southeastern horizon. The bright object appearing closest to overhead will be the star Vega at 73 degrees above the eastern horizon. Vega is the brightest star in the constellation Lyra the lyre and is one of the three bright stars in the “Summer Triangle” along with Deneb and Altair. Vega is the 5th brightest star in our night sky, about 25 light-years from Earth, twice the mass of our Sun, and shines 40 times brighter than our Sun.

As this lunar cycle progresses, the background of stars will appear to shift westward each evening, while Mars will hover low on the east-southeastern horizon, drifting slightly to the left. The waning Moon will pass by Spica on March 26 and 27, and Antares on March 30. April 1 will be the first morning the planet Saturn will be above the eastern horizon as morning twilight begins, shifting towards Mars each morning. On April 6 the thin, waning crescent Moon will form a triangle with Saturn and Mars, but will be low on the east-southeastern horizon and difficult to see, with the Moon rising just 3 minutes before morning twilight begins. On April 10 Mars and Saturn will appear closest to each other, after which they will appear to separate. By the morning of Tuesday, April 23 (the morning of the day of the full Moon after next), as twilight begins (at 5:18 AM EDT), the setting full Moon will be 7 degrees above the west-southwestern horizon with the bright star Spica 2.5 degrees to the lower left of the Moon. The planet Mars will be 5 degrees above the eastern horizon and the planet Saturn will be 7 degrees above the east-southeastern horizon. The bright object appearing closest to overhead will still be the star Vega at 86 degrees above the eastern horizon.

Detailed Daily Guide

Here for your reference is a day-by-day listing of celestial events between now and the full Moon after next. The times and angles are based on the location of NASA Headquarters in Washington, DC, and some of these details may differ for where you are (I use parentheses to indicate times specific to the DC area).

Monday evening into Tuesday morning, March 18 to 19, 2024, the bright star Pollux (the brighter of the twin stars in the constellation Gemini the twins) will appear near the waxing gibbous Moon. Pollux will be 3.5 degrees to the left as twilight ends (at 8:16 PM EDT) and will shift clockwise around the Moon until the Moon sets on the northwestern horizon (at 4:42 AM) when Pollux will be 2 degrees to the upper right.

Tuesday evening, March 19, 2024, at 11:06 PM EDT, will be the vernal equinox, the astronomical end of winter and start of spring. For a location on the equator in the ocean north of Western New Guinea the Sun will pass directly overhead as it shifts from the Southern to the Northern Hemisphere.

Thursday morning, March 21, 2024, if you have a very clear view of the horizon about halfway between east and east-southeast, you might be able to see the planet Saturn less than a degree to the lower left of the bright planet Venus. Because of the glow of dawn this will be hard to see. Venus will shine brighter than any star, but Saturn will rise last (at 6:32 AM), 21 minutes after twilight begins (at 6:11 AM EDT), and will be only a little brighter than the star Pollux, the 17th brightest star in our night sky. You may need binoculars to see the pair, but make sure you stop looking well before sunrise.

The next morning, Friday, March 22, 2024, the planet Venus will have shifted to less than a degree to the left of the planet Saturn, with the pair rising together (at 6:29 AM EDT) 19 minutes after twilight begins (at 6:10 AM).

Thursday evening into Friday morning, March 21 to 22, 2024, the bright star Regulus will appear near the waxing gibbous Moon. As twilight ends (at 8:19 PM EDT) Regulus will be 5 degrees to the lower right of the Moon. Regulus will gradually shift closer to the Moon, initially swinging towards the left (appearing 4 degrees below and a little to the left) as the Moon reaches its highest (at 11:13 PM). At about 2:30 AM (when Regulus will be 3 degrees to the lower left) Regulus will switch and start swinging towards the right. As Regulus sets (at 5:58 AM) it will be 2.5 degrees below the Moon, with morning twilight beginning 12 minutes later (at 6:10 AM) and the Moon setting 3 minutes after that (at 6:13 AM).

Saturday night, March 23, 2024, at 11:46 AM EDT, the Moon will be at apogee, its farthest from the Earth for this orbit.

Sunday evening, March 24, 2024, at 5:59 PM EDT, will be when the planet Mercury reaches its greatest angular separation from the Sun as seen from Earth for this apparition (called greatest elongation). This will be the evening when the planet Mercury will appear highest above the western horizon (6.5 degrees) as twilight ends (at 8:22 PM).

As mentioned above, the next full Moon will be on Monday morning, March 25, 2024. The Moon will pass through the partial shadow of the Earth (called a penumbral lunar eclipse), beginning to enter the shadow at 12:53 AM EDT, reaching greatest eclipse at 3:13 AM when 96% of the Moon will be in partial shadow, and exiting the shadow at 5:32 AM. The slight dimming of the Moon will be difficult to notice. Since this is a little over a day after apogee (when the Moon is at its farthest from the Earth in its orbit) this will be a micromoon, the opposite of a supermoon. The Moon will appear full for about 3 days around this time, from Saturday evening through Tuesday morning.

Tuesday morning, March 26, 2024, the bright star Spica will appear near the full Moon. As the Moon reaches its highest in the sky for the night (at 1:52 AM EDT), Spica will be 8 degrees to the lower left of the Moon. By the time twilight begins (at 6:03 AM), Spica will be 6 degrees to the left of the Moon.

Tuesday evening into Wednesday morning, March 26 to 27, 2024, the Moon will have shifted to the other side of Spica. As the Moon rises on the east-southeastern horizon (at 8:59 PM EDT), Spica will be 3 degrees to the upper right of the Moon. By the time the Moon reaches its highest for the night (at 2:32 AM), Spica will be 5 degrees to the upper right. Spica will be 6 degrees to the lower right as twilight begins (at 6:02 AM).

Saturday morning, March 30, 2024, the bright star Antares will appear near the waning gibbous Moon. As Antares rises on the southeastern horizon (at 12:37 AM EDT) it will be 5 degrees to the lower left of the Moon. The Moon will reach its highest for the night (at 4:52 AM) with Antares 3 degrees to the left. As twilight begins (at 5:57 AM) Antares will be a little less than 3 degrees to the upper left of the Moon.

Monday morning, April 1, 2024, will be the first morning that the planet Saturn will be above the eastern horizon as twilight begins (at 5:55 AM EDT).

Monday night, April 1, 2024, the waning Moon will appear half-full as it reaches its last quarter at 11:15 PM EDT (when the Moon will be below the horizon).

Wednesday evening, April 3, 2024, will be the last evening that the planet Mercury will be above the horizon as twilight ends.

Saturday morning, April 6, 2024, if you have a very clear view of the east-southeastern horizon, you might be able to see the thin, waning crescent Moon near the planets Saturn and Mars. The Moon will rise last (at 5:42 AM EDT) just 3 minutes before twilight begins, with

Saturn 2 degrees to the upper left of the Moon and Mars 4 degrees to the upper right of the Moon.

You will need binoculars to see them in the glow of dawn, but on Sunday morning, April 7, 2024, the bright planet Venus will appear 3.5 degrees to the left of the very thin, waning crescent Moon low on the eastern horizon. Venus will rise last (at 6:14 AM EDT) 31 minutes after twilight begins and 29 minutes before sunrise. If you are using binoculars to scan for this pairing, be sure to stop looking well before any chance of sunrise (as using high powered lenses to focus intense sunlight directly into your eyes is a really bad idea).

Sunday afternoon, April 7, 2024, at 1:52 PM EDT, the Moon will be at perigee, its closest to the Earth for this orbit.

There will be an eclipse of the Sun on Monday, April 8, 2024. For information on the total solar eclipse (not visible from the Washington, DC area) see the summary section above. The Washington, DC area will only see a partial eclipse, starting at about 2:04 PM EDT, reaching its peak at about 3:21 PM when 88.9% of the Sun will be blocked by the Moon, and ending at 4:33 PM. Please pay attention to eye safety and do not look at the Sun directly without eclipse glasses. When the Moon is blocking most of the Sun, what remains will appear like a crescent. One of the interesting effects is that the sunlight through trees, etc., that we normally see as mottled sunlight (round blotches of light) is actually made up of many small images of the round Sun. When the Sun appears as a crescent these mottled patches will appear as many small crescents.

The eclipse will also be the new Moon, when the Moon passes between the Earth and the Sun and is not usually visible from the Earth (except when its silhouette causes an eclipse). The day of or the day after the new Moon marks the start of the new month for most lunisolar calendars. Sundown on Monday, April 8, 2024, marks the start of Nisan in the Hebrew calendar. Pesach or Passover begins on the 15th day of Nisan. The third month of the Chinese calendar starts on Tuesday, April 9, 2023.

Monday evening, April 8, 2024, as nautical or evening twilight ends (at 8:39 PM EDT), comet 12P/Pons-Brooks will be 11.4 degrees above the west-northwestern horizon. The crescent Moon will have already set, making this the last evening to see this comet without moonlight. By the time astronomical twilight ends (at 9:12 PM) the comet will still be 5 degrees above the horizon.

In the Islamic calendar the months traditionally start with the first sighting of the waxing crescent Moon. Many Muslim communities now follow the Umm al-Qura Calendar of Saudi Arabia, which uses astronomical calculations to start months in a more predictable way. This calendar predicts the holy month of Ramadan will end and Shawwāl will begin with sunset on Tuesday, April 9, 2024. Because of the religious significance of the end of Ramadan, Shawwāl is one of 4 months in the Islamic year where the start of the month is updated in the Umm al-Qura Calendar based upon the actual sighting of the crescent Moon. Starting with the sighting of the crescent Moon, the end of the Ramadan fast will be celebrated with Eid al-Fitr (the Feast of Breaking the Fast), a celebration lasting from 1 to 3 days.

Tuesday evening, April 9, 2024, it should be interesting to see the comet 12P/Pons-Brooks and the thin, waxing crescent Moon low on the horizon as twilight ends, as the Moon will not be very bright and should not interfere much with seeing the comet. Nautical or evening twilight will end (at 8:40 PM EDT) with the Moon 4.2 degrees above the horizon and the comet above the Moon at 10.8 degrees above the horizon. The Moon will set (at 9:08 PM) just 5 minutes before astronomical twilight ends (at 9:13 PM), when the comet will be 4.6 degrees above the horizon.

In the mornings throughout this lunar cycle the planets Saturn and Mars will appear near each other low on the east-southeastern horizon. Both will appear to shift higher each morning, with Saturn shifting more than Mars. Wednesday morning, April 10, 2024, will be when the pair will be at their closest. As twilight begins (at 5:38 AM EDT) the slightly brighter Saturn will appear 3 degrees above the horizon with Mars 0.5 degrees above Saturn.

Wednesday evening, April 10, 2024, the bright planet Jupiter will appear 4 degrees to the lower left of the waxing crescent Moon. The Moon will be 17 degrees above the west-northwestern horizon as twilight ends (at 8:41 PM EDT) and Jupiter will set first 77 minutes later (at 9:58 PM).

Thursday evening, April 11, 2024, the Pleiades star cluster will appear 6 degrees to the lower right of the waxing crescent Moon. The Moon will be 30 degrees above the western horizon as twilight ends (at 8:42 PM EDT) and the Pleiades will set first a little over 2 hours later (at about 11 PM).

Thursday evening, April 11, 2024, the planet Mercury will be passing between the Earth and the Sun, called inferior conjunction. Planets that orbit inside of the orbit of Earth can have two types of conjunctions with the Sun, inferior (when passing between the Earth and the Sun) and superior (when passing on the far side of the Sun). Mercury will be shifting from the evening sky to the morning sky and will begin emerging from the glow of the dawn on the eastern horizon later in April (depending upon viewing conditions).

Sunday evening into early Monday morning, April 14 to 15, 2024, the bright star Pollux (the brighter of the twins in the constellation Gemini the twins) will appear to the upper left of the waxing crescent Moon. As twilight ends (at 8:45 PM EDT) Pollux will be 8 degrees from the Moon. By the time the Moon sets on the west-northwestern horizon (at 2:39 AM), Pollux will be 5 degrees from the Moon.

Monday afternoon, April 15, 2024, the Moon will appear half-full as it reaches its first quarter at 3:13 PM EDT (when it will be daylight with the Moon visible in the eastern sky).

Monday evening into early Tuesday morning, April 15 to 16, 2024, the half-Moon will have shifted such that the bright star Pollux will appear to the lower right of the Moon. As twilight ends (at 8:45 PM EDT) Pollux will be 6 degrees from the Moon and the pair will appear to separate as the night progresses, reaching 8 degrees apart around 1:30 AM.

Wednesday evening into Thursday morning, April 17 to 18, 2024, the bright star Regulus will appear to the lower left of the waxing gibbous Moon. As twilight ends (at 8:49 PM EDT) Regulus will be 7.5 degrees from the Moon. When Regulus sets on the west-northwestern horizon (at 4:12 AM) it will be 4.5 degrees from the Moon.

Thursday evening into Friday morning, April 18 to 19, 2024, the waxing gibbous Moon will have shifted to the other side of the bright star Regulus. As twilight ends (at 8:50 PM EDT) Regulus will be 6 degrees to the upper right of the Moon. About 1 hour later (at 9:53 PM) the Moon will reach its highest for the night with Regulus 6 degrees to the right. Regulus will appear to rotate clockwise around and to separate from the Moon as the night progresses, reaching about 8 degrees to the lower right around 3 AM.

Friday night, April 19, 2024, at 10:09 PM EDT, the Moon will be at apogee, its farthest from the Earth for this orbit.

Friday morning, April 19, 2024, will be the first morning that the planet Mercury will rise more than 30 minutes before sunrise, a very rough estimate of the earliest it might start being visible in the glow of dawn on the eastern horizon. Mercury will be quite faint, but will brighten each morning as it presents a larger illuminated crescent towards the Earth. However, this will not be a favorable apparition for Mercury viewing, as even at its highest it will not rise before twilight begins.

Sunday, April 21, 2024 will be when the comet 12P/Pons-Brooks will be at its closest to the Sun, and the week or two before this might be a good time to look for this comet with binoculars. If the trail of gas and dust the comet is giving off doesn’t change significantly (a very big and uncertain “if”) then the brightness of the comet should gradually increase to a maximum on April 21. However, interference from the light of the waxing Moon will also increase beginning April 9, and the comet will shift closer to the horizon each evening. As twilight ends on April 21 (at 8:53 PM EDT) the Moon will be 96% illuminated and the comet will be only 2.7 degrees above the horizon. April 24 will be the last evening that the comet will be above the horizon before evening twilight ends (at 8:57 PM).

Monday evening into Tuesday morning, April 22 to 23, 2024, the bright star Spica will appear to the lower right of the full Moon. Spica will be a little more than 1 degree from the Moon as twilight ends. They will be at their closest a little before midnight. Spica will be 1 degree from the Moon as the Moon reaches its highest for the night (at 12:31 AM) and will be 2.5 degrees from the Moon as twilight begins (at 5:18 AM).

The full Moon after next will be Tuesday evening, April 23, 2024, at 7:49 PM EDT. This will be on Wednesday from the UK, Ireland, and Portugal eastward across Europe, Africa, Asia, and Australia to the International Date Line in the mid-Pacific. The Moon will appear full for about 3 days centered on this time, from Monday morning to Thursday morning.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Team H.E.L.P.S. (High Efficiency Long-Range Power Solution) from The University of California, Santa Barbara won the $1 million grand prize in NASA’s Watts on the Moon Challenge. Their team developed a low-mass, high efficiency cable and featured energy storage batteries on both ends of their power transmission and energy storage system. Credit: NASA/GRC/Sara Lowthian-Hanna NASA has awarded a total of $1.5 million to two U.S. teams for their novel technology solutions addressing energy distribution, management, and storage as part of the agency’s Watts on the Moon Challenge. The innovations from this challenge aim to support NASA’s Artemis missions, which will establish long-term human presence on the Moon.
      This two-phase competition has challenged U.S. innovators to develop breakthrough power transmission and energy storage technologies that could enable long-duration Moon missions to advance the nation’s lunar exploration goals. The final phase of the challenge concluded with a technology showcase and winners’ announcement ceremony Friday at Great Lakes Science Center, home of the visitor center for NASA’s Glenn Research Center in Cleveland.
      “Congratulations to the finalist teams for developing impactful power solutions in support of NASA’s goal to sustain human presence on the Moon,” said Kim Krome-Sieja, acting program manager for NASA Centennial Challenges at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “These technologies seek to improve our ability to explore and make discoveries in space and could have implications for improving power systems on Earth.”
      The winning teams are:
      First prize ($1 million): H.E.L.P.S.  (High Efficiency Long-Range Power Solution) of Santa Barbara, California Second prize ($500,000): Orbital Mining Corporation of Golden, Colorado Four teams were invited to refine their hardware and deliver full system prototypes in the final stage of the competition, and three finalist teams completed their technology solutions for demonstration and assessment at NASA Glenn. The technologies were the first power transmission and energy storage prototypes to be tested by NASA in a vacuum chamber mimicking the freezing temperature and absence of pressure found at the permanently shadowed regions of the Lunar South Pole. The simulation required the teams’ power systems to demonstrate operability over six hours of solar daylight and 18 hours of darkness with the user three kilometers (nearly two miles) away from the power source.
      During this competition stage, judges scored the finalists’ solutions based on a Total Effective System Mass (TESM) calculation, which measures the effectiveness of the system relative to its size and weight – or mass – and the total energy provided by the power source. The highest-performing solution was identified based on having the lowest TESM value – imitating the challenges that space missions face when attempting to reduce mass while meeting the mission’s electrical power needs.
      Team H.E.L.P.S. (High Efficiency Long-Range Power Solution) from University of California, Santa Barbara, won the grand prize for their hardware solution, which had the lowest mass and highest efficiency of all competitors. The technology also featured a special cable operating at 800 volts and an innovative use of energy storage batteries on both ends of the transmission system. They also employed a variable radiation shield to switch between conserving heat during cold periods and disposing of excess heat during high power modes. The final 48-hour test proved their system design effectively met the power transmission, energy storage, and thermal challenges in the final phase of competition.
      Orbital Mining Corporation, a space technology startup, received the second prize for its hardware solution that also successfully completed the 48-hour testwith high performance. They employed a high-voltage converter system coupled with a low-mass cable and a lithium-ion battery.
      “The energy solutions developed by the challenge teams are poised to address NASA’s space technology priorities,” said Amy Kaminski, program executive for Prizes, Challenges, and Crowdsourcing in NASA’s Space Technology Mission Directorate at NASA Headquarters in Washington. “These solutions support NASA’s recently ranked civil space shortfalls, including in the top category of surviving and operating through the lunar night.”
      During the technology showcase and winners’ announcement ceremony, NASA experts, media, and members of the public gathered to see the finalist teams’ technologies and hear perspectives from the teams’ participation in the challenge. After the winners were announced, event attendees were also welcome to meet NASA astronaut Stephen Bowen.
      The Watts on the Moon Challenge is a NASA Centennial Challenge led by NASA Glenn. NASA Marshall Space Flight Center manages Centennial Challenges, which are part of the agency’s Prizes, Challenges, and Crowdsourcing program in the Space Technology Mission Directorate. NASA contracted HeroX to support the administration of this challenge.
      For more information on NASA’s Watts on the Moon Challenge, visit:
      https://www.nasa.gov/wattson
      -end-

      Jasmine Hopkins
      Headquarters, Washington
      321-432-4624
      jasmine.s.hopkins@nasa.gov
      Lane Figueroa 
      Marshall Space Flight Center, Huntsville, Ala. 
      256-544-0034
      lane.e.figueroa@nasa.gov 
      Brian Newbacher
      Glenn Research Center, Cleveland
      216-469-9726
      Brian.t.newbacher@nasa.gov
      Share
      Details
      Last Updated Sep 20, 2024 LocationGlenn Research Center Related Terms
      Science Mission Directorate View the full article
    • By European Space Agency
      On 18–19 September, Europe’s space industry from start-up companies to large system integrators gathered at ESA–ESTEC in the Netherlands for Industry Space Days 2024.
      View the full article
    • By NASA
      In September 1969, celebrations continued to mark the successful first human Moon landing two months earlier, and NASA prepared for the next visit to the Moon. The hometowns of the Apollo 11 astronauts held parades in their honor, the postal service recognized their accomplishment with a stamp, and the Smithsonian put a Moon rock on display. They addressed Congress and embarked on a 38-day presidential round the world goodwill tour. Eager scientists received the first samples of lunar material to study in their laboratories. Meanwhile, NASA prepared Apollo 12 for November launch as the astronauts trained for the mission with an increased emphasis on lunar science. Plans called for additional Moon landings in 1970, with spacecraft under construction and astronauts in training.
      Apollo 11
      For Apollo 11 astronauts Neil A. Armstrong, Michael Collins, and Edwin E. “Buzz” Aldrin, their busy August 1969 postflight schedule continued into September with events throughout the United States and beyond. These included attending hometown parades, dedicating a stamp to commemorate their historic mission, unveiling a display of a Moon rock they collected, addressing a Joint Meeting of Congress, and visiting contractor facilities that built parts of their rocket and spacecraft. They capped off the hectic month with their departure, accompanied by their wives, on a presidential round-the-world goodwill tour that lasted into early November.

      Left: Neil A. Armstrong at his hometown parade in Wapakoneta, Ohio. Image credit: Ohio Historical Society. Middle: Edwin E. “Buzz” Aldrin at his hometown parade in Montclair, New Jersey. Image credit: Star-Register. Right: Michael Collins at his adopted hometown parade in New Orleans, Louisiana. Image credit: AP Photo.
      On Sep. 6, each astronaut appeared at hometown events held in their honor. Apollo 11 Commander Armstrong’s hometown of Wapakoneta, Ohio, welcomed him with a parade and other events.  Montclair, New Jersey, held a parade to honor hometown hero Lunar Module Pilot (LMP) Aldrin. And New Orleans, Louisiana, the adopted hometown of Command Module Pilot (CMP) Michael Collins, honored him with a parade.

      Left: Apollo 11 astronauts Michael Collins, left, Neil A. Armstrong, and Edwin E. “Buzz” Aldrin with Postmaster General Winton M. Blount display an enlargement of the stamp commemorating the first Moon landing. Right: Aldrin, left, Collins, and Armstrong examine a Moon rock with Smithsonian Institution Director General of Museums Frank A. Taylor.
      Three days later, the astronauts reunited in Washington, D.C., where they appeared at the dedication ceremony of a new postage stamp that honored their mission. The U.S. Postal Service had commissioned artist Paul Calle in 1968 to design the stamp. The Apollo 11 astronauts had carried the stamp’s master die to the Moon aboard the Lunar Module (LM) Eagle and after its return to Earth the Postal Service used it to make the printing pages for the 10¢ postage stamp. At the National Postal Forum, Armstrong, Collins, and Aldrin unveiled the stamp together with Postmaster General Winton M. Blount, and each astronaut received an album with 30 of the “First Man on the Moon” stamps. On Sep. 15, the crew returned to Washington to present a two-pound rock they collected in the Sea of Tranquility during their historic Moon walk to Frank A. Taylor, the Director General of Museums at the Smithsonian Institution in Washington, D.C. The rock went on public display two days later at the Smithsonian’s Arts and Industries Building, the first time the public could view a Moon rock. 

      Left: Apollo 11 astronauts Michael Collins, left, Edwin E. “Buzz Aldrin, and Neil A. Armstrong each addressed a Joint Meeting of Congress, with Vice President Spiro T. Agnew and Speaker of the House John W. McCormack seated behind them. Middle: Apollo 11 astronauts’ wives Joan Aldrin, left, Patricia Collins, and Janet Armstrong receive recognition in the Visitors Gallery of the House Chamber. Right: The Apollo 11 astronauts and their wives cut at a cake at a reception at the Capitol.
      With their wives observing from the Visitors Gallery of the House of Representatives, on Sep. 16 Armstrong, Aldrin, and Collins addressed a Joint Meeting of Congress. In this same chamber in May 1961, President John F. Kennedy committed the nation to land a man on the Moon and return him safely to the Earth before the end of decade. In a sense, the astronauts reported on the safe and successful completion of that challenge. Speaker of the House John W. McCormack introduced the astronauts to the gathering, as Vice President Spiro T. Agnew looked on. Each astronaut reflected on the significance of the historic mission.
      Armstrong noted that their journey truly began in the halls of Congress when the Space Act of 1958 established NASA. Aldrin commented that “the Apollo lesson is that national goals can be met when there is a strong enough will to do so.” Collins shared a favorite quotation of his father’s to describe the value of the Apollo 11 mission: “He who would bring back the wealth of the Indies must take the wealth of the Indies with him.” Armstrong closed with, “We thank you, on behalf of all the men of Apollo, for giving us the privilege of joining you in serving – for all mankind.” After their speeches, the astronauts presented one American flag each to Vice President Agnew in his role as President of the Senate and to Speaker McCormack. The flags, that had flown over the Senate and House of Representatives, had traveled to the Moon and back with the astronauts. Speaker McCormack recognized the astronauts’ wives Jan Armstrong, Joan Aldrin, and Pat Collins for their contributions to the success of the Apollo 11 mission.

      Left: Neil A. Armstrong and Michael Collins address North American Rockwell employees in Downey, California. Right: Presidential Boeing VC-137B jet at Ellington Air Force Base in Houston to take the Apollo 11 astronauts and their wives on the Giantstep goodwill world tour. 
      On Sep. 26, Armstrong and Collins visited two facilities in California of North American Rockwell (NAR) Space Division, the company that built parts of the Saturn V rocket and Apollo 11 spacecraft. First, they stopped at the Seal Beach plant that built the S-II second stage of the rocket, where 3,000 employees turned out to welcome them. Armstrong commented to the assembled crowd that during the July 16, 1969, liftoff, “the S-II gave us the smoothest ride ever.” Collins added that despite earlier misgivings about using liquid hydrogen as a rocket fuel, “after the ride you people gave us, I sure don’t have doubts any longer.” About 7,000 employees greeted the two astronauts and showered them with confetti at their next stop, the facility in Downey that built the Apollo Command and Service Modules. Both Armstrong and Collins thanked the team for building an outstanding spacecraft that took them to the Moon and returned them safely to Earth. The astronauts inspected the Command Module (CM) for Apollo 14, then under construction at the plant.
      On the morning of Sep. 29, a blue and white Boeing VC-137B presidential jet touched down at Ellington Air Force Base in Houston. Neil and Jan Armstrong, Buzz and Joan Aldrin, and Mike and Pat Collins boarded the plane and joined their entourage of State Department and NASA support personnel. They departed Houston for Mexico City, the first stop on the Apollo 11 Giantstep goodwill world tour. They didn’t return to the United States until Nov. 5, having visited 29 cities in 24 countries, just nine days before Apollo 12 took off on humanity’s second journey to land on the Moon.

      Distribution of Apollo 11 lunar samples to scientists at the Lunar Receiving Laboratory at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston.
      Back in Houston, distribution to scientists of samples of the lunar material returned by the Apollo 11 astronauts began on Sep. 17 at the Lunar Receiving Laboratory (LRL) at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston. Daniel H. Anderson, curator of lunar samples at the LRL, supervised the distribution of approximately 18 pounds – about one-third of the total Apollo 11 lunar material – to 142 principal investigators from the United States and eight other countries according to prior agreements. The scientists examined the samples at their home institutions and reported their results at a conference in Houston in January 1970. They returned to the LRL any of the samples not destroyed during the examination process.
      Apollo 12
      In September 1969, NASA continued preparations for the second Moon landing mission, Apollo 12, scheduled for launch on Nov. 14. The Apollo 12 mission called for a pinpoint landing in Oceanus Procellarum (Ocean of Storms) near where the robotic spacecraft Surveyor 3 had touched down in April 1967. They planned to stay on the lunar surface for about 32 hours, compared to Apollo 11’s 21 hours, and conduct two surface spacewalks totaling more than 5 hours. During the first of their two excursions, the astronauts planned to deploy the Apollo Lunar Surface Experiments Package (ALSEP) and collect lunar samples. During the second spacewalk, they planned to visit Surveyor 3 and remove some of its equipment for return to Earth and collect additional lunar samples. The Apollo 12 prime crew of Commander Charles “Pete” Conrad, CMP Richard F. Gordon, and LMP Alan L. Bean and their backups David R. Scott, Alfred M. Worden, and James B. Irwin continued intensive training for the mission.

      Left: The Apollo 12 Saturn V exits the Vehicle Assembly Building on its way to Launch Pad 39A. Middle: The Apollo 12 Saturn V rolling up the incline as it approaches Launch Pad 39A. Right: Apollo 12 astronauts Alan L. Bean, left, Richard F. Gordon, and Charles “Pete” Conrad pose in front of their Saturn V during the rollout to the pad.
      On Sep. 8, the Saturn V rocket with the Apollo 12 spacecraft on top rolled out from Kennedy Space Center’s (KSC) Vehicle Assembly Building to Launch Pad 39A. The rocket made the 3.5-mile trip to the pad in about 6 hours, with Conrad, Gordon, and Bean on hand to observe the rollout. Workers at the pad spent the next two months thoroughly checking out the rocket and spacecraft to prepare it for its mission to the Moon. The two-day Flight Readiness Test at the end of September ensured that the launch vehicle and spacecraft systems were in a state of flight readiness. In addition to spending many hours in the spacecraft simulators, Conrad and Bean as well as their backups Scott and Irwin rehearsed their lunar surface spacewalks including the visit to Surveyor 3. Workers at NASA’s Jet Propulsion Laboratory in Pasadena, California, shipped an engineering model of the robotic spacecraft to KSC, and for added realism, engineers there mounted the model on a slope to match its relative position on the interior of the crater in which it stood on the Moon. Conrad and Scott used the Lunar Landing Training Vehicle (LLTV) at Ellington Air Force Base (AFB) near MSC to train for the final 200 feet of the descent to the lunar surface.

      Left: Apollo 12 astronauts Alan L. Bean, left, and Charles “Pete” Conrad rehearse their lunar surface spacewalks at NASA’s Kennedy Space Center in Florida. Middle: Conrad trains in the use of the Hasselblad camera he and Bean will use on the Moon. Right: Bean, left, and Conrad train with an engineering model of a Surveyor spacecraft.
      With regard to lunar geology training, the Apollo 12 astronauts had one advantage over their predecessors – they could inspect actual Moon rocks and soil returned by the Apollo 11 crew. On Sep. 19, Conrad and Bean arrived at the LRL, where Lunar Sample Curator Anderson met them. Anderson brought out a few lunar rocks and some lunar soil that scientists had already tested and didn’t require to be stored under vacuum or other special conditions, allowing Conrad and Bean to examine them closely and compare them with terrestrial rocks and soil they had seen during geology training field trips. This first-hand exposure to actual lunar samples significantly augmented Conrad and Bean’s geology training. To highlight the greater emphasis placed on lunar surface science, the Apollo 12 crews (prime and backup) went on six geology field trips compared to just one for the Apollo 11 crews.

      Left: Apollo 12 astronauts Charles “Pete” Conrad, left, Richard F. Gordon, and Alan L. Bean prepare for water egress training aboard the MV Retriever in the Gulf of Mexico. Middle: Wearing Biological Isolation Garments and assisted by a decontamination officer, standing in the open hatch, Apollo 12 astronauts await retrieval in the life raft. Right: The recovery helicopter hoists the third crew member using a Billy Pugh net.
      Although the Apollo 11 astronauts returned from the Moon in excellent health and scientists found no evidence of any harmful lunar microorganisms, NASA managers still planned to continue the postflight quarantine program for the Apollo 12 crew members, their spacecraft, and the lunar samples they brought back. The first of these measures involved the astronauts donning Biological Isolation Garments (BIG) prior to exiting the spacecraft after splashdown. Since they didn’t carry the BIGs with them to the Moon and back, one of the recovery personnel, also clad in a BIG, opened the hatch to the capsule after splashdown and handed the suits to the astronauts inside, who donned them before exiting onto a life raft.
      On Sep. 20, the Apollo 12 astronauts rehearsed these procedures, identical to the ones used after the first Moon landing mission, in the Gulf of Mexico near Galveston, Texas, using a boilerplate Apollo CM and supported by the Motorized Vessel (MV) Retriever. As it turned out, NASA later removed the requirement for the crew to wear BIGs, and after their splashdown the Apollo 12 crew wore overalls and respirators.
      Apollo 13

      Left: Apollo 13 prime crew members James A. Lovell and Thomas K. “Ken” Mattingly in the Command Module (CM) for an altitude chamber test – Fred W. Haise is out of the picture at right – at NASA’s Kennedy Space Center in Florida. Middle: Apollo 13 backup astronaut John L. “Jack” Swigert prepares to enter the CM for an altitude chamber test. Right: Apollo 13 backup crew members John W. Young, left, and Swigert in the CM for an altitude chamber test – Charles M. Duke is out of the picture at right.
      Preparations for Apollo 13 continued in parallel. In KSC’s Manned Spacecraft Operations Building (MSOB), Apollo 13 astronauts completed altitude chamber tests of their mission’s CM and LM. Prime crew members Commander James A. Lovell, CMP Thomas K. “Ken” Mattingly, and LMP Fred W. Haise completed the CM altitude test on Sep. 10, followed by their backups John W. Young, Jack L. Swigert, and Charles M. Duke on Sep. 17. The next day, Lovell and Haise completed the altitude test of the LM, followed by Young and Duke on Sep. 22. At the time of these tests, Apollo 13 planned to launch on March 12, 1970, on a 10-day mission to visit the Fra Mauro highlands region of the Moon. To prepare for their lunar surface excursions, Lovell, Haise, Young, and Duke, accompanied by geologist-astronaut Harrison H. “Jack” Schmitt and Caltech geologist Leon T. “Lee” Silver, spent the last week of September in Southern California’s Orocopia Mountains immersed in a geology boot camp.
      Apollo 14 and 15

      Left: At North American Rockwell’s (NAR) Downey, California, facility, workers assemble the Apollo 14 Command Module (CM), left, and Service Module. Right: NAR engineers work on the CM originally intended for Apollo 15.
      Looking beyond Apollo 13, the Apollo 14 crew of Commander Alan B. Shepard, CMP Stuart A. Roosa, and LMP Edgar D. Mitchell and their backups Eugene A. Cernan, Ronald E. Evans, and Joe H. Engle had started training for their mission planned for mid-year 1970. At the NAR facility in Downey, engineers prepared the CM and SM and shipped them to KSC in November 1969. Also at Downey, workers continued assembling the CM and SM planned for the Apollo 15 mission in late 1970. As events transpired throughout 1970, plans for those two missions changed significantly.
      NASA management changes

      Left: Portrait of NASA astronaut James A. McDivitt. Right: NASA Administrator Thomas O. Paine, right, swears in George M. Low as NASA deputy administrator.
      On Sept. 25, NASA appointed veteran astronaut James A. McDivitt as the Manager of the Apollo Spacecraft Program Office at MSC. McDivitt, selected as an astronaut in 1962, commanded two spaceflights, Gemini IV in June 1965 that included the first American spacewalk and Apollo 9 in March 1969, the first test of the LM in Earth orbit. He succeeded George M. Low who, in that position since April 1967, led the agency’s efforts to recover from the Apollo 1 fire and originated the idea to send Apollo 8 on a lunar orbital mission. Under his tenure, NASA successfully completed five crewed Apollo missions including the first human Moon landing. MSC Director Robert R. Gilruth initially assigned Low to plan future programs until Nov. 13, when President Richard M. Nixon nominated him as NASA deputy administrator. The Senate confirmed Low’s nomination on Nov. 25, and NASA Administrator Thomas O. Paine swore him in on Dec. 3. Low filled the position vacant since March 20, 1969.
      To be continued …
      News from around the world in September 1969:
      September 2 – The first automated teller machine is installed at a Chemical Bank branch in Rockville Center, New York.
      September 13 – Hannah-Barbera’s “Scooby Doo, Where Are You?” debuts on CBS.
      September 20 – John Lennon announces in a private meeting his intention to leave The Beatles.
      September 22 – San Francisco Giant Willie Mays becomes the second player, after Babe Ruth, to hit 600 career home runs.
      September 23 – “Butch Cassidy and the Sundance Kid,” starring Paul Newman and Robert Redford, premieres.
      September 24 – Tokyo’s daily newspaper Asahi Shimbun announced that it would be the first to deliver an edition electronically, using a FAX machine that could print a page in five minutes.
      September 26 – Apple Records releases “Abbey Road,” The Beatles’ 11th studio album.
      Explore More
      8 min read 65 Years Ago: First Powered Flight of the X-15 Hypersonic Rocket Plane 
      Article 2 days ago 8 min read 55 Years Ago: Space Task Group Proposes Post-Apollo Plan to President Nixon
      Article 3 days ago 7 min read 15 Years Ago: Japan launches HTV-1, its First Resupply Mission to the Space Station
      Article 1 week ago View the full article
    • By NASA
      18 Min Read The Marshall Star for September 18, 2024
      Marshall Welcomes NASA Chief Scientist for Climate, Science Town Hall
      NASA Chief Scientist and Senior Climate Advisor Kate Calvin, center left, joins team members at the agency’s Marshall Space Flight Center for a Climate and Science Town Hall on Sept. 17 in Activities Building 4316. Calvin took part in a question-and-answer session during her visit that was live streamed agencywide. Joining her in the session were, from left, Rahul Ramachandran, research scientist and senior data science strategist for the Science Research and Project Division at Marshall; Marshall Earth Science Branch Chief Andrew Molthan; Marshall Chief Scientist Renee Weber; Marshall Center Director Joseph Pelfrey; and Marshall Science and Technology Office Manager Julie Bassler, who moderated the panel. (NASA/Krisdon Manecke)
      Molthan answers a question during the Climate Town Hall. Topics discussed during the town hall included the response by NASA and Marshall to climate change, the effects of climate change on NASA and Marshall objectives, and how NASA and Marshall are helping organizations around the world respond to climate change. (NASA/Krisdon Manecke)
      › Back to Top
      Space Station Payload Operations Director at Marshall Carries on Family Legacy
      By Celine Smith
      Jacob Onken remembers his father, Jay Onken, waking him up one morning at 3 a.m. when he was 9 years old to watch the International Space Station fly overhead. At the time, his dad was a POD – a payload operations director – at NASA’s Marshall Space Flight Center leading flight controllers who support science experiments aboard the orbiting laboratory 24 hours a day, 365 days a year.
      Jacob Onken is a second-generation payload operations director at NASA’s Marshall Space Flight Center. His father, Jay Onken, also served in the role in 1999. The father and son are the first family members at Marshall to both hold that position. NASA/Danielle Burleson Now, the younger Onken has started a new chapter in his career as a POD at Marshall, following in his father’s footsteps. The father and son are the first family members to serve in this role at Marshall. Onken said that happened by chance, despite growing up NASA-adjacent.
      Jacob Onken began his aerospace career with an internship at Teledyne Brown Engineering while earning a bachelor’s degree in computer science at Auburn University in Alabama. The internship took him to Marshall’s Payload Operations Integration Center – a place his father had worked and often taken him when he was younger. Colleagues warmly remembered the veteran POD and welcomed to the role.
      After graduating with a bachelor’s degree in computer science in 2018, Onken worked as a contractor with Teledyne for NASA. As a data management coordinator (DMC) he sat console and learned to operate data and video systems aboard the space station.
      “I really found myself out here, and I loved it,” he said. “Working in space flight operations is insanely cool and beneficial to humanity.”
      A young Jacob Onken smiles for a family photo while visiting Marshall with his father, Jay Onken, and sister, Elizabeth Onken, in 1998. Photo courtesy of Jacob Onken After training for over a year, he earned his DMC certification and later was assigned as the lead DMC for space station Expeditions 62 and 63. He later served as the DMC training lead, preparing new flight controllers for certification. In this role, he trained 13 DMCs for certification, using a people-based leadership approach he learned from his father.
      Well before the space station flew, Jay Onken was an aerospace engineer whose early career assignments included orbit analysis for the space shuttle and attitude selection for several Spacelab missions. He later was one of the first flight directors for NASA’s Chandra X-Ray Observatory, and following its launch, joined the first group of space station PODs. 
      He went on to become the director of Marshall’s Mission Operations Laboratory in 2005, deputy chief engineer for the Space Launch System in 2014, and director of Marshall’s Space Systems Department in 2016. He retired in 2018 and died in 2021 after battling cancer.
      Jacob Onken continues Jay Onken’s legacy. Colleagues say he embodies similar traits. He often reflects on his father’s advice.
      From left, Jacob Onken during his payload operations director (POD) certification ceremony with former PODs Carrie Olsen, Sam Digesu, Pat Patterson, and Tina Melton in the Payload Operations Center at Marshall. NASA/Craig Cruzen “I was lucky to have my dad, who understood the environment that I was working in,” he said. “I knew his work meant a lot to him. We were always close, but we got even closer. Bonding over the same things was special.”
      In 2022, Onken became the DMC flight operations lead, supporting real-time console and planning operations for that team. In 2023, he joined the Operations Directors Office. After another rigorous training curriculum, he completed his POD certification in January 2024.
      “It’s rewarding and heartwarming to know that the future of space flight operations is in good hands with the new generation,” said Craig Cruzen, the POD training lead who oversaw Onken’s instruction and certification.
      Onken leads a team that communicates with astronauts about the scientific experiments they’re performing on the space station and ensures their safety from the ground.
      As a payload operations director at NASA’s Marshall Space Flight Center, Jacob Onken leads flight controllers in the International Space Station Payload Operations and Integration Team, following in his father’s footsteps. Onken and his father, Jay Onken, are the first family members to both serve in the role at Marshall. (NASA) “My role requires teamwork, trust, and communication,” he said. “I ask myself, ‘How can we work together effectively to get the job done?’”
      While he holds the same position his father held, the space station has evolved, becoming a convergence of science, technology, and innovation. “Jay Onken was a POD when the International Space Station was just beginning,” said former POD Carrie Olsen, now manager of NASA’s Next Gen STEM K-12 education project and a family friend to the Onkens. “The challenge the space station faced back then was its newness,” Olsen explained. “We were still figuring out how to best work with Johnson Space Center, scientists around the world, international partners, and the space station program.”
      Though Marshall had a rich operations history working programs like Apollo, Space Shuttle, Skylab, and Chandra, the space station was truly unlike anything that had come before.
      “Jay’s leadership qualities and integrity helped to build trust across the organization and the agency. This allowed Marshall’s operations team to excel and be recognized as the premier space station science operations center across the globe,” said his former colleague Sam Digesu, currently technical manager of the Payload and Mission Operations Division. “Jacob is on the that same path.”
      Jacob Onken says one of his career goals is to support payload operations on the lunar surface for the Artemis missions. “My dad was around when it started, and hopefully, I’m around to see it through.”
      › Back to Top
      NASA Hosts Observe the Moon Night at U.S. Space & Rocket Center
      The Science Wizard, David Hagerman, right center, entertains the crowd with one of his shows Sept. 14 during Observe the Moon Night at the U.S. Space & Rocket Center in Huntsville. The free public event was part of International Observe the Moon Night, a worldwide celebration encouraging observation, appreciation, and understanding of the Moon and its connection to NASA exploration and discovery. NASA’s Planetary Missions Program Office hosted the event at the rocket center. The Planetary Missions Program Office is located at NASA’s Marshall Space Flight Center. (NASA/Lane Figueroa)
      Audience members react during one of Hagerman’s demonstrations at Observe the Moon Night. (NASA/Lane Figueroa)
      Attendees visit a NASA display during the Observe the Moon Night event. (NASA/Daniel Horton)
      › Back to Top
      ‘Legacy of the Invisible’ Event to Celebrate Marshall’s Contributions to Astrophysics
      The public is invited to join NASA’s Marshall Space Flight Center for a special celebration of art and astronomy in downtown Huntsville on Sept. 20 from 6 to 8 p.m. The event will include a dedication of Huntsville’s newest art installation, “No Straight Lines,” by local artist Float. 
      The celebratory event, “Legacy of the Invisible,” will take place at the corner of Clinton Avenue and Washington Street, coinciding with the 25th anniversary of NASA’s Chandra X-ray Observatory. Attendees will have a chance to meet and hear from NASA experts, as well as meet Float, the artist behind “No Straight Lines,” which aims to honor Huntsville’s rich scientific legacy in astrophysics and highlight the groundbreaking discoveries made possible by Huntsville scientists and engineers.
      Enjoy live music, art vendors, food, and more.
      Learn more about Chandra’s 25th Anniversary.
      › Back to Top
      SLS Program Manager John Honeycutt Delivers Keynote at National Space Club Breakfast
      John Honeycutt, front center, manager of NASA’s SLS (Space Launch System) Program at the agency’s Marshall Space Flight Center, delivers the keynote address at the National Space Club Breakfast on Sept. 17 in Huntsville. Honeycutt provided a detailed presentation to the audience with insight into the operations, accomplishments, and future goals for the SLS Program. The SLS rocket is a powerful, advanced launch vehicle for a new era of human exploration beyond Earth’s orbit. “All elements of the SLS Block I for the first crewed lunar mission of the 21st century are either complete and ready for stacking or are nearing completion,” Honeycutt said. “For more than 60 years, this town – this community – has led the effort to explore space. We aren’t done. SLS and Artemis are the next chapter in that legacy. Led and enabled by folks in this room, at Marshall, and here in North Alabama, we will launch missions to the Moon that will re-write history books, lead to scientific discoveries, and pave the way to Mars.” (NASA/Serena Whitfield)
      › Back to Top
      NASA’s Lunar Challenge Participants to Showcase Innovations During Awards
      NASA‘s Watts on the Moon Challenge, designed to advance the nation’s lunar exploration goals under the Artemis campaign by challenging United States innovators to develop breakthrough power transmission and energy storage technologies that could enable long-duration Moon missions, concludes Sept. 20 at the Great Lakes Science Center in Cleveland, Ohio.
      The Sun rises above the Flight Research Building at NASA’s Glenn Research Center in Cleveland.Credit: NASA “For astronauts to maintain a sustained presence on the Moon during Artemis missions, they will need continuous, reliable power,” said Kim Krome-Sieja, acting program manager, Centennial Challenges at NASA’s Marshall Space Flight Center. “NASA has done extensive work on power generation technologies. Now, we’re looking to advance these technologies for long-distance power transmission and energy storage solutions that can withstand the extreme cold of the lunar environment.”
      The technologies developed through the Watts on the Moon Challenge were the first power transmission and energy storage prototypes to be tested by NASA in an environment that simulates the extreme cold and weak atmospheric pressure of the lunar surface, representing a first step to readying the technologies for future deployment on the Moon. Successful technologies from this challenge aim to inspire, for example, new approaches for helping batteries withstand cold temperatures and improving grid resiliency in remote locations on Earth that face harsh weather conditions.
      During the final round of competition, finalist teams refined their hardware and delivered a full system prototype for testing in simulated lunar conditions at NASA’s Glenn Research Center. The test simulated a challenging power system scenario where there are six hours of solar daylight, 18 hours of darkness, and the user is three kilometers from the power source.
      “Watts on the Moon was a fantastic competition to judge because of its unique mission scenario,” said Amy Kaminski, program executive, Prizes, Challenges, and Crowdsourcing, Space Technology Mission Directorate at NASA Headquarters. “Each team’s hardware was put to the test against difficult criteria and had to perform well within a lunar environment in our state-of-the-art thermal vacuum chambers at NASA Glenn.”
      Each finalist team was scored based on Total Effective System Mass (TESM), which determines how the system works in relation to its mass. At the awards ceremony, NASA will award $1 million to the top team who achieves the lowest TESM score, meaning that during testing, that team’s system produced the most efficient output-to-mass ratio. The team with the second lowest mass will receive $500,000. The awards ceremony stream live on NASA Glenn’s YouTube channel and NASA Prize’s Facebook page.
      The Watts on the Moon Challenge is a NASA Centennial Challenge led by NASA Glenn. NASA Marshall manages Centennial Challenges, which are part of the agency’s Prizes, Challenges, and Crowdsourcing program in the Space Technology Mission Directorate. NASA has contracted HeroX to support the administration of this challenge.
      › Back to Top
      Technicians Work to Prepare Europa Clipper for Propellant Loading
      NASA’s Europa Clipper mission moves closer to launch as technicians worked Sept. 11 inside the Payload Hazardous Servicing Facility to prepare the spacecraft for upcoming propellant loading at the agency’s Kennedy Space Center. 
      Technicians work to complete operations before propellant load occurs ahead of launch for NASA’s Europa Clipper spacecraft inside the Payload Hazardous Servicing Facility at the agency’s Kennedy Space Center on Sept. 11.NASA/Kim Shiflett The spacecraft will explore Jupiter’s icy moon Europa, which is considered one of the most promising habitable environments in the solar system. The mission will research whether Europa’s subsurface ocean could hold the conditions necessary for life. Europa could have all the “ingredients” for life as we know it: water, organics, and chemical energy.
      Europa Clipper’s launch period opens Oct. 10. It will lift off on a SpaceX Falcon Heavy rocket from Kennedy’s Launch Complex 39A. The spacecraft then will embark on a journey of nearly six years and 1.8 billion miles before reaching Jupiter’s orbit in 2030.
      The spacecraft is designed to study Europa’s icy shell, underlying ocean, and potential plumes of water vapor using a gravity science experiment alongside a suite of nine instruments including cameras, spectrometers, a magnetometer, and ice-penetrating radar. The data Europa Clipper collects could improve our understanding of the potential for life elsewhere in the solar system.
      Managed by Caltech in Pasadena, California, NASA’s Jet Propulsion Laboratory leads the development of the Europa Clipper mission in partnership with APL for NASA’s Science Mission Directorate. APL designed the main spacecraft body in collaboration with JPL and NASA’s Goddard Space Flight Center. The Planetary Missions Program Office at NASA’s Marshall Space Flight Center executes program management of the Europa Clipper mission.
      Learn more about the mission here.
      › Back to Top
      Marshall to Present 2024 Small Business Awards Sept. 19
      NASA’s Marshall Space Flight Center will host its annual Small Business Industry and Advocate Awards ceremony Sept. 19. The awards recognize small businesses and small business champions from government and industry for their outstanding achievements in fiscal year 2024.
      The ceremony will take place during the 38th meeting of Marshall’s Small Business Alliance, from 8 a.m. to 12:30 p.m. CDT at the U.S. Space & Rocket Center’s Davidson Center for Space Exploration in Huntsville. The event will also highlight new opportunities for small businesses to take part in NASA’s procurement processes. Afterward, attendees will have the open opportunity to network with NASA officials, prime contractors, and other members of Marshall’s small business community. Exhibitors will provide valuable information to support their business.
      NASA speakers include:
      Dwight Deneal, assistant administrator, Office of Small Business Programs, NASA Headquarters Joseph Pelfrey, center director, NASA Marshall John Cannaday, director, Office of Procurement, NASA Marshall Davey Jones, strategy lead, NASA Marshall David Brock, small business specialist, Office of Small Business Programs, NASA Marshall For 17 years, the Marshall Small Business Alliance has aided small businesses in pursuit of NASA procurement and subcontracting opportunities. Its primary focus is to inform, educate, and advocate on behalf of the small business community. At each half day meeting, businesses will gain valuable insight to guide them in their marketing endeavors.
      Learn more about Marshall’s small business initiatives.
      › Back to Top
      Printed Engines Propel Next Industrial Revolution
      In the fall of 2023, NASA hot fire tested an aluminum 3D printed rocket engine nozzle. Aluminum is not typically used for 3D printing because the process causes it to crack, and its low melting point makes it a challenging material for rocket engines. Yet the test was a success.
      Printing aluminum engine parts could save significant time, money, and weight for future spacecraft. Elementum 3D Inc., a partner on the project, is now making those benefits available to the commercial space industry and beyond.
      A rocket engine nozzle 3D printed from Elementum 3D’s A6061 RAM2 aluminum alloy undergoes hot fire testing at NASA’s Marshall Space Flight Center.Credit: NASA The hot fire test was the culmination of a relationship between NASA and Elementum that began shortly after the company was founded in 2014 to make more materials available for 3D printing. Based in Erie, Colorado, the company infuses metal alloys with particles of other materials to alter their properties and make them amenable to additive manufacturing. This became the basis of Elementum’s Reactive Additive Manufacturing (RAM) process.
      NASA adopted the technology, qualifying the RAM version of a common aluminum alloy for 3D printing. The agency then awarded funding to Elementum 3D and another company to print the experimental Broadsword rocket engine, demonstrating the concept’s viability.
      Meanwhile, a team at NASA’s Marshall Space Flight Center was working to adapt an emerging technology to print larger engines. In 2021, Marshall awarded an Announcement of Collaborative Opportunity to Elementum 3D to modify an aluminum alloy for printing in what became the Reactive Additive Manufacturing for the Fourth Industrial Revolution project.
      The project also made a commonly used aluminum alloy available for large-scale 3D printing. It is already used in large satellite components and could be implemented into microchip manufacturing equipment, Formula 1 race car parts, and more. The alloy modified for the Broadsword engine is already turning up in brake rotors and lighting fixtures. These various applications exemplify the possibilities that come from NASA’s collaboration and investment in industry. 

      Read more here.
      › Back to Top
      Hubble Finds More Black Holes than Expected in Early Universe
      With the help of NASA’s Hubble Space Telescope, an international team of researchers led by scientists in the Department of Astronomy at Stockholm University has found more black holes in the early universe than has previously been reported. The new result can help scientists understand how supermassive black holes were created.
      This is a new image of the Hubble Ultra Deep Field. The first deep imaging of the field was done with Hubble in 2004. The same survey field was observed again by Hubble several years later, and was then reimaged in 2023. By comparing Hubble Wide Field Camera 3 near-infrared exposures taken in 2009, 2012, and 2023, astronomers found evidence for flickering supermassive black holes in the hearts of early galaxies. The survey found more black holes than predicted. NASA, ESA, Matthew Hayes (Stockholm University); Acknowledgment: Steven V.W. Beckwith (UC Berkeley), Garth Illingworth (UC Santa Cruz), Richard Ellis (UCL); Image Processing: Joseph DePasquale (STScI) Currently, scientists do not have a complete picture of how the first black holes formed not long after the big bang. It is known that supermassive black holes, that can weigh more than a billion suns, exist at the center of several galaxies less than a billion years after the big bang.
      “Many of these objects seem to be more massive than we originally thought they could be at such early times – either they formed very massive or they grew extremely quickly,” said Alice Young, a PhD student from Stockholm University and co-author of the study  published in The Astrophysical Journal Letters.
      Black holes play an important role in the lifecycle of all galaxies, but there are major uncertainties in our understanding of how galaxies evolve. In order to gain a complete picture of the link between galaxy and black hole evolution, the researchers used Hubble to survey how many black holes exist among a population of faint galaxies when the universe was just a few percent of its current age.
      Initial observations of the survey region were re-photographed by Hubble after several years. This allowed the team to measure variations in the brightness of galaxies. These variations are a telltale sign of black holes. The team identified more black holes than previously found by other methods.
      The new observational results suggest that some black holes likely formed by the collapse of massive, pristine stars during the first billion years of cosmic time. These types of stars can only exist at very early times in the universe, because later-generation stars are polluted by the remnants of stars that have already lived and died. Other alternatives for black hole formation include collapsing gas clouds, mergers of stars in massive clusters, and “primordial” black holes that formed (by physically speculative mechanisms) in the first few seconds after the big bang. With this new information about black hole formation, more accurate models of galaxy formation can be constructed.
      “The formation mechanism of early black holes is an important part of the puzzle of galaxy evolution,” said Matthew Hayes from the Department of Astronomy at Stockholm University and lead author of the study. “Together with models for how black holes grow, galaxy evolution calculations can now be placed on a more physically motivated footing, with an accurate scheme for how black holes came into existence from collapsing massive stars.”
      Astronomers are also making observations with NASA’s James Webb Space Telescope to search for galactic black holes that formed soon after the big bang, to understand how massive they were and where they were located.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      NASA’s Marshall Space Flight Center was the lead field center for the design, development, and construction of the space telescope.
      › Back to Top
      View the full article
    • By Space Force
      U.S. Space Force senior leaders discussed the Personnel Management Act during a panel at the Air and Space Force’s Air, Space and Cyber Conference at National Harbor, Maryland, Sept. 18.

      View the full article
  • Check out these Videos

×
×
  • Create New...