Jump to content

Langley Celebrates Women’s History Month: The Langley ASIA-AQ Team


Recommended Posts

  • Publishers
Posted

13 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

In honor of Women’s History Month, we caught up with the ASIA-AQ team on the other side of the Earth and asked the women from Langley about their inspirations and challenges as scientists.

The ASIA-AQ (Airborne and Satellite Investigation of Asian Air Quality) mission is an international cooperative field study designed to address local air quality challenges. ASIA-AQ will contribute to improving the integration of satellite observations with existing air quality ground monitoring and modeling efforts across Asia.

picture1-574b29.jpg?w=1430
Langley’s Angelique Demetillo, center, in her flight suit after a flight in the Philippines for the ASIA-AQ mission along with mission partners from the Philippine Department of Environment and Natural Resources (DENR) and Manila Observatory.
NASA/Kevin Rohr

Mary Angelique G. Demetillo, Ph.D., NASA Post-doctoral Program Fellow and instrument operator on board Langley’s G-III aircraft, operates the GeoCAPE Airborne Spectrometer (GCAS) remote sensor.

What do you do at Langley? 

I focus on using high-resolution remote-sensing measurements to study air pollution inequality in cities. Currently, I am using airborne LIDAR measurements to understand lower tropospheric ozone variability over Houston, Texas. 

As a child, what did you want to do when you grew up? 

I just wanted to be helpful–at first, I wanted to be a teacher and then a doctor and then a biomedical engineer. Then, I found atmospheric chemistry research and discovered I could combine the knowledge I learned in the classroom to 1) work with scientific instruments that could measure the unseen, 2) to understand the world around me, and 3) provide policy-useful information towards addressing air pollution inequality.

Are there obstacles you have had to overcome to be successful

Hmmmm, this is a hard one. I think I was very lucky to have access to good education and food and housing security so I could focus on my studies such that any obstacles I encountered really ended up being stepping-stones in my development as a scientist. Growing up in America under immigrant parents, it was tricky navigating the reconciliation of two very different cultural and generational perspectives. The largest impact of this dichotomy was that it wasn’t common for first-generation Filipina-Americans to be anything other than nurses or in the medical field. As such, I didn’t really know being a scientist was an accessible career to me and was even actively discouraged to pursue it. But I’m glad I did, and still am, and feel incredibly lucky to be able to do great work with awesome people while navigating this pipeline.

Were you treated differently as a woman in a science field? 

I may have been and didn’t recognize it since I was very shy and quiet. However, I did realize being confident in my abilities and knowledge and speaking up for myself and others were critical to participating and succeeding in male-dominated fields like physics and atmospheric science.

Who were your mentors growing up? Who are your mentors now?

I have been incredibly lucky to come across many people from whom I learned different things and looked up to in different ways. Most notably however, were my elementary school computer teacher, my 5th grade science teacher, my graduate school advisor, and my current postdoc advisor! Each of them were/are critical to developing my self-confidence as a scientist and person. 

What’s the best part of your job? 

It’s hard to pick! You can’t beat the work –getting to fly and work closely with the instrument/measurement teams whose data I use for my research; collaboration across cultures and expertise on field campaigns; and exercising scientific precision, accuracy, and creativity for data-driven, policy-relevant solutions is a surreal job to have. But since I’m still building my career, I would really have to say the people are the best part—from speaking with experienced scientists, mechanics, engineers, and project managers to growing alongside the next-generation atmospheric chemists as we shape our contribution to the field as individuals and cohort, makes the work even more fun and exciting.

Why does science matter to you? 

Science matters to me because it served as a platform through which I could understand the world around me. As I grow more in this field, I am also learning science truly requires collaboration. Science can serve as a testbed for new solutions and innovations while bridging the gap between language, culture, and backgrounds. And with increasing interdisciplinary science, it will not only challenge our ability to connect different perspectives of information together, but also strengthen our connections to each other.

picture2-c032b6.jpg?w=1430
Langley’s Francesco Gallo in front of NASA Armstrong’s DC-8 aircraft in South Korea during ASIA-AQ.
NASA/Eddie Winstead

Francesco Gallo, Ph.D., research scientist, operates Langley Aerosol Research Group (LARGE) instruments on board Armstrong’s DC-8 aircraft for ASIA-AQ.

What do you do at Langley?

I do a lot of data analysis of aerosol datasets from previous and current NASA campaigns.

Are there obstacles you have had to overcome to be successful? 

I’ve always been very much supported by my family and mentors. Being a foreign national has been often an obstacle. Luckily, becoming a lawful permanent resident last year has helped things improve. 

Were you treated differently as a woman in a science field?

No.

What’s the best part of your job?

Thinking I can somehow support the understanding of climate change for better environmental justice.

picture3-59c91d.jpg?w=468
Langley’s Carolyn Jordan with the LARGE instrument panel she operates on NASA Armstrong’s DC-8 aircraft at Clark Air Base, Philippines.
NASA/Eddie Winstead

Carolyn Jordan, Ph.D., research scientist senior, is a member of the Langley Aerosol Research Group (LARGE). For ASIA-AQ, Jordan operates a rack on Armstrong’s DC-8 that measures aerosol properties and is developing a new measurement called the Spectral Aerosol Light Absorption Detector (SALAD).

What do you do at Langley?

Primarily, I am a data analyst with LARGE working up various data sets and writing papers focused on our aerosol measurements.  I also work in the lab with other members of our group.  We have developed two new ground-based measurement capabilities for spectral extinction (SpEx) and absorption.  We are now transitioning those methods to enable them to be used from airborne platforms.

As a child, what did you want to do when you grew up?

I wanted to be an astronaut and even wrote to NASA as a young teenager (13-14 or so) to ask what one had to do to become one.  They didn’t tell me, but they did send me a lovely photograph of Saturn!

Are there obstacles you have had to overcome to be successful?

I grew up in a tiny farm town in rural Wisconsin, but I was very fortunate to be surrounded by people who didn’t think it was crazy to want to be an astronaut.  I was also extremely fortunate to have excellent teachers in high school and college who were supportive and helpful when I questioned whether I could manage the material as a physics major.  I was lucky my obstacles were few, and I have been very fortunate in the opportunities that came my way.

Were you treated differently as a woman in a science field?

Sometimes.  The important thing is even in the 1980s (my college, grad school, and early career years), those who did so were considered to be out of line, so I never paid much attention to those who treated me as if I didn’t belong.

Who were your mentors growing up? Who are your mentors now?

My high school teachers Dr. Neil C. Goodspeed, Mrs. Peggy Johnson, Mr. Ted Moskonas, and Ms. Pam Wilson, my college professors Dr. Dino Zei, Dr. Wayne Broshar, and Dr. Mary Williams-Norton.  At this point in my career I don’t have mentors so much as excellent colleagues from whom I continue to learn a great deal.

What’s the best part of your job?

I have great colleagues and interesting research.  Even after all these years, I still have a great time doing the work that I do.  The most interesting thing for me is to look at the data.  One always finds something interesting and often something unexpected.  Working to understand what is there is the most fun for me.

Why does science matter to you?

Science is how we learn things.  It’s how we identify solutions to problems.  But there is also something to be said for expanding our knowledge of the universe we live in for its own sake.

What’s next?

I don’t know, we’ll see where the data tells us to look.

picture4-910322.jpg?w=1527
Langley’s Laura Judd and Barry Lefer from NASA HQ after a science flight at Clark Air Base, Philippines.
NASA/Barry Lefer

Laura Judd, Ph.D., research physical scientist and platform scientist for Langley’s G-III aircraft on ASIA-AQ.

What do you do on the ASIA-AQ mission?

I lead science flight planning and execution with our remote sensing payload and instrument and aircraft teams.  In the field, I spend my days working with the forecasting team to identify flight opportunities and real-time decision-making during science flights. I also continue my role I did as an instrument team member, which includes data processing and analysis with high resolution maps of nitrogen dioxide and formaldehyde from one of our satellite proxy instruments.  

What do you do at Langley?

I think my job fits largely three roles: (1) I contribute to planning of upcoming field studies This year it’s been STAQS (Synergistic TEMPO Air Quality Science) and ASIA-AQ. (2) I use data collected from those field studies to research spatial and temporal changes in pollution over major cities from satellites, aircraft, and ground-based data.  This also includes validating satellite products and collaborating with other researchers using our data for topics such as model evaluation and air quality event analysis, etc. (3) I also am an associate program manager for the Health and Air Quality area in Earth Action.  This comes with managing a portfolio of air quality projects that are integrating NASA datasets within decision making frameworks for stakeholders in air quality management and the public health sector. 

As a child, what did you want to do when you grew up?

I always wanted to study the weather.  This came from growing up in Nebraska and constantly being bombarded with dramatic shifts in day-to-day weather, including severe storms. This is typical of most meteorology colleagues I have met.  Going in the air pollution direction didn’t come until I graduated with my degree in meteorology through a NASA internship, but the weather is one of three major factors in why air pollution events unfold like they do from region-to-region (the other two being emissions and chemistry). 

Were you treated differently as a woman in a science field?

I have definitely encountered a subset of people who have not given me the respect due to being a woman throughout my career.  There are definitely instances where I am the only woman around, too, especially during field work. Luckily, I have been extremely fortunate to be overwhelmed with colleagues and mentors who do not treat me differently because I am a woman but rather see my potential and together make a good team.  

Who were your mentors growing up? Who are your mentors now?

Barry Lefer [NASA’s Tropospheric Composition Program Manager] has been a huge advocate for me and many other women as scientists.  While statistically there are less women in STEM, there is no way to balance it out in the future without advocates like him. He was my first mentor in doing airborne science as a student and continues to be at NASA.

What’s the best part of your job?

The best part of my job is being on the forefront of new science.  I get to work with some of the top experts in our field in the world and a lot of them I get to now call my friends. We are all learning together to come up with new ways to improve our understanding of air quality with the hope of seeing cleaner air in the future. You also can’t beat an office view from 28,000 feet during these sporadic missions!

Why does science matter to you?

The science we are doing directly affects our quality of life, especially for the millions living with poor air quality. I am also encouraged.  I am early in my career and have already seen positive changes in air quality happen in some regions.  I find that encouraging to keep going.  

What’s next?

For me, it’s to keep pushing bounds on what we can learn from combining new satellite, airborne, and ground-based air quality data. 

picture5.jpg?w=468
Langley’s Katie Travis on the flight line at Osan Airbase, South Korea. NASA’s DC-8 and G-III aircraft can be seen behind her along with a partner aircraft from the Korea Meteorological Administration.
NASA/Francesca Gallo

Katie Travis, Ph.D., research scientist, compares model forecast simulations with local air quality monitoring sites on the ASIA-AQ mission. Travis also performs quick evaluations of the aircraft data as it becomes available after each flight.

What do you do at Langley?

I work to put together all parts of the integrated observing system for air quality by interpreting satellite, aircraft, and ground-based data with models to improve our understanding of surface air quality and atmospheric composition.

As a child, what did you want to do when you grew up?

A journalist!

Are there obstacles you have had overcome to be successful? 

The main obstacle I have had to overcome is balancing having children with the demands of a scientific career.

Were you treated differently as a woman in a science field?

That is a difficult question to answer.  However, I can say that getting my bachelor’s degree in engineering from a women’s college (Smith College) gave me a wonderful start to working in science in a very supportive environment.

Who were your mentors growing up? Who are your mentors now?

I am very grateful for the wonderful community in the field of atmospheric chemistry and at NASA. It was a professor at Smith College, Paul Voss, who introduced me to air quality.  Now I am lucky to be part of the IMPAQT group (Integrating Multiple Perspectives of Air Quality Team) at NASA and be mentored by senior scientists as well as work with colleagues with a range of expertise in both air pollution and policy.

What’s the best part of your job?

The best part of my job is getting to learn something new every day and getting to explore questions about the world that I think are important.

Why does science matter to you?

Studying environmental issues, to me, means working to understand the impact human activities have on our environment so that we can protect it for future generations.

What’s next?

More science.

For more information on the ASIA-AQ mission and the Science Directorate at Langley:

https://www-air.larc.nasa.gov/missions/asia-aq/index.html

https://science.larc.nasa.gov/

https://science-data.larc.nasa.gov/large/

https://science.larc.nasa.gov/impaqt/

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore This Section Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 21 min read
      Summary of the 10th DSCOVR EPIC and NISTAR Science Team Meeting
      Introduction
      The 10th Deep Space Climate Observatory (DSCOVR) Earth Polychromatic Camera (EPIC) and National Institute of Standards and Technology (NIST) Advanced Radiometer [NISTAR] Science Team Meeting (STM) was held October 16–18, 2024. Over 50 scientists attended, most of whom were from NASA’s Goddard Space Flight Center (GSFC), with several participating from other NASA centers, U.S. universities, and U.S. Department of Energy laboratories. There was one international participant – from Estonia. A full overview of DSCOVR’s Earth-observing instruments was published in a previous article in The Earth Observer and will not be repeated here. This article provides the highlights of the 2024 meeting. The meeting agenda and full presentations can be downloaded from GSFC’s Aura Validation Data Center.
      Opening Presentations
      The opening session of the 10th DSCOVR STM was special. Former U.S., Vice President Al Gore attended the opening session and gave a presentation at the panel discussion “Remote Sensing and the Future of Earth Observations” – see Photo. Gore was involved in the early days of planning the DSCOVR mission, which at that time was known as Triana. He reminisced about his involvement and praised the team for the work they’ve done over the past decade to launch and maintain the DSCOVR mission. Following the STM Opening Session, Gore spoke at a GSFC Engage session in Building 3 later that afternoon on the same topic, but before a wider audience. [Link forthcoming.]
      Following Gore’s remarks, the remainder of the opening session consisted of a series of presentations from DSCOVR mission leaders and representatives from GSFC and National Oceanic and Atmospheric Administration (NOAA). Thomas Neumann [GSFC, Earth Sciences Division (ESD)—Deputy Director] opened the meeting and welcomed Vice President Gore and the STM participants on behalf of the ESD. Adam Szabo [GSFC—DSCOVR Project Scientist] briefly reported that the spacecraft was still in “good health.” The EPIC and NISTAR instruments on DSCOVR continue to return their full science observations. He also gave an update on DSCOVR Space Weather research. Alexander Marshak [GSFC—DSCOVR Deputy Project Scientist] briefly described DSCOVR mission history and the science results based on DSCOVR observations from the first Sun–Earth Lagrange point (hereinafter, the L1 point). He also summarized the major EPIC and NISTAR results to date. At this time, more than 125 papers related to DSCOVR are listed on the EPIC website. Elsayed Talaat [NOAA, Office of Space Weather observations—Director] discussed the future of Earth and space science studies from the L1 point.
      Photo. Former U.S. Vice President Al Gore spoke at the opening session of the 10th DSCOVR Science Team Meeting. This photo shows Gore together with Makenzie Lystrup [NASA’s Goddard Space Flight Center (GSFC)—Center Director], Christa Peters-Lidard [GSFC, Director of the Science and Exploration Directorate], Elsayed Talaat [National Oceanic and Atmospheric Administration (NOAA)—Director of the Office of Space Weather Observations], Dalia Kirschbaum [GSFC—Director of Earth Sciences], other GSFC management, and members of the DSCOVR Science Team. Photo credit: Katy Comber (GSFC) Updates on DSCOVR Operations
      The DSCOVR mission components continue to function nominally. The meeting was an opportunity to update participants on progress over the past year on several fronts, including data acquisition, processing, and archiving, and release of new versions of several data products. The number of people using DSCOVR data continues to increase, with a new Science Outreach Team having been put in place to aid users in several aspects of data discovery, access, and user friendliness.
      Amanda Raab [NOAA, DSCOVR Mission Operations and Systems] reported on the current status of the DSCOVR mission. She also discussed spacecraft risks and issues such as memory fragmentation and data storage task anomalies but indicated that both these issues have been resolved.
      Hazem Mahmoud [NASA’s Langley Research Center (LaRC)] discussed the work of the Atmospheric Science Data Center (ASDC), which is based at LaRC. He showed DSCOVR mission metrics since 2015, focusing on data downloads and the global outreach of the mission. He noted that there has been a significant rise in the number of downloads and an increasing diversity of countries accessing ozone (O3), aerosol, and cloud data products. Mahmoud also announced that the ASDC is transitioning to the Amazon Web Services cloud, which will further enhance global access and streamline DSCOVR data processing.
      Karin Blank [GSFC] covered the discovery of a new type of mirage that can only be seen in deep space from EPIC. The discussion included the use of a ray tracer in determining the origin of the phenomenon, and under what conditions it can be seen.
      Alexander Cede [SciGlob] and Ragi Rajagopalan [LiftBlick OG] gave an overview of the stability of the EPIC Level-1A (L1A) data over the first decade of operation. They explained that the only observable changes in the EPIC calibration are to the dark count and flat field can – and that these changes can be entirely attributed to the temperature change of the system in orbit compared to prelaunch conditions. No additional hot or warm pixels have emerged since launch and no significant sensitivity drifts have been observed. The results that Cede and Rajagopalan showed that EPIC continues to be a remarkably stable instrument, which is attributed to a large extent to its orbit around the L1 point, which is located outside the Earth’s radiation belts and thus an extremely stable temperature environment. Consequently, in terms of stability, the L1 point is far superior to other Earth observation points, e.g., ground-based, low-Earth orbit (LEO), polar orbit, or geostationary Earth orbit (GEO).
      Marshall Sutton [GSFC] discussed the state of the DSCOVR Science Operation Center (DSOC). He also talked about processing EPIC Level-1 (L1) data into L2 science products, daily images available on the EPIC website, and special imaging opportunities, e.g., volcanic eruptions.
      EPIC Calibration
      After 10 years of operation in space, the EPIC instrument on DSCOVR continues to be a remarkably stable instrument. The three presentations describe different ways that are used to verify the EPIC measurements remain reliable.
      Conor Haney [LaRC] reported on anomalous outliers during February and March 2023 from the broadband shortwave (SW) flux using EPIC L1B channel radiances. To ensure that these outliers were not a result of fluctuations in the EPIC L1B channel radiances, both the EPIC radiance measurements and coincident, ray-matched radiance measurements from the Visible Infrared Imaging Radiometer Suite (VIIRS), on the Suomi National Polar-orbiting Partnership (Suomi NPP) platform, were processed using the same deep convective cloud invariant target (DCC-IT) algorithm. This analysis confirmed that the anomalous behavior was due to the DCC-IT algorithm – and not because of fluctuations in the EPIC L1B channel radiances. The improved DCC-IT methodology was also applied to the EPIC L1B radiances. The results indicate that the EPIC record is quite stable with a lower uncertainty than when processed using the previous DCC-IT methodology.
      Igor Geogdzhaev [NASA’s Goddard Institute for Space Studies (GISS)/Columbia University] reported that EPIC Visible–Near Infrared (VIS-NIR) calibration based on VIIRS (on Suomi NPP) data has showed excellent stability, while VIIRS (on NOAA-20 and -21) derived gains agree to within 1–2%. Preliminary analysis showed continuity in the gains derived from Advanced Baseline Imager (ABI) data. (ABI flies on NOAA’s two operational Geostationary Operational Environmental Satellite–Series R satellites – GOES-17 and GOES-18.
      Liang–Kang Huang [Science Systems and Applications, Inc. (SSAI)] reported on updates to the EPIC ultraviolet (UV) channel sensitivity time dependences using Sun-normalized radiance comparisons between EPIC and measurements from the Ozone Mapping and Profiler Suite (OMPS) Nadir Mapper (NM) on Suomi NPP, with coinciding footprints and solar/satellite angles. Huang’s team determined vignetting factors in the sensitivity calibration between 2021–2024, as a function of charge coupled device (CCD) pixel radius and pixel polar angles, using special lunar measurement sequences.
      NISTAR Status and Science with Its Observations
      The NISTAR instrument remains fully functional and continues its uninterrupted data record. The NISTAR-related presentations during this meeting included more details on specific topics related to NISTAR as well as on efforts to combine information from both EPIC and NISTAR.
      Steven Lorentz [L-1 Standards and Technology, Inc.] reported that the NISTAR on DSCOVR has been measuring the irradiance from the sunlit Earth in three bands for more than nine years. The three bands measure the outgoing total and reflected-solar radiation from Earth at a limited range of solar angles. To compare the long-term stability of EPIC and NISTAR responses, researchers developed a narrowband to wideband conversion model to allow the direct comparison of the EPIC multiband imagery and NISTAR SW – see Figure 1 – and silicon photodiode channels. Lorentz presented daily results spanning several years. The comparison employed different detectors from the same spacecraft – but with the same vantage point – thereby avoiding any model dependent orbital artifacts.
      Figure 1. NISTAR daily average shortwave (SW) radiance plotted for each year from 2017–2024. The results indicated a 10% increase in the shortwave radiance as the backscattering angle approaches 178° in December 2020. A 6% increase is noted in September of the same year. Figure credit: Steven Lorentz (L-1 Standards and Technology) Clark Weaver [University of Maryland, College Park (UMD)] used spectral information from the SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY), which flew on the European Space Agency’s (ESA) Envisat satellite from 2002–2012, to fill EPIC spectral gaps. He reported on construction of a composite height resolution spectrum that was spectrally integrated to produce SW energy. Weaver explained that he compared the EPIC reflected SW with four-hour averages from Band 4 on NISTAR. He used spectral information from SCIAMACHY to fill in gaps. Weaver also discussed results of a comparison of area integrated EPIC SW energy with observations from NISTAR . 
      Andrew Lacis [GISS] reported on results of analysis of seven years of EPIC-derived planetary albedo for Earth, which reveal global-scale longitudinal variability occurring over a wide range of frequencies – with strong correlation between nearby longitudes and strong anticorrelation between diametrically opposed longitudes. This behavior in the Earth’s global-scale energy budget variability is fully corroborated by seven years of NISTAR silicon photodiode measurements, which view the Earth with 1º longitudinal resolution. This analysis establishes the DSCOVR mission EPIC/NISTAR measurements as a new and unmatched observational data source for evaluating global climate model performance– e.g., see Figure 2.
      Figure 2. This graph shows the diurnal variation in planetary albedo as measured by EPIC for five different eight-day-Blurred Meridians relative to Global Mean for 2021 [left] and 2022 [right]. Figure credit: Andrew Lacis [GISS] Wenying Su [LaRC] discussed global daytime mean SW fluxes within the EPIC field of view produced from January 2016–June 2024. These quasi-hourly SW fluxes agree very well with the Synoptic data product from the Clouds and the Earth’s Radiant Energy System (CERES) instruments (currently flying on the Terra and Aqua, Suomi NPP, and NOAA-20 platforms) with the root mean square errors (rmse) less than 3 W/m2. This SW flux processing framework will be used to calculate NISTAR SW flux when Version 4 (V4) of the NISTAR radiance becomes available. Su noted that SW fluxes from EPIC are not suitable to study interannual variability as the magnitude of EPIC flux is sensitive to the percentage of daytime area visible to EPIC.
      Update on EPIC Products and Science Results
      EPIC has a suite of data products available. The following subsections summarize content during the DSCOVR STM related to these products. The updates focus on several data products and the related algorithm improvements. 
      Total Column Ozone
      Jerry Ziemke [Morgan State University (MSU), Goddard Earth Sciences Technology and Research–II (GESTAR II)] and Natalya Kramarova [GSFC] reported that tropospheric O3 from DSCOVR EPIC shows anomalous reductions of ~10% throughout the Northern Hemisphere (NH) starting in Spring 2020 that continues to the present. The EPIC data, along with other satellite-based (e.g., Ozone Monitoring Instrument (OMI) on NASA’s Aura platform) and ground-based (e.g., Pandora) data, indicate that the observed NH reductions in O3 are due to combined effects from meteorology and reduced pollution, including reduced shipping pollution in early 2020 (during COVID) – see Figure 3. EPIC 1–2 hourly data are also used to evaluate hourly total O3 and derived tropospheric O3 from NASA’s Tropospheric Emissions: Monitoring of Pollution (TEMPO) geostationary instrument. Ziemke explained that comparison of TEMPO data with EPIC data has helped the researchers characterize a persistent latitude-dependent offset in TEMPO total O3 data of ~10–15% from south to north over the North American continent.
      Figure 3. This dataset combines input from EPIC, OMPS, and OMI from 2004–2022. The onset of the COVID-19 pandemic in 2020 can be seen clearly in the data as it corresponds to a sudden drop in tropospheric column ozone by ~3 Dobson Units in the Northern Hemisphere. Figure credit: Jerry Ziemke (Morgan State University, GESTAR-II) Algorithm Improvement for Ozone and Sulfur Dioxide Products
      Kai Yang [UMD] presented a comprehensive evaluation of total and tropospheric O3 retrievals, highlighting the long-term stability and high accuracy of EPIC measurements. He also validated EPIC’s volcanic sulfur dioxide (SO2) retrievals by comparing them with ground-based Brewer spectrophotometer measurements and summarized EPIC’s observations of SO2 from recent volcanic eruptions.
      Simon Carn [University of Michigan] showed the first comparisons between the EPIC L2 volcanic SO2 product and SO2 retrievals from the Geostationary Environment Monitoring Spectrometer (GEMS) on the Korean GEO-Kompsat-2B satellite. GEMS observes East Asia as part of the new geostationary UV air quality (GEO-AQ) satellite constellation (which also includes TEMPO that observes North America and will include the Ultraviolet–Visible–Near Infrared (UVN) instrument on the European Copernicus Sentinel-4 mission, that will be launched in 2025 to observe Europe and surrounding areas) – but is not optimized for measurements of high SO2 columns during volcanic eruptions. EPIC SO2 data for the 2024 eruption of Ruang volcano in Indonesia are being used to validate a new GEMS volcanic SO2 product. Initial comparisons show good agreement between EPIC and GEMS before volcanic cloud dispersal and confirm the greater sensitivity of the hyperspectral GEMS instrument to low SO2 column amounts.
      Aerosols
      Alexei Lyapustin [GSFC] reported that the latest EPIC aerosols algorithm (V3) simultaneously retrieves aerosol optical depth, aerosol spectral absorption, and aerosol layer height (ALH) – achieving high accuracy. He showed that global validation of the single scattering albedo in the blue and red shows 66% and 81–95% agreement respectively, with Aerosol Robotic Network (AERONET) observations – which is within the expected error of 0.03 for smoke and dust aerosols. Lyapustin also reported on a comparison of EPIC aerosol data collected from 2015–2023 by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), which flew on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission. The results show that ALH is retrieved with rmse ~1.1 km (0.7 mi). ALH is unbiased over the ocean and is underestimated by 450 m (1470 ft) for the smoke and by 750 m (2460 ft) for the dust aerosols over land. 
      Myungje Choi and Sujung Go [both from University of Maryland, Baltimore County’s (UMBC), GESTAR II] presented results from a global smoke and dust characterization using Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm. This study characterized smoke and dust aerosol properties derived from MAIAC EPIC processing, examining spectral absorption, ALH, and chemical composition (e.g., black and brown carbon). Regions with smoldering wildfires, e.g., North America and Siberia, exhibited high ALH and a significant fraction of brown carbon, while Central Africa showed lower ALH with higher black carbon emissions.
      Omar Torres [GSFC] discussed how L1 DSCOVR-EPIC observations are being used to study air quality (i.e., tropospheric O3 and aerosols) globally. Torres noted that this application of EPIC-L1 observations is of particular interest in the Southern Hemisphere (SH) where, unlike over the NH, there are currently no space GEO-based air quality measurements – and no plans for them in the foreseeable future.
      Hiren Jethva [MSU, GESTAR II] presented the new results of the aerosol optical centroid height retrieved from the EPIC Oxygen-B band observations. He described the algorithm details, showed retrieval maps, and reviewed the comparative analysis against CALIOP backscatter-weighted measurements. The analysis showed a good level of agreement with more than 70% of matchup data within 1–1.5 km (0.6–0.9 mi) difference.
      Jun Wang [University of Iowa] presented his team’s work on advancing the second generation of the aerosol optical centroid height (AOCH) algorithm for EPIC. Key advancements included: constraining surface reflectance in aerosol retrieval using an EPIC-based climatology of surface reflectance ratios between 442–680 nm; incorporating a dynamic aerosol model to characterize aged smoke particles; and employing a spectral slope technique to distinguish thick smoke plumes from clouds. Results show that both atmospheric optical depth (AOD) and AOCH retrievals are improved in the second generation of AOCH algorithm.
      Olga Kalashnikova [NASA/Jet Propulsion Laboratory (JPL)] reported on improving brown carbon evolution processes in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) model with EPIC products. She indicated that DSCOVR product evaluation, using lidar aerosol height measurements from CALIOP, led to an improved operational brown carbon product. To better resolve the temporal evolution of brown carbon, chemical transport models need to include more information about near-source fires.
      Mike Garay [NASA/Jet Propulsion Laboratory (JPL)] discussed constraining near-source brown carbon emissions from 2024 Canadian ‘zombie’ fires with EPIC products. He reported that fires in British Columbia, Canada showed differences in brown carbon emission near the sources.  Garay explained that their investigation has revealed that these differences were related to fire intensity and variations in vegetation/soil content.
      Yuekui Yang [GSFC] presented work that examined the impact of Earth’s curvature consideration on EPIC cloud height retrievals. Biases under the Plane Parallel (PPL) assumption is studied by comparing results using the improved pseudo-spherical shell approximation. PPL retrievals in general bias high and for a cloud with height of 5 km (3 mi), the bias is about 6%.
      Alfonso Delgado Bonal [UMBC] stated that the EPIC vantage point offers a unique opportunity to observe not only the current state of the Earth but also its temporal evolution. By capturing multiple observations of the planet throughout the day, EPIC enables statistical reconstruction of diurnal patterns in clouds and other atmospheric parameters. Bonal’s team focused their research on O3 (primarily tropospheric) over the U.S. to demonstrate the presence of a diurnal cycle in the western regions of the continental U.S. However, ground-based data from PANDORA for specific locations do not support these diurnal variations – underscoring the critical role of space-based O3 retrievals. The proposed methodology is not limited to clouds or O3 but is broadly applicable to other EPIC measurements for the dynamic nature of our planet.
      Elizabeth Berry [Atmospheric and Environmental Research (AER)] presented results from a coincident DSCOVR–CloudSat dataset [covering 2015–2020]. Cloud properties (e.g., cloud height and optical depth) from DSCOVR and CloudSat are moderately correlated and show quite good agreement given differences in the instruments sensitivities and footprints. Berry explained that a machine-learning model trained on the coincident data demonstrates high accuracy at predicting the presence of vertical cloud layers. However, precision and recall metrics highlight the challenge of predicting the precise location of cloud boundaries.
      Anthony Davis [JPL] presented a pathway toward accurate estimation of the cloud optical thickness (COT) of opaque clouds and cloud systems, e.g., supercells, mesoscale convective complexes, and tropical cyclones (TCs). He described the approach, which uses differential oxygen absorption spectroscopy (DOAS) that has resolving power greater than 104 – which is comparable to that of the high-resolution spectrometers on NASA’s Orbiting Carbon Observatory–2 (OCO-2) – but is based upon the cloud information content of EPIC’s O2 A- and B-band radiances. Unlike the current operational retrieval of COT – which uses data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua – the DOAS-based technique does not saturate at COT exceeding ~60. According to a popular TC model with two-moment microphysics, COT in a tropical storm or hurricane can reach well into the hundreds, sometimes exceeding 1000. Davis said that once the new COT estimates become available, they will provide new observational constraints on process and forecast models for TCs.
      Ocean
      Robert Frouin [Scripps Institution of Oceanography, University of California] discussed ocean surface radiation products derived from EPIC data. He explained that significant advancements have been achieved in processing and evaluating ocean biology and biogeochemistry products derived from EPIC imagery. V1 updates enhanced accuracy by integrating Modern-Era Retrospective analysis for Research and Applications V2 (MERRA-2) ancillary data and refining calculations for atmospheric and surface parameters. Frouin introduced several diurnal products, including hourly photosynthetically active radiation (PAR) fluxes, spectral water reflectance, and chlorophyll-a concentrations. He said that these new MODIS-derived products have been validated through comparisons with data from the Advanced Himawari Imager on the Japanese Himawar–8 and –9 satellites. In order to address the gaps in these diurnal products, Frouin explained that the team developed a convolutional neural network that has been used effectively to reconstruct missing PAR values with high accuracy.
      Vegetation
      Yuri Knyazikhin [Boston University] reported on the status of the Vegetation Earth System Data Record (VESDR) that provides a variety of parameters including: Leaf Area Index (LAI), diurnal courses of Normalized Difference Vegetation Index (NDVI), Sunlit LAI (SLAI), Fraction of incident Photosynthetically Active Radiation (FPAR) absorbed by the vegetation, Directional Area Scattering Function (DASF), Earth Reflector Type Index (ERTI), and Canopy Scattering Coefficient (CSC). Knyazikhin discussed analysis of the diurnal and seasonal variations of these quantities. EPIC LAI and FPAR are consistent with MODIS-derived measurements of the same parameters.
      Jan Pisek [University of Tartu/Tartu Observatory, Estonia] discussed efforts to derive leaf inclination information from EPIC data. The very first evaluation over Tumbarumba site (in New South Wales, Australia) showed that the angular variation in parameters obtained from EPIC reflects the expected variations due to the erectophile vegetation present at the site.
      Sun Glint
      Tamás Várnai [UMBC, JCET] discussed EPIC observations of Sun glint from ice clouds. The cloud glints come mostly from horizontally oriented ice crystals and have strong impact in EPIC cloud retrievals. Várnai reported that the EPIC glint product is available from the ASDC – see Figure 4. Glint data can help reduce the uncertainties related to horizontally oriented ice crystals and yield additional new insights about the microphysical and radiative properties of ice clouds.
      Figure 4. [top row] EPIC glint mask examples over land in [left to right] Paraguay, Sudan, Thailand, and Brazil. [bottom row] The corresponding EPIC glint mask for each image on the top row indicates the band (red, green and blue) and the size of sun glint for each of them. Figure credit: Tamás Várnai (University of Maryland, Baltimore County) Alexander Kostinski [Michigan Technology University] explained that because they detected climatic signals (i.e., longer-term changes and semi-permanent features, e.g., ocean glitter), they developed a technique to suppress geographic “noise” in EPIC images that involves introducing temporally (monthly) and conditionally (classifying by surface/cover type, e.g., land, ocean, clouds) averaged reflectance images – see Figure 5. The resulting images display seasonal dependence in a striking manner. Additionally, cloud-free, ocean-only images highlight prominent regions of ocean glitter.
      Figure 5. Monthly reflectances for clear land pixels. Earth masquerading as Jupiter; latitudinal bright bands are caused by features such as the Sahara and Antarctica. Black spots are due to the lack or dearth of clear land pixels at that latitude. Repeated spots within latitudinal bands reflect roughly bi-hourly image sampling. Figure credit: Alexander Kostinski (Michigan Technology University); from a 2024 paper published in Frontiers of Remote Sensing Jiani Yang [Caltech] reported that spatially resolving light curves from DSCOVR is crucial for evaluating time-varying surface features and the presence of an atmosphere. Both of these features are essential for sustaining life on Earth – and thus can be used to assess the potential habitability of exoplanets. Using epsilon machine reconstruction, the statistical complexity from the time series data of these light curves can be calculated. The results show that statistical complexity serves as a reliable metric for quantifying the intricacy of planetary features. Higher levels of planetary complexity qualitatively correspond to increased statistical complexity and Shannon entropy, illustrating the effectiveness of this approach in identifying planets with the most dynamic characteristics.
      Other EPIC Science Results
      Guoyong Wen [MSU, GESTAR II] analyzed the variability of global spectral reflectance from EPIC and the integrated broadband reflectance on different timescales. He reported that on a diurnal timescale, the global reflectance variations in UV and blue bands are statistically similar – and drastically different from those observed in longer wavelength bands (i.e., green to NIR). The researchers also did an analysis of monthly average results and found that temporal averaging of the global reflectance reduces the variability across the wavelength and that the variability of broadband reflectance is similar to that for the red band on both timescales. These results are mainly due to the rotation of the Earth on diurnal timescale and the change of the Earth’s tilt angle. 
      Nick Gorkavyi [Science Systems and Applications, Inc. (SSAI)] reported that EPIC – located at the L1 point, 1.5 million km (0.9 million mi) away from Earth – can capture images of the far side of the Moon in multiple wavelengths. These images, taken under full solar illumination, can be used to calibrate photographs obtained by lunar artificial satellites. Additionally, he discussed the impact of lunar libration – the changing view of the Moon from Earth, or it’s apparent “wobble” – on Earth observations from the Moon. 
      Jay Herman [UMBC] discussed a comparison of EPIC O3 with TEMPO satellite and Pandora ground-based measurement. The results show that total column O3 does not have a significant photochemical diurnal variation. Instead, the daily observed diurnal variation is caused by weather changes in atmospheric pressure. This measurement result agrees with model calculations.
      Conclusion
      Alexander Marshak, Jay Herman, and Adam Szabo led a closing discussion with ST participants on how to make the EPIC and NISTAR instruments more visible in the community. It was noted that the EPIC website now allows visitors to observe daily fluctuations of aerosol index, cloud fraction, cloud height, and the ocean surface – as observed from the L1 point. More daily products, (e.g., aerosol height and sunlit leaf area index) will be added soon, which should attract more users to the website.
      Overall, the 2023 DSCOVR EPIC and NISTAR STM was successful. It provided an opportunity for participants to learn the status of DSCOVR’s Earth-observing instruments, EPIC and NISTAR, the status of recently released L2 data products, and the science results being achieved from the L1 point. As more people use DSCOVR data worldwide, the ST hopes to hear from users and team members at its next meeting. The latest updates from the mission can be found on the EPIC website. 
      Alexander Marshak
      NASA’s Goddard Space Flight Center
      alexander.marshak@nasa.gov
      Adam Szabo
      NASA’s Goddard Space Flight Center
      adam.szabo@nasa.gov
      Share








      Details
      Last Updated Feb 14, 2025 Related Terms
      Earth Science View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A team at JPL packed up three small Moon rovers, delivering them in February to the facility where they’ll be attached to a commercial lunar lander in preparation for launch. The rovers are part of a project called CADRE that could pave the way for potential future multirobot missions.. NASA/JPL-Caltech A trio of suitcase-size rovers and their base station have been carefully wrapped up and shipped off to join the lander that will deliver them to the Moon’s surface.
      Three small NASA rovers that will explore the lunar surface as a team have been packed up and shipped from the agency’s Jet Propulsion Laboratory in Southern California, marking completion of the first leg of the robots’ journey to the Moon.
      The rovers are part of a technology demonstration called CADRE (Cooperative Autonomous Distributed Robotic Exploration), which aims to show that a group of robots can collaborate to gather data without receiving direct commands from mission controllers on Earth. They’ll use their cameras and ground-penetrating radars to send back imagery of the lunar surface and subsurface while testing out the novel software that enables them to work together autonomously.
      The CADRE rovers will launch to the Moon aboard IM-3, Intuitive Machines’ third lunar delivery, which has a mission window that extends into early 2026, as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative. Once installed on Intuitive Machines’ Nova-C lander, they’ll head to the Reiner Gamma region on the western edge of the Moon’s near side, where the solar-powered, suitcase-size rovers will spend the daylight hours of a lunar day (the equivalent of about 14 days on Earth) carrying out experiments. The success of CADRE could pave the way for potential future missions with teams of autonomous robots supporting astronauts and spreading out to take simultaneous, distributed scientific measurements.
      Members of a JPL team working on NASA’s CADRE technology demonstration use temporary red handles to move one of the project’s small Moon rovers to prepare it for transport to Intuitive Machines’ Houston facility, where it will be attached to the company’s third lunar lander. Construction of the CADRE hardware — along with a battery of rigorous tests to prove readiness for the journey through space — was completed in February 2024.
      To get prepared for shipment to Intuitive Machines’ Houston facility, each rover was attached to its deployer system, which will lower it via tether from the lander onto the dusty lunar surface. Engineers flipped each rover-deployer pair over and attached it to an aluminum plate for safe transit. The rovers were then sealed in protective metal-frame enclosures that were fitted snuggly into metal shipping containers and loaded onto a truck. The hardware arrived safely on Sunday, Feb. 9.
      “Our small team worked incredibly hard constructing these robots and putting them to the test, and we have been eagerly waiting for the moment where we finally see them on their way,” said Coleman Richdale, the team’s assembly, test, and launch operations lead at JPL. “We are all genuinely thrilled to be taking this next step in our journey to the Moon, and we can’t wait to see the lunar surface through CADRE’s eyes.”
      The rovers, the base station, and a camera system that will monitor CADRE experiments on the Moon will be integrated with the lander — as will several other NASA payloads — in preparation for the launch of the IM-3 mission.
      More About CADRE
      A division of Caltech in Pasadena, California, JPL manages CADRE for the Game Changing Development program within NASA’s Space Technology Mission Directorate. The technology demonstration was selected under the agency’s Lunar Surface Innovation Initiative, which was established to expedite the development of technologies for sustained presence on the lunar surface. NASA’s Science Mission Directorate manages the CLPS initiative. The agency’s Glenn Research Center in Cleveland and its Ames Research Center in Silicon Valley, California, both supported the project. Motiv Space Systems designed and built key hardware elements at the company’s Pasadena facility. Clemson University in South Carolina contributed research in support of the project.
      For more about CADRE, go to:
      https://go.nasa.gov/cadre
      News Media Contact
      Melissa Pamer
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-314-4928
      melissa.pamer@jpl.nasa.gov
      2025-018
      Share
      Details
      Last Updated Feb 11, 2025 Related Terms
      CADRE (Cooperative Autonomous Distributed Robotic Exploration) Commercial Lunar Payload Services (CLPS) Earth's Moon Game Changing Development Program Jet Propulsion Laboratory Space Technology Mission Directorate Technology Technology Demonstration Explore More
      5 min read NASA’s Curiosity Rover Captures Colorful Clouds Drifting Over Mars
      Article 2 hours ago 5 min read NASA-Led Study Pinpoints Areas Sinking, Rising Along California Coast
      Article 1 day ago 5 min read Euclid Discovers Einstein Ring in Our Cosmic Backyard
      Article 1 day ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      Today we mark the International Day of Women and Girls in Science. Join us in a journey around Europe with EIROforum organisations to discover the brilliant talents who are shaping the future of science and technology, and dive deeper into the story of a European Space Agency young professional making her way in space. 
      View the full article
    • By NASA
      The NASA Ames Science Directorate recognizes the outstanding contributions of (pictured left to right) Michael Flynn, Ross Beyer, and Matt Johnson. Their commitment to the NASA mission represents the entrepreneurial spirit, technical expertise, and collaborative disposition needed to explore this world and beyond

      Space Biosciences Star: Michael Flynn
      Michael Flynn, a senior scientist and engineer in the Space Biosciences Branch, has over 35 years of groundbreaking contributions to life support systems and space technologies, including over 120 peer-reviewed publications and multiple prestigious awards. He is being recognized for his leadership in advancing water recycling technologies and his dedication to fostering innovation and mentorship within his team.

      Space Science and Astrobiology Star: Ross Beyer
      Ross Beyer is a planetary scientist in the Planetary Systems Branch for the Search for Extraterrestrial Intelligence (SETI) Institute, with scientific expertise in geomorphology, surface processes, and remote sensing of the solid bodies in our Solar System.  He is recognized for exemplifying leadership and teamwork through his latest selected 5-year proposal to support the Ames Stereo Pipeline, implementing open science processes, and serving as a Co-Investigator on several flight missions.

      Earth Science Star: Matthew Johnson
      Matthew Johnson is a research scientist in the Biospheric Science Branch (code SGE). Matt is recognized for his exemplary productivity in publishing in high-impact journals and success at leading and co-developing competitive proposals, while serving as a mentor and leader.  Matt recently expanded his leadership skills by assuming the position of Assistant Branch Chief of SGE and as an invited lead co-author of the December 2024 PANGEA white paper, which could lead to a new NASA HQ Terrestrial Ecology campaign.

      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      With more than 17 years of experience at NASA, Lindsai Bland has been an integral part of the agency, contributing to multiple Earth observing system missions at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Now, Bland ensures the agency’s communications and navigation resources meet overall needs and requirements as the Mission Operations Interface Lead for NASA’s SCaN (Space Communications and Navigation) program. 

      This sunset photo shows Deep Space Station 14 (DSS-14), the 230-foot-wide (70-meter) antenna at the Goldstone Deep Space Communications Complex near Barstow, California, part of NASA’s Deep Space Network. The network’s three complexes around the globe support communications with dozens of deep space missions. DSS-14 is also the agency’s Goldstone Solar System Radar, which is used to observe asteroids that come close to Earth. The program, managed through the agency’s Space Operations Mission Directorate, is responsible for all of NASA’s space communications operations, including the Near Space Network and Deep Space Network, which have enabled the success of more than 100 NASA and non-NASA missions. Astronauts aboard the International Space Station, missions monitoring Earth’s weather and effects of climate change, and spacecraft exploring the Moon and beyond all depend on NASA’s Near Space and Deep Space Networks to provide robust communications services. As interface lead, Bland works with teams to guarantee that critical data is transmitted between spacecraft and desired control center.  

      “Working with the SCaN program gives me the opportunity to be a part of a variety of mission types with endless science objectives,” said Bland. “Joining this team has been a highlight of my career, and tackling new challenges has been incredibly rewarding.” 
      Looking ahead, Bland envisions that NASA will persevere in expanding the boundaries of space exploration, especially as the agency partners with international and U.S. industry in support of commercially owned and operated low Earth orbit destinations. 

      Lindsai Bland, Mission Operations Interface Lead for the Space Communications and Navigation Division
      “I think NASA will continue to push the boundaries of the aerospace industry and physical science studies,” she says. “NASA will take risks in exploration, bringing along industries and businesses to help further our goals.” 

      Outside of her work at NASA, Bland is passionate about the arts. She was an avid dancer from a young age, training in ballet, modern, and jazz. Bland also enjoys making her own cosmetics. She believes strongly in giving back to her community and dedicates some of her personal time to community services effort around Montgomery County, Maryland. 

      Bland’s career at NASA is a testament to her dedication, expertise, and passion for science and space exploration. Bland will continue to NASA’s mission in expand our understanding and study of our solar system and universe in captivating new ways. 
      NASA’s Space Operations Mission Directorate maintains a continuous human presence in space for the benefit of people on Earth. The programs within the directorate are the heart of NASA’s space exploration efforts, enabling Artemis, commercial space, science, and other agency missions through communication, launch services, research capabilities, and crew support. 

      To learn more about NASA’s Space Operation Mission Directorate, visit:  
      https://www.nasa.gov/directorates/space-operations

      View the full article
  • Check out these Videos

×
×
  • Create New...