Jump to content

Recommended Posts

  • Publishers
Posted

4 min read

Don’t Make Me Wait for April 8!

Can’t wait to see the Moon block the Sun on April 8? Neither can we. But we have good news – if you want to see an incredible cosmic alignment, you can catch one right now! Exoplanets, asteroids, and other objects regularly pass in front of stars and block their light. Observing these events is easier than you might think – and it can be a fantastic way to contribute to NASA science.

Sunlight passes through the Moon’s rugged terrain creating the Baily’s Beads effect during the total solar eclipse Aug. 21, 2017
The Baily’s Beads – the bright spots of light on the lower left of the Moon – seen here are the last rays of sunlight that shone through the low spots or valleys on the Moon’s rugged surface as the Moon made its final move over the Sun during the total solar eclipse on Aug. 21, 2017, above Madras, Oregon. Baily’s Beads will appear on the opposite side of the Moon as it begins to move away from the Sun following totality.
NASA/Aubrey Gemignani

There are three main kinds of cosmic alignments that temporarily block our view of a star. Each one can help us pick out fine details about astronomical objects that can’t be observed any other way.

Eclipse – when one object blocks another that’s apparently similar in size.

Occultation – when a relatively big object completely blocks an apparently smaller object.

Transit – when an apparently small object passes in front of a larger star, blocking some but not all of its light.

You’ll notice that we use the word “apparently” in each of those definitions. That’s because what matters is how big the object looks from our perspective, not how big it actually is.

Now let’s look at some science projects you can get involved in that observe these phenomena.

Eclipses help scientists see faint objects next to bright objects. Just like you might raise your hand to block light from your car’s headlight while you search the ground for your keys, eclipses block the overpowering light from a star so objects around it can be viewed more easily. This is what the Eclipse Megamovie project, the Dynamic Eclipse Broadcast Initiative, and Citizen CATE 2024 are doing: taking advantage of the Moon blocking the fierce sunlight so they can see what’s happening right around the Sun. These projects invite you to help them use this method to study the Sun’s faint corona. Eclipses and occultations can also tell us about the relative sizes and shapes of objects. This is how Sunsketcher will harness the April 8 eclipse. With your help, they will use our precise knowledge of the size and topography of the Moon to vastly improve estimates of the shape of the Sun. At the very beginning and end of totality, viewers will see Baily’s Beads – bright spots of light around the Moon’s edge where rays of sunlight slip through the valleys between the mountains on the Moon’s surface just before and after totality. The SunSketcher app will capture images of these beads along with precise time and location data of each observation. Following the eclipse, the SunSketcher team will use the collected observations to calculate the shape of the Sun.

When a planet passes directly between a star and its observer – what astronomers call a transit – the planet dims the star’s light by a measurable amount. The graph in the lower left shows a real time visualization of the strength of the light signal from the star.
NASA

When an object transits – or passes in front of – a star, the star’s light dims. Measuring changes in starlight to search for these transits has revealed thousands of exoplanets (planets orbiting other stars) in recent years. You can join the search today! Three NASA citizen science projects are focused on investigating exoplanets using transits.

  • Planet Hunters TESS invites everyone to look for traces of transiting planets in the changing light of distant stars. The most promising of these signals indicate “exoplanet candidates” to be confirmed through additional observations. This project, hosted on the Zooniverse platform, can be done on a smartphone or a computer.
  • Exoplanet Watch is a community of people who use their own telescopes or a shared community robotic telescope to observe exoplanet candidates to better predict the next time the objects will transit. This project requires an internet-connected computer.
  • UNITE, like Exoplanet Watch, is a community of folks using their telescopes to observe exoplanet candidates. This community uses Unistellar telescopes, which operate on a standard, user-friendly system. The UNITE and Exoplanet Watch teams often share data and collaborate!

Whichever events you observe, or whichever projects you choose to contribute to, we’re sure you’ll find yourself marveling at our presence on this wonderful planet in this mysterious universe. You don’t have to wait until April 8!

by Sarah Kirn and Marc J. Kuchner
NASA Citizen Science

Share

Details

Last Updated
Mar 28, 2024

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      LIVE NOW: Stunning LIVE Video Of The Sun = 17th April - Backyard Astronomy
    • By NASA
      Scientists have hypothesized since the 1960s that the Sun is a source of ingredients that form water on the Moon. When a stream of charged particles known as the solar wind smashes into the lunar surface, the idea goes, it triggers a chemical reaction that could make water molecules.   
      Now, in the most realistic lab simulation of this process yet, NASA-led researchers have confirmed this prediction.  
      The finding, researchers wrote in a March 17 paper in JGR Planets, has implications for NASA’s Artemis astronaut operations at the Moon’s South Pole. A critical resource for exploration, much of the water on the Moon is thought to be frozen in permanently shadowed regions at the poles.  
      “The exciting thing here is that with only lunar soil and a basic ingredient from the Sun, which is always spitting out hydrogen, there’s a possibility of creating water,” Li Hsia Yeo, a research scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “That’s incredible to think about,” said Yeo, who led the study. 
      Solar wind flows constantly from the Sun. It’s made largely of protons, which are nuclei of hydrogen atoms that have lost their electrons. Traveling at more than one million miles per hour, the solar wind bathes the entire solar system. We see evidence of it on Earth when it lights up our sky in auroral light shows. 
      Computer-processed data of the solar wind from NASA’s STEREO spacecraft. Download here: https://svs.gsfc.nasa.gov/20278/ NASA/SwRI/Craig DeForest Most of the solar particles don’t reach the surface of Earth because our planet has a magnetic shield and an atmosphere to deflect them. But the Moon has no such protection. As computer models and lab experiments have shown, when protons smash into the Moon’s surface, which is made of a dusty and rocky material called regolith, they collide with electrons and recombine to form hydrogen atoms.
      Then, the hydrogen atoms can migrate through the lunar surface and bond with the abundant oxygen atoms already present in minerals like silica to form hydroxyl (OH) molecules, a component of water, and water (H2O) molecules themselves.  
      Scientists have found evidence of both hydroxyl and water molecules in the Moon’s upper surface, just a few millimeters deep. These molecules leave behind a kind of chemical fingerprint — a noticeable dip in a wavy line on a graph that shows how light interacts with the regolith. With the current tools available, though, it is difficult to tell the difference between hydroxyl and water, so scientists use the term “water” to refer to either one or a mix of both molecules.
      Many researchers think the solar wind is the main reason the molecules are there, though other sources like micrometeorite impacts could also help by creating heat and triggering chemical reactions. 
      In 2016, scientists discovered that water is released from the Moon during meteor showers. When a speck of comet debris strikes the moon, it vaporizes on impact, creating a shock wave in the lunar soil. With a sufficiently large impactor, this shock wave can breach the soil’s dry upper layer and release water molecules from a hydrated layer below. NASA’s LADEE spacecraft detected these water molecules as they entered the tenuous lunar atmosphere. NASA’s Goddard Space Flight Center Conceptual Image Lab Spacecraft measurements had already hinted that the solar wind is the primary driver of water, or its components, at the lunar surface. One key clue, confirmed by Yeo’s team’s experiment: the Moon’s water-related spectral signal changes over the course of the day.  
      In some regions, it’s stronger in the cooler morning and fades as the surface heats up, likely because water and hydrogen molecules move around or escape to space. As the surface cools again at night, the signal peaks again. This daily cycle points to an active source — most likely the solar wind—replenishing tiny amounts of water on the Moon each day.  
      To test whether this is true, Yeo and her colleague, Jason McLain, a research scientist at NASA Goddard, built a custom apparatus to examine Apollo lunar samples. In a first, the apparatus held all experiment components inside: a solar particle beam device, an airless chamber that simulated the Moon’s environment, and a molecule detector. Their invention allowed the researchers to avoid ever taking the sample out of the chamber — as other experiments did — and exposing it to contamination from the water in the air. 
      “It took a long time and many iterations to design the apparatus components and get them all to fit inside,” said McLain, “but it was worth it, because once we eliminated all possible sources of contamination, we learned that this decades-old idea about the solar wind turns out to be true.” 
      Using dust from two different samples picked up on the Moon by NASA’s Apollo 17 astronauts in 1972, Yeo and her colleagues first baked the samples to remove any possible water they could have picked up between air-tight storage in NASA’s space-sample curation facility at NASA’s Johnson Space Center in Houston and Goddard’s lab. Then, they used a tiny particle accelerator to bombard the dust with mock solar wind for several days — the equivalent of 80,000 years on the Moon, based on the high dose of the particles used. 
      They used a detector called a spectrometer to measure how much light the dust molecules reflected, which showed how the samples’ chemical makeup changed over time. 
      In the end, the team saw a drop in the light signal that bounced to their detector precisely at the point in the infrared region of the electromagnetic spectrum — near 3 microns — where water typically absorbs energy, leaving a telltale signature.  
      While they can’t conclusively say if their experiment made water molecules, the researchers reported in their study that the shape and width of the dip in the wavy line on their graph suggests that both hydroxyl and water were produced in the lunar samples.  
      By Lonnie Shekhtman
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Explore More
      5 min read NASA’s Hubble Tracks a Roaming Magnetar of Unknown Origin


      Article


      2 hours ago
      3 min read What Does NASA Science Do For Me?


      Article


      4 hours ago
      3 min read Exploring the Universe Through Sight, Touch, and Sound


      Article


      20 hours ago
      View the full article
    • By Amazing Space
      LIVE NOW: Stunning LIVE Video Of The Sun = 15th April - Backyard Astronomy
    • By Amazing Space
      LIVE NOW: SEESTAR S50 Video Of The Sun = 13th April - Backyard Astronomy
    • By Amazing Space
      LIVE NOW: Stunning LIVE Video Of The Sun = 13th April - Backyard Astronomy
  • Check out these Videos

×
×
  • Create New...