Jump to content

Recommended Posts

Posted
low_STSCI-H-p0452a-k-1340x520.png

This image of comet C/2001 Q4 (NEAT) was taken at the WIYN 0.9-meter telescope at Kitt Peak National Observatory near Tucson, Ariz., on May 7, 2004.

The image was captured with the Mosaic I camera, which has a one-square degree field of view, or about five times the size of the Moon. Even with this large field, only the comet's coma and the inner portion of its tail are visible. A small star cluster (C0736-105, or Melotte 72) is visible in the lower right of the image, between the head of the comet and the bright red star in the lower-right corner.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Ohio State graduate research assistant Alec Schnabel, left, University of Wisconsin doctoral candidate James Swanke, center, and Ohio State graduate research engineer Robert Borjas conduct tests on aircraft hardware at NASA’s Electric Aircraft Testbed (NEAT). Credit: NASA/Jef Janis  Each year, Aviation Week (AW) Network recognizes a limited number of innovators who achieve extraordinary accomplishments in the global aerospace arena with AW’s prestigious Laureate Award. These innovators represent the values and vision of the global aerospace community and change the way people work and move through the world.  
      On March 6, NASA’s Glenn Research Center accepted an AW Laureate Award in commercial aviation for NASA’s Electric Aircraft Testbed (NEAT) located at NASA Glenn’s Neil Armstrong Test Facility in Sandusky, Ohio. NEAT allows government, industry, and academia to collaborate and conduct testing of high-powered electric powertrains, which generate power and propel aircraft forward. The goal is to transform commercial flight by creating more sustainable, fuel-efficient commercial aircraft.  

      NASA’s Electric Aircraft Testbed (NEAT) is located at NASA’s Glenn Research Center at Neil Armstrong Test Facility in Sandusky, Ohio.Credit: NASA/Bridget Caswell  NEAT enables ground testing of cutting-edge systems prior to experimental flight testing. As a result, researchers can troubleshoot issues that only occur at altitude and improve them earlier in the design cycle, which both accelerates the path to flight and makes it safer.  
      A number of “firsts” have been accomplished in the electric aircraft testbed.   
      NASA and GE Aerospace completed the first successful ground tests of a high-power hybrid electric aircraft propulsion system at simulated altitude in 2022.   A megawatt-class electric machine was tested at NEAT by a university team led by The Ohio State University and the University of Wisconsin, under NASA’s University Leadership Initiative.   Under the Electrified Powertrain Flight Demonstration project, magniX tested its high-power megawatt-class powertrain with a goal to achieve approximately 5% reduced fuel use.    Systems tested at NEAT from General Electric and magniX will be flown on modified passenger aircraft currently being reconfigured for flight testing.  Return to Newsletter Explore More
      1 min read NASA Glenn Experts Join Law College to Talk Human Spaceflight 
      Article 33 mins ago 2 min read NASA Releases its Spinoff 2025 Publication 
      Article 34 mins ago 1 min read NASA Glenn Welcomes Spring 2025 Interns
      Article 34 mins ago View the full article
    • By NASA
      NASA’s Nancy Grace Roman Space Telescope team has successfully integrated the mission’s deployable aperture cover — a visor-like sunshade that will help prevent unwanted light from entering the telescope — to the outer barrel assembly, another structure designed to shield the telescope from stray light in addition to keeping it at a stable temperature.
      Technicians at NASA’s Goddard Space Flight Center in Greenbelt, Md., recently integrated the deployable aperture cover to the outer barrel assembly for the agency’s Nancy Grace Roman Space Telescope.NASA/Chris Gunn “It’s been incredible to see these major components go from computer models to building and now integrating them,” said Sheri Thorn, an aerospace engineer working on Roman’s sunshade at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Since it’s all coming together at Goddard, we get a front row seat to the process. We’ve seen it mature, kind of like watching a child grow up, and it’s a really gratifying experience.”
      The sunshade functions like a heavy-duty version of blackout curtains you might use to keep your room extra dark. It will make Roman more sensitive to faint light from across the universe, helping astronomers see dimmer and farther objects. Made of two layers of reinforced thermal blankets, the sunshade is designed to remain folded during launch and deploy after Roman is in space. Three booms will spring upward when triggered electronically, raising the sunshade like a page in a pop-up book.
      In this photo, technician Brenda Estavia is installing the innermost layer of the sunshade onto the deployable aperture cover structure of NASA’s Nancy Grace Roman Space Telescope. NASA/Jolearra Tshiteya The sunshade blanket has an inner and outer layer separated by about an inch, much like a double-paned window. “We’re prepared for micrometeoroid impacts that could occur in space, so the blanket is heavily fortified,” said Brian Simpson, Roman’s deployable aperture cover lead at NASA Goddard. “One layer is even reinforced with Kevlar, the same thing that lines bulletproof vests. By placing some space in between the layers we reduce the risk that light would leak in, because it’s unlikely that the light would pass through both layers at the exact same points where the holes were.”
       
      Over the course of a few hours, technicians meticulously joined the sunshade to the outer barrel assembly — both Goddard-designed components — in the largest clean room at NASA Goddard. The outer barrel assembly will help keep the telescope at a stable temperature and, like the sunshade, help shield the telescope from stray light and micrometeoroid impacts. It’s fitted with heaters to help ensure the telescope’s mirrors won’t experience wide temperature swings, which make materials expand and contract.
       
      “Roman is made up of a lot of separate components that come together after years of design and fabrication,” said Laurence Madison, a mechanical engineer at NASA Goddard. “The deployable aperture cover and outer barrel assembly were built at the same time, and up until the integration the two teams mainly used reference drawings to make sure everything would fit together as they should. So the successful integration was both a proud moment and a relief!”
      This photo shows the deployable aperture cover for NASA’s Nancy Grace Roman Space Telescope as seen through the outer barrel assembly. Both components will help shield the telescope from stray light, improving Roman’s sensitivity to faint light from across the universe.NASA/Chris Gunn Both the sunshade and outer barrel assembly have been extensively tested individually, but now that they’re connected engineers are assessing them again. Following the integration, the team tested the sunshade deployment.
       
      “Since the sunshade was designed to deploy in space, the system isn’t actually strong enough to deploy itself in Earth’s gravity,” said Matthew Neuman, a mechanical engineer working on Roman’s sunshade at NASA Goddard. “So we used a gravity negation system to offset its weight and verified that everything works as expected.”
       
      Next, the components will undergo thermal vacuum testing together to ensure they will function as planned in the temperature and pressure environment of space. Then they’ll move to a shake test to assess their performance during the extreme vibrations they’ll experience during launch.
       
      Technicians will join Roman’s solar panels to the outer barrel assembly and sunshade this spring, and then integrate them with the rest of the observatory by the end of the year. 
       
      The mission has now passed a milestone called Key Decision Point-D, marking the official transition from the fabrication stage that culminated in the delivery of major components to the phase involving assembly, integration, testing, and launch. The Roman observatory remains on track for completion by fall 2026 and launch no later than May 2027.
       
      To virtually tour an interactive version of the telescope, visit:
       
      https://roman.gsfc.nasa.gov/interactive/
      By Ashley Balzer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      301-286-1940
      Share
      Details
      Last Updated Feb 12, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
      Nancy Grace Roman Space Telescope Goddard Space Flight Center The Universe Explore More
      2 min read NASA Joins Telescope, Instruments to Roman Spacecraft
      Article 1 month ago 6 min read New Simulated Universe Previews Panoramas From NASA’s Roman Telescope
      Article 4 weeks ago 6 min read How NASA’s Roman Space Telescope Will Illuminate Cosmic Dawn
      Article 7 months ago View the full article
    • By NASA
      Science in Space January 2025
      At the start of a new year, many people think about making positive changes in their lives, such as improving physical fitness or learning a particular skill. Astronauts on the International Space Station work all year to maintain a high level of performance while adapting to changes in their physical fitness, cognitive ability, sensory perception, and other functions during spaceflight.
      Research on the space station looks at how these qualities change in space, the ways those changes affect daily performance, and countermeasures to keep astronauts at their peak.
      CSA astronaut David Saint-Jacques wears the Bio-Monitor health sensor shirt and headband.NASA A current CSA (Canadian Space Agency) investigation, Space Health, assesses the effects of spaceflight on cardiovascular deconditioning. The investigation uses Bio-Monitor, wearable sensors that collect data such as pulse rate, blood pressure, breathing rate, skin temperature, and physical activity levels. Results could support development of an autonomous system to monitor cardiovascular health on future space missions. Similar technology could be used to monitor heart health in people on Earth.
      Maintaining muscle fitness
      NASA astronaut Serena Auñón-Chancellor tests ESA astronaut Alexander Gerst’s muscle tone.ESA During spaceflight, astronauts lose muscle mass and stiffness, an indication of strength. Astronauts exercise daily to counteract these effects, but monitoring the effectiveness of exercise had been limited to before and after flight due to the lack of technologies appropriate for use in space. The ESA (European Space Agency) Myotones investigation demonstrated that a small, non-invasive device accurately measured muscle stiffness and showed that current countermeasures seem to be effective for most muscle groups. Accurate inflight assessment could help scientists target certain muscles to optimize the effectiveness of exercise programs on future missions. The measuring device also could benefit patients in places on Earth without other means for monitoring.
      Keeping a sharp mind
      Research suggests that the effects of spaceflight on cognitive performance likely are due to the influence of stressors such as radiation and sleep disruption. Longer missions that increase the exposure to these hazards may change how they affect individuals.
      Test subject Lance Dean performs a manual control task in the Johnson Space Center Neurosciences Laboratory’s Motion Simulator.NASA Manual Control used a battery of tests to examine how spaceflight affects cognitive, sensory, and motor function right after landing. The day they return from spaceflight, astronauts demonstrate significant impairments in fine motor control and ability to multitask in simulated flying and driving challenges. Researchers attribute this to subtle physiological changes during spaceflight. Performance recovered once individuals were exposed to a task, suggesting that having crew members conduct simulated tasks right before actual ones could be beneficial. This work helps scientists ensure that crew members can safely land and conduct early operations on the Moon and Mars.
      Standard Measures collects a set of physical and mental measurements related to human spaceflight risks, including a cognition test battery, from astronauts before, during, and after missions. Using these data, researchers found that astronauts on 6-month missions demonstrated generally stable cognitive performance with mild changes in certain areas, including processing speed, working memory, attention, and willingness to take risks. The finding provides baseline data that could help identify cognitive changes on future missions and support development of appropriate countermeasures. This research includes the largest sample of professional astronauts published to date.
      Evaluating perception
      CSA astronaut David Saint-Jacques conducts a session for VECTION.NASA Another function that can be affected by spaceflight is sensory perception, such as the ability to interpret motion, orientation, and distance. We use our visual perception of the height and width of objects around us, for example, to complete tasks such as reaching for an object and deciding whether we can fit through an opening. VECTION, a CSA investigation, found that microgravity had no immediate effect on the ability to perceive the height of an object, indicating that astronauts can safely perform tasks that rely on this judgment soon after they arrive in space. Researchers concluded there is no need for countermeasures but did suggest that space travelers be made aware of late-emerging and potentially long-lasting changes in the ability to perceive object height.
      Melissa Gaskill
      International Space Station Research Communications Team
      Johnson Space Center
      Keep Exploring Discover More Topics From NASA
      Space Station Research and Technology
      Humans In Space
      International Space Station News
      Station Benefits for Humanity
      View the full article
    • By NASA
      3 min read
      NASA Solar Observatory Sees Coronal Loops Flicker Before Big Flares
      For decades, scientists have tried in vain to accurately predict solar flares — intense bursts of light on the Sun that can send a flurry of charged particles into the solar system. Now, using NASA’s Solar Dynamics Observatory, one team has identified flickering loops in the solar atmosphere, or corona, that seem to signal when the Sun is about to unleash a large flare.
      These warning signs could help NASA and other stakeholders protect astronauts as well as technology both in space and on the ground from hazardous space weather.
      NASA’s Solar Dynamics Observatory captured this image of coronal loops above an active region on the Sun in mid-January 2012. The image was taken in the 171 angstrom wavelength of extreme ultraviolet light. NASA/Solar Dynamics Observatory Led by heliophysicist Emily Mason of Predictive Sciences Inc. in San Diego, California, the team studied arch-like structures called coronal loops along the edge of the Sun. Coronal loops rise from magnetically driven active regions on the Sun, where solar flares also originate.
      The team looked at coronal loops near 50 strong solar flares, analyzing how their brightness in extreme ultraviolet light varied in the hours before a flare compared to loops above non-flaring regions. Like flashing warning lights, the loops above flaring regions varied much more than those above non-flaring regions.
      “We found that some of the extreme ultraviolet light above active regions flickers erratically for a few hours before a solar flare,” Mason explained. “The results are really important for understanding flares and may improve our ability to predict dangerous space weather.”
      Published in the Astrophysical Journal Letters in December 2024 and presented on Jan. 15, 2025, at a press conference during the 245th meeting of the American Astronomical Society, the results also hint that the flickering reaches a peak earlier for stronger flares. However, the team says more observations are needed to confirm this link.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      The four panels in this movie show brightness changes in coronal loops in four different wavelengths of extreme ultraviolet light (131, 171, 193, and 304 angstroms) before a solar flare in December 2011. The images were taken by the Atmospheric Imaging Assembly (AIA) on NASA’s Solar Dynamics Observatory and processed to reveal flickering in the coronal loops. NASA/Solar Dynamics Observatory/JHelioviewer/E. Mason Other researchers have tried to predict solar flares by examining magnetic fields on the Sun, or by looking for consistent trends in other coronal loop features. However, Mason and her colleagues believe that measuring the brightness variations in coronal loops could provide more precise warnings than those methods — signaling oncoming flares 2 to 6 hours ahead of time with 60 to 80 percent accuracy.
      “A lot of the predictive schemes that have been developed are still predicting the likelihood of flares in a given time period and not necessarily exact timing,” said team member Seth Garland of the Air Force Institute of Technology at Wright-Patterson Air Force Base in Ohio.
      Each solar flare is like a snowflake — every single flare is unique.
      Kara kniezewski
      Air Force Institute of Technology
      “The Sun’s corona is a dynamic environment, and each solar flare is like a snowflake — every single flare is unique,” said team member Kara Kniezewski, a graduate student at the Air Force Institute of Technology and lead author of the paper. “We find that searching for periods of ‘chaotic’ behavior in the coronal loop emission, rather than specific trends, provide a much more consistent metric and may also correlate with how strong a flare will be.”
      The scientists hope their findings about coronal loops can eventually be used to help keep astronauts, spacecraft, electrical grids, and other assets safe from the harmful radiation that accompanies solar flares. For example, an automated system could look for brightness changes in coronal loops in real-time images from the Solar Dynamics Observatory and issue alerts.
      “Previous work by other researchers reports some interesting prediction metrics,” said co-author Vadim Uritsky of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the Catholic University of Washington in D.C. “We could build on this and come up with a well-tested and, ideally, simpler indicator ready for the leap from research to operations.”
      By Vanessa Thomas
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Jan 15, 2025 Related Terms
      Goddard Space Flight Center Heliophysics Heliophysics Division Space Weather The Sun Explore More
      7 min read NASA Celebrates Edwin Hubble’s Discovery of a New Universe


      Article


      5 hours ago
      6 min read NASA’s Webb Reveals Intricate Layers of Interstellar Dust, Gas


      Article


      1 day ago
      6 min read Newfound Galaxy Class May Indicate Early Black Hole Growth, Webb Finds


      Article


      1 day ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of TOBIAS: Tethered Observatory for Balloon-based Imaging and Atmospheric Sampling concept.NASA/Ben Hockman Ben Hockman
      NASA Jet Propulsion Laboratory
      A basketball-sized towbody containing a camera, atmospheric sampling instruments, and support hardware is suspended on a multi-kilometer tether from a high-altitude balloon in the Venusian atmosphere, allowing it to peer beneath the dense cloud layer and image the surface at high resolution. The towbody harvests energy from the differential wind shear via an onboard wind turbine in order to power onboard instruments and active cooling system. Aerodynamic surfaces interacting with the relative wind shears of ~10 m/s allow the towbody to maintain stable pointing for imaging. This Phase I study will focus on four key feasibility aspects of the towbody system: (1) the tether system, including tether design, deployment system, and drag due to atmospheric wind shear, (2) towbody attitude stability, including its aerodynamic design and vibration suppression, (3) the power and thermal system for surviving the harsh Venusian atmosphere, and (4) the mission architecture and systems engineering aspects, particularly communications, towbody deployment, gondola interfaces, and the concept of operations. This “Tethered Observatory for Balloon-based Imaging and Atmospheric Sampling (TOBIAS)” would transform our understanding of the nature and evolution of Venus by enabling high resolution and spatial coverage nighttime IR imaging of surface geology, including active and past volcanism.
      2025 Selections
      Facebook logo @NASATechnology @NASA_Technology


      Share
      Details
      Last Updated Jan 10, 2025 EditorLoura Hall Related Terms
      NASA Innovative Advanced Concepts (NIAC) Program NIAC Studies Keep Exploring Discover More NIAC Topics
      Space Technology Mission Directorate
      NASA Innovative Advanced Concepts
      NIAC Funded Studies
      About NIAC
      View the full article
  • Check out these Videos

×
×
  • Create New...