Jump to content

The Marshall Star for March 27, 2024


NASA

Recommended Posts

  • Publishers
31 Min Read

The Marshall Star for March 27, 2024

David Brock, small business specialist at NASA’s Marshall Space Flight Center, talks to attendees at the 37th Small Business Alliance meeting March 21.

Marshall Hosts 37th Small Business Alliance Meeting

By Celine Smith

NASA’s Marshall Space Flight Center hosted its 37th Small Business Alliance meeting March 21 at the U.S. Space & Rocket Center’s Davidson Center for Space Exploration. The event brought together hundreds of attendees from 39 states and 21 countries to network and learn about opportunities to do business with NASA.

“Today is about bringing the NASA marketplace directly to small businesses so they cannot only learn about how to get involved at NASA, but specifically in Huntsville and at Marshall,” said David Brock, small business specialist in Marshall’s Office of Procurement.

David Brock, small business specialist at NASA’s Marshall Space Flight Center, talks to attendees at the 37th Small Business Alliance meeting March 21.
David Brock, small business specialist at NASA’s Marshall Space Flight Center, talks to attendees at the 37th Small Business Alliance meeting March 21.
NASA/Charles Beason

The mayors of Huntsville, Madison, and Decatur gave a series of welcome remarks and thanked small businesses for their positive impact on their communities and the local economy.

Lisa Bates, deputy director of Marshall’s Engineering Directorate, emphasized the importance of small businesses to Marshall. “We have had so many tremendous accomplishments and so much of that is due to partnerships with small businesses,” Bates said. “We’ve done this together as a team.”

Kathy Rice, center, an information technology specialist at Marshall, talks with an attendee about the center’s small business capabilities.
Kathy Rice, center, an information technology specialist at Marshall, talks with an attendee about the center’s small business capabilities.
NASA/Charles Beason

Bates said that small businesses make up more than half of NASA’s suppliers and 32 of the 45 SLS (Space Launch System) suppliers in Alabama.

“I truly believe that teamwork and partnership is at the heart of every great achievement, and I look forward to being successful and exceptional with each of you,” said Bates.

Smith, a Media Fusion employee, supports the Marshall Office of Communications.

› Back to Top

Take 5 with Mitzi Adams

By Wayne Smith

Mitzi Adams watched several astronauts walk on the Moon when she was a teenager during NASA’s Apollo missions. That’s when Adams realized she wanted to be a NASA scientist. She also envisioned having an office on the lunar surface by 2000.

Today, Adams is a NASA scientist at the agency’s Marshall Space Flight Center. She is the assistant manager of the Heliophysics and Planetary Science branch of the Science and Technology Office. And while she doesn’t have an office on the Moon, she does see a path for future scientists and explorers to reach that destination.

Mitzi Adams
Mitzi Adams is a NASA scientist at the agency’s Marshall Space Flight Center. She is the assistant manager of the Heliophysics and Planetary Science branch of the Science and Technology Office, where she is responsible for the day-to-day operations of the branch.
NASA/Emmett Givens

“We are on the cusp of landing another human on the Moon for the first time in more than 50 years,” said Adams, who has worked at NASA for 35 years. “This time, however, there is a desire for a sustained presence, as well as a renewed interest in scientific research and discovery. If I were a high school student today, I feel that there would be a high probability that at least one of my offices would be located on the Moon in the not-too-distant future. There are many possibilities for this generation of students to be heavily involved in human space exploration. This is truly exciting.”

Heliophysics encompasses the study of the Sun and its effects on Earth, the solar system, and space itself. With the focus on the upcoming total solar eclipse April 8, Adams said participating and organizing NASA outreach events for the 2017 eclipse is one of the proudest moments of her career.

“We partnered with the city of Hopkinsville, Kentucky, Austin Peay State University, the U.S. Space & Rocket Center, and The INSPIRE Project to involve high school students and the public in observations and science experiments surrounding the 2017 solar eclipse,” said Adams, who is from Atlanta, Georgia. “We presented science topics to the students and allowed them to choose their observation site, based on their interests. In the intervening years since the eclipse, those INSPIRE Project students have been extremely successful, both in academics and in the business world. One of those students graduated from the Air Force Academy in 2022. That student is currently in flight school and expects to earn her wings in the next couple of months. We like to think that we were a positive influence on her and that the eclipse inspired her to obtain a STEM degree.”         

Question: What excites you most about the future of human space exploration, or your NASA work, and your team’s role it?

Adams: For the safety of astronauts who will remain on the surface of a world devoid of a protective atmosphere, as well as when traveling between the Earth and the Moon (or Mars), it is imperative that we understand better the Sun and space weather. To date, through a fleet of spacecraft studying the Sun, we have made great strides in nowcasting solar events, such as flares and coronal-mass ejections. In addition, through a sounding-rocket program, our scientists have contributed to basic knowledge of solar physics and are beginning to unravel the puzzle surrounding magnetic-reconnection events in the solar atmosphere that may be causing flares and coronal-mass ejections.

Question: Who or what drives/motivates you?

Adams: Many things. As a teenager, I was inspired by Edgar Mitchell, lunar-module pilot on Apollo 14, whom I met and pestered throughout his life. He never discouraged me from my goals and always encouraged. I have always been a science fiction fan. I think my first science fiction book as a third-grade student was “Have Space Suit – Will Travel,” by Robert Heinlein. So, it was only natural that I became a Star Trek fan. From Star Trek, I was inspired by Nichelle Nichols, who played Lt. Uhura, and Leonard Nimoy, who played Mr. Spock, a science officer. 

When I speak to students, I ask what they think is the most important attribute of a scientist. The answer I seek from them is curiosity – puzzles and mysteries drive and motivate me. Observing the Sun, I have seen eruptions and phenomena that I want to understand, which drives me to access those data and do the analysis! 

Question: Who or what inspired you to pursue an education/career that led you to NASA and Marshall?

Adams: I’ve always wanted to be a scientist and I could have studied geology or astronomy. Since becoming an astronaut also was a goal, I decided that astronomy would be the best path. Specifically, as I was about to obtain my undergraduate degree from Georgia State University, I thought I needed internship experience. Since one of my caving friends, Joe Dabbs, worked at Marshall, I asked if he knew anyone who might need a summer student. Joe put me in touch with Ron Moore with NASA and Gordon Emslie of the University of Alabama in Huntsville (UAH), who hired me for the summer. They apparently were pleased with my work because they suggested I apply to UAH for graduate school and to the graduate co-op program. I was accepted by both and earned a master’s degree in physics from UAH, after which I was hired by Marshall as a research scientist in solar physics.  

Question: What advice do you have for employees early in their NASA career or those in new leadership roles?

Adams: Networking is important. Engage with colleagues at meetings and seek out collaborations. Read research papers and contact those scientists who are included in the references list. Don’t be intimidated by scientists who have a lot of experience. If a problem/question in your research world is appealing, find ways you can contribute to finding solutions and ask the first or second author scientist if you can help.      

Question: What do you enjoy doing with your time while away from work?

Adams: Believe it or not, I enjoy reading Latin in small doses and have read two of the Harry Potter books in Latin, with help from two friends. I also enjoy hiking on trails, playing with my 3-year-old white Shepherd named Albus, which means white in Latin, and reading and watching science fiction.

Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications.

› Back to Top

Steven Wofford Named Manager of SLS Stages Office at Marshall

Steven J. (Steve) Wofford has been named to the Senior Executive Service position of manager of the SLS (Space Launch System) Stages Office at NASA’s Marshall Space Flight Center.

In his new role, he will lead activities and operations associated with the core stage, associated main propulsion systems, and integration of the vehicle avionics system. Wofford also will be responsible for support equipment and facilities used in the design, development, test, and transfer of SLS core stages. He previously was appointed as manager of the Block 1B/Exploration Upper Stage Development Office at Marshall in 2020.

Steven Wofford.
Steven J. (Steve) Wofford has been named to the Senior Executive Service position of manager of the SLS (Space Launch System) Stages Office at NASA’s Marshall Space Flight Center.
NASA

From 2014 to 2020, Wofford was manager of the SLS Program’s Liquid Engines Office at Marshall. From 2012 to 2014, he was deputy director of Marshall’s Safety and Mission Assurance Directorate, where he was responsible for overseeing safe execution of all center programs, projects, and institutional services. He was business manager for the Safety and Mission Assurance Directorate from 2011 to 2012.

From 2009 to 2011, Wofford was deputy manager of the Space Shuttle Main Engine Project Office at Marshall, helping to see the shuttle program to its successful conclusion in 2011. He was Shuttle Propulsion chief safety officer for the Safety and Mission Assurance Directorate from 2006 to 2009, formulating and communicating flight safety guidance and serving as Marshall’s safety technical authority on a wide gamut of propulsion technical issues.

In 2005 and 2006, he led engine component design and development for engine technologies supporting the Ares I and Ares V launch vehicles, next-generation rocket development programs that helped inform work resulting in the design, delivery, and manufacture of SLS engine systems.

Wofford began his NASA career in 2000 as a subsystem manager in Marshall’s Space Shuttle Main Engine Project Office. Before that, he supported the agency for more than 13 years as a contractor engineer, conducting assessment engineering and project integration engineering duties in support of the space shuttle main engine.

A Huntsville native, Wofford earned a bachelor’s degree in mechanical engineering in 1986 from the University of Alabama, and a master’s degree in aerospace engineering in 1991 from the University of Alabama in Huntsville.

His numerous career honors include a NASA Exceptional Achievement Medal in 2009 for his leadership in defining, implementing, and executing safety and mission assurance technical authority for the Space Shuttle Program. He also received a NASA Silver Snoopy Award in 1998, presented to team members who have made significant contributions to the human spaceflight program; and a Spaceflight Awareness Award in 1992 for his contributions as a contractor to the space shuttle main engine. In 2018, he was named a distinguished fellow of the University of Alabama in Tuscaloosa’s College of Engineering.

Wofford and his wife, Marisa, reside in Huntsville and have two sons.

› Back to Top

Marshall’s Women of Excellence Host Author for Women’s History Month Event

The Women of Excellence employee resource group at NASA’s Marshall Space Flight Center hosted an event March 18 in association with Women’s History Month.

Shehnaz Soni, center, a NASA senior systems engineer, author, and speaker, smiles with Women of Excellence members following her March 18 presentation to the employee resource group at NASA’s Marshall Space Flight Center. The event was a part of Women’s History Month in March. From left are Kristina Honeycutt, Leah Varner, Denise Smithers, Soni, LaBreesha Batey, Aquita Wherry, and Anastasia Byler.
Shehnaz Soni, center, a NASA senior systems engineer, author, and speaker, smiles with Women of Excellence members following her March 18 presentation to the employee resource group at NASA’s Marshall Space Flight Center. The event was a part of Women’s History Month in March. From left are Kristina Honeycutt, Leah Varner, Denise Smithers, Soni, LaBreesha Batey, Aquita Wherry, and Anastasia Byler.
NASA/Danielle Burleson

The event, titled “Self-Ignite into Destiny: A Pivot from Stressful Environments,” was part of NASA’s agencywide table-talk series.

Shehnaz Soni, a NASA senior systems engineer, author, and speaker, discussed her story, methodologies to reduce stress, and the importance of self-care in a unique way, reiterating that “We Are the Quantum Being.”

Women of Excellence, or WE, is co-chaired by LaBreesha Batey and Denise Smithers. The group’s aim is to help Marshall women reach their full potential and have access to equal opportunities at NASA. Team members can visit Inside Marshall to learn more about WE and other employee resource groups.

› Back to Top

Mission Success is in Our Hands: Amit Patel

By Wayne Smith

Mission Success is in Our Hands is a safety initiative collaboration between NASA’s Marshall Space Flight Center and Jacobs. As part of the initiative, eight Marshall team members are featured in testimonial banners placed around the center. This is the fifth in a Marshall Star series profiling team members featured in the testimonial banners. The Mission Success team also awards the Golden Eagle Award on a quarterly basis to Marshall and contractor personnel who are nominated by their peers or management. Candidates for this award have made significant, identifiable contributions that exceed normal job expectations to advance flight safety and mission assurance. Nominations are open now to team members online at Inside Marshall.

Amit Patel is a Jacobs Space Exploration Group solid rocket motor design engineer supporting NASA’s Marshall Space Flight Center.
Amit Patel is a Jacobs Space Exploration Group solid rocket motor design engineer supporting NASA’s Marshall Space Flight Center.
NASA/Charles Beason

Amit Patel is a Jacobs Space Exploration Group solid rocket motor design engineer supporting Marshall, where he has produced multiple iterations for solid rocket motors on NASA’s Mars Ascent Vehicle and performed motor internal ballistics analysis on Space Launch System boosters and other programs. His key responsibilities include designing solid rocket motor grains, ensuring launch vehicles can meet mission requirements through ballistics performance analysis, manufacturing process flow, and testing.

Patel has worked at Marshall for three years. He previously was a research engineer at the University of Alabama in Huntsville’s Propulsion Research Center, where he worked on design and hot-fire testing of solid, liquid, and hybrids motors and developed a testbed for electric propulsion thrusters for small satellites. A North Alabama native, Patel earned his doctorate in aerospace systems engineering from the University of Alabama in Huntsville, along with a Master of Business Administration.

Question: How does your work support the safety and success of NASA and Marshall missions?

Patel: My work directly contributes to the success of NASA and Marshall missions by ensuring that solid rocket motors are designed to meet the stringent performance and reliability requirements necessary for achieving target orbital insertions. Through careful motor optimization, requirements management, and post-test data analysis I can help maximize the probability of mission success.

Question: What does the Mission Success is in Our Hands initiative mean to you?

Patel: Overall, the Mission Success is in Our Hands initiative reminds us that whatever role we play, we all are an integral part in the technical excellence and unwavering dedication to safety in the pursuit of NASA’s mission objectives. It serves as a reminder that the success of every mission is contingent upon the collective efforts and commitment of every individual involved, from engineers and scientists to administrators and support staff.

Question: How can we work together better to achieve mission success?

Patel: By prioritizing relationship-building within the team, we can harness the collective talents, creativity, and resilience of individuals to overcome engineering obstacles and contribute to the success of complex missions. We can build this synergy through enhanced communication, mutual respect and trust in one another, a shared understanding of goals and vision, and effective problem-solving when faced with challenges.

Question: Do you have anything else you’d like to share?

Patel: The work we do in the aerospace industry has far-reaching implications that extend beyond the confines of Earth’s atmosphere. By pushing the boundaries of exploration, innovation, and collaboration, we strive to leave a lasting legacy of progress and discovery that will benefit future generations and inspire them to reach even greater heights.

Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications.

› Back to Top

Panelists Highlight Centennial Challenges at South by Southwest Conference

South by Southwest chose to feature a panel discussion on NASA’s Prizes, Challenges, and Crowdsourcing program at this year’s conference and festival in Austin, Texas, on March 10.

Panelists from NASA’s Marshall Space Flight Center, the agency’s Johnson Space Center, and ICON Technology Inc. gave a presentation titled, “How NASA Supports Startups and Individuals to Collaborate on its Mission.” The panel touched on several notable success stories from Centennial Challenges, the Center of Excellence for Collaborative Innovation, and NASA Tournament Lab, including ICON’s journey from competing in NASA’s 3D-Printed Habitat Challenge to securing multiple contracts and partnerships.

From left, panelists Steve Rader from NASA’s Johnson Space Center, Angela Herblet and Savannah Bullard from the agency’s Marshall Space Flight Center, and Andrew Rothgaber from ICON discuss the NASA’s Prizes, Challenges, and Crowdsourcing program at the South by Southwest Conference on March 10 in Austin, Texas.
From left, panelists Steve Rader from NASA’s Johnson Space Center, Angela Herblet from the agency’s Marshall Space Flight Center, Andrew Rothgaber from ICON Technology, and Savannah Bullard from Marshall discuss NASA’s Prizes, Challenges, and Crowdsourcing program at the South by Southwest Conference on March 10 in Austin, Texas.
NASA/Bailey Light

Centennial Challenges are part of the Prizes, Challenges, and Crowdsourcing program within NASA’s Space Technology Mission Directorate and are managed at Marshall.

Centennial Challenges were initiated in 2005 to directly engage the public in the process of advanced technology development. The program offers incentive prizes to generate revolutionary solutions to problems of interest to NASA and the nation. The program seeks innovations from diverse and non-traditional sources. Competitors are not supported by government funding and awards are only made to successful teams when the challenges are met.

The annual South by Southwest Conference celebrates the convergence of technology, film and television, music, education, and culture.

› Back to Top

Shuttle, Family Inspire NASA’s Cryogenic Technology Manager

By Daniel Boyette

Jeremy Kenny squinted his eyes as he looked toward the brilliant light. Then came the deafening sound waves that vibrated his body. This was the moment he’d dreamed about since childhood.

It was Nov. 16, 2009, at NASA’s Kennedy Space Center, and Kenny and his wife were watching space shuttle Atlantis embark on a mission to the International Space Station. Kenny, who was less than two years into his NASA career, had the opportunity to see the liftoff from Launch Pad 39A as part of receiving the Space Flight Awareness Award for supporting the Space Shuttle Program’s solid rocket booster flight program.

A man stands in in the middle of two poster boards on stands
Jeremy Kenny, manager of NASA’s Cryogenic Fluid Management Portfolio Project, holds a model spacecraft for the proposed large cryogenic demonstration mission. The mission aims to demonstrate liquid hydrogen management, including near-zero propellant boil off and highly efficient propellant transfer, needed to achieve long-duration transit to/from Mars and spacecraft loitering during on-surface campaigns.
Credit: NASA/Danielle Burleson

“That was the first launch I ever witnessed in person,” said Kenny, whose inspiration for working at NASA came from watching televised shuttle launches as a youth. “It was amazing and made me appreciate how such a powerful system could be designed and flown so successfully.”

With the final shuttle mission two years later, NASA set its sights on designing and building its future Artemis rocket: SLS (Space Launch System). Kenny was selected to lead the SLS Modal Acoustic Test program, which helped engineers understand how loud the rocket would be during liftoff. He later joined another key Artemis effort, the human landing system program, as a technical manager, overseeing the development of lander systems that will transport astronauts to the Moon’s surface.

“Artemis is an inspiring campaign for future human spaceflight exploration,” Kenny said. “I worked with SLS, Orion, and Exploration Ground Systems, and it was very fulfilling to see all the pieces come together for the successful Artemis I launch.”

In January, Kenny was named manager of NASA’s Cryogenic Fluid Management (CFM) Portfolio project, where he oversees a cross-agency team based at NASA’s Marshall Space Flight Center and Glenn Research Center. The CFM portfolio includes innovative technologies to store, transfer, and measure ultra-cold fluids – such as liquid hydrogen, liquid oxygen, and liquid methane. These cryogens are the most common propellants in space exploration, making CFM integral to NASA’s future exploration and science efforts.

“We must mature CFM technologies to support future flight mission architectures,” said Kenny. “The strong partnership between Marshall and Glenn in CFM maturation continues to produce excellent results, enabling in-space cryogenic systems vital to NASA’s Moon to Mars vision.”

Kenny’s choice of profession comes as little surprise, given his family background. He had a grandfather and an uncle who worked with the U.S. Army Corps of Engineers in the family’s hometown of Vicksburg, Mississippi. From them, Kenny learned how math and physics could be implemented in real-world applications. He earned three degrees in mechanical engineering: a bachelor’s from Mississippi State University in Starkville, a master’s from Georgia Tech in Atlanta, and a doctorate from the University of Alabama in Huntsville.

“My grandfather showed me various engineering software programs he worked on to simulate ground terrains for military transportation systems,” Kenny said. “My uncle worked on engineering developments for various military systems; he was a key influence for me to pursue graduate degrees in mechanical engineering.”

When Kenny’s not working to evolve technology for NASA’s future deep space exploration missions, he’s spending time with his wife and their two daughters, who are involved in choir and dance.

“Watching them practice and perform inspires me,” Kenny said with a smile. “My biggest challenge is balancing my professional work, which I love, and spending time with my family, who I love. With work comes many exciting opportunities, and solving hard problems is fun. But that excitement should not detract from keeping your personal relationships healthy. One day, I’ll retire and spend all my free time with family.”

The CFM Portfolio Project’s work is under NASA’s Technology Demonstration Missions Program, part of NASA’s Space Technology Mission Directorate, which oversees a broad portfolio of technology development and demonstration projects across NASA centers and American industry partners.

Read more about Cryogenic Fluid Management.

Boyette, a Media Fusion employee, supports the Cryogenic Fluid Management Portfolio Project and Marshall’s Office of Strategic Analysis & Communications.

› Back to Top

NASA Continues Artemis Moon Rocket Engine Tests

NASA continued a key RS-25 engine test series for future Artemis flights of the agency’s powerful SLS (Space Launch System) rocket March 22 and March 27 with hot fires on the Fred Haise Test Stand at NASA’s Stennis Space Center.

a view of the Fred Haise Test Stand during a hot fire
NASA continued a key RS-25 engine test series for future Artemis flights of the agency’s powerful SLS (Space Launch System) rocket March 22 with a hot fire on the Fred Haise Test Stand at NASA’s Stennis Space Center.
NASA/Danny Nowlin

The tests marked the 10th and 11th hot fire in a 12-test series to certify production of new RS-25 engines by lead contractor Aerojet Rocketdyne, an L3 Harris Technologies company.

On March 22, the Stennis test team fired the certification engine for 500 seconds, or the same amount of time engines must fire to help launch the SLS rocket to space with astronauts aboard the Orion spacecraft. Operators powered the engine up to a level of 113%, which is beyond the 111% power level new RS-25 engines use to provide additional thrust. Testing up to the 113% power level provides a margin of operational safety.

Newly produced engines will power NASA’s SLS rocket on Artemis missions to the Moon and beyond, beginning with Artemis V. For Artemis missions I-IV, NASA and Aerojet Rocketdyne modified 16 former space shuttle engines for use on the SLS rocket. Four RS-25 engines fire simultaneously to help launch each SLS rocket, producing up to 2 million pounds of combined thrust.

a closer view of the Fred Haise Test Stand during a hot fire
The Stennis test team fired the certification engine March 22 for 500 seconds, or the same amount of time engines must fire to help launch the SLS rocket to space with astronauts aboard the Orion spacecraft.
NASA/Danny Nowlin

NASA’s Marshall Space Flight Center manages the SLS Program.

Through Artemis, NASA will establish the foundation for long-term scientific exploration at the Moon, land the first woman, first person of color, and first international partner astronaut on the lunar surface, and prepare for human expeditions to Mars for the benefit of all. RS-25 tests at NASA Stennis are conducted by a diverse team of operators from NASA, Aerojet Rocketdyne, and Syncom Space Services, prime contractor for site facilities and operations.

› Back to Top

Payload Adapter Testing: A Key Step for Artemis IV Rocket’s Success

A test article of the SLS (Space Launch System) rocket’s payload adapter is ready for evaluation, marking a critical milestone on the journey to the hardware’s debut on NASA’s Artemis IV mission.

Comprised of two metal rings and eight composite panels, the cone-shaped payload adapter will be part of the SLS Block 1B configuration and housed inside the universal stage adapter atop the rocket’s more powerful in-space stage, called the exploration upper stage. The payload adapter is an evolution from the Orion stage adapter used in the Block 1 configuration of the first three Artemis missions that sits at the topmost portion of the rocket and helps connect the rocket and spacecraft.

Key adapters for the first crewed Artemis missions are manufactured at NASA’s Marshall Space Flight Center in Huntsville, Alabama. The cone-shaped payload adapter, left, will debut on the Block 1B configuration of the SLS rocket beginning with Artemis IV, while the Orion stage adapters, right, will be used for Artemis II and Artemis III.
Key adapters for the first crewed Artemis missions are manufactured at NASA’s Marshall Space Flight Center. The cone-shaped payload adapter, left, will debut on the Block 1B configuration of the SLS rocket beginning with Artemis IV, while the Orion stage adapters, right, will be used for Artemis II and Artemis III.
NASA/Sam Lott

“Like the Orion stage adapter and the launch vehicle stage adapter used for the first three SLS flights, the payload adapter for the evolved SLS Block 1B configuration is fully manufactured and tested at NASA’s Marshall Space Flight Center,” said Casey Wolfe, assistant branch chief for the advanced manufacturing branch at Marshall. “Marshall’s automated fiber placement and large-scale integration facilities provide our teams the ability to build composite hardware elements for multiple Artemis missions in parallel, allowing for cost and schedule savings.”

At about 8.5 feet tall, the payload adapter’s eight composite sandwich panels, which measure about 12 feet each in length, contain a metallic honeycomb-style structure at their thickest point but taper to a single carbon fiber layer at each end. The panels are pieced together using a high-precision process called determinant assembly, in which each component is designed to fit securely in a specific place, like puzzle pieces.

Teams at Marshall manufactured, prepared, and move the payload adapter test article. The payload adapter will undergo testing in the same test stand that once housed the SLS liquid oxygen tank structural test article.
Teams at Marshall manufactured, prepared, and moved the payload adapter test article. The payload adapter will undergo testing in the same test stand that once housed the SLS liquid oxygen tank structure test article.
NASA

After manufacturing, the payload adapter will also be structurally tested at Marshall, which manages the SLS Program. The first structural test series begins this spring. Test teams will use the engineering development unit – an exact replica of the flight version of the hardware – to check the structure’s strength and durability by twisting, shaking, and applying extreme pressure.

While every Block 1B configuration of the SLS rocket will use a payload adapter, each will be customized to fit the mission’s needs. The determinant assembly method and digital tooling ensure a more efficient and uniform manufacturing process, regardless of the mission profile, to ensure hardware remains on schedule. Data from this test series will further inform design and manufacturing processes as teams begin manufacturing the qualification and flight hardware for Artemis IV.

NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft and Gateway in orbit around the Moon and commercial human landing systems, next-generational spacesuits, and rovers on the lunar surface. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.

› Back to Top

Chandra Identifies an Underachieving Black Hole

A new image shows a quasar, a rapidly growing supermassive black hole, which is not achieving what astronomers would expect from it, as reported in a press release. Data from NASA’s Chandra X-ray Observatory (blue) and radio data from the NSF’s Karl G. Jansky’s Very Large Array (red) reveal some of the evidence for this quasar’s disappointing impact on its host galaxy.

Known as H1821+643, this quasar is about 3.4 billion light-years from Earth. Quasars are a rare and extreme class of supermassive black holes that are furiously pulling material inwards, producing intense radiation and sometimes powerful jets. H1821+643 is the closest quasar to Earth in a cluster of galaxies.

Quasar H1821+643.
This composite image shows a quasar, a rare and extreme class of supermassive black hole. Known as H1821+643, this quasar is about 3.4 billion light-years from Earth.
X-ray: NASA/CXC/Univ. of Nottingham/H. Russell et al.; Radio: NSF/NRAO/VLA; Image Processing: NASA/CXC/SAO/N. Wolk

Quasars are different than other supermassive black holes in the centers of galaxy clusters in that they are pulling in more material at a higher rate. Astronomers have found that non-quasar black holes growing at moderate rates influence their surroundings by preventing the intergalactic hot gas from cooling down too much. This regulates the growth of stars around the black hole.

The influence of quasars, however, is not as well known. This new study of H1821+643 that quasars – despite being so active – may be less important in driving the fate of their host galaxy and cluster than some scientists might expect.

To reach this conclusion the team used Chandra to study the hot gas that H1821+643 and its host galaxy are shrouded in. The bright X-rays from the quasar, however, made it difficult to study the weaker X-rays from the hot gas. The researchers carefully removed the X-ray glare to reveal what the black hole’s influence is, which is reflected in the new composite image showing X-rays from hot gas in the cluster surrounding the quasar. This allowed them to see that the quasar is actually having little effect on its surroundings.

Using Chandra, the team found that the density of gas near the black hole in the center of the galaxy is much higher, and the gas temperatures much lower, than in regions farther away. Scientists expect the hot gas to behave like this when there is little or no energy input (which would typically come from outbursts from a black hole) to prevent the hot gas from cooling down and flowing towards the center of the cluster.

A paper describing these results has been accepted into the Monthly Notices of the Royal Astronomical Society and is available online. The authors are Helen Russell (University of Nottingham, UK), Paul Nulsen (Center for Astrophysics | Harvard & Smithsonian), Andy Fabian (University of Cambridge, UK), Thomas Braben (University of Nottingham), Niel Brandt (Penn State University), Lucy Clews (University of Nottingham), Michael McDonald (Massachusetts Institute of Technology), Christopher Reynolds (University of Maryland), Jeremy Saunders (Max Planck Institute for Extraterrestrial Research), and Sylvain Veilleux (University of Maryland).

NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science from Cambridge Massachusetts and flight operations from Burlington, Massachusetts.

› Back to Top

OSIRIS-REx Mission Awarded Robert Goddard Memorial Trophy

NASA’s OSIRIS-REx team was selected as the winner of the National Space Club and Foundation’s 2024 Dr. Robert H. Goddard Memorial Trophy for their tremendous work on the first U.S. mission to bring an asteroid sample to Earth. The winning team received the award at the 67th Annual Robert H. Goddard Memorial Dinner at the Washington Hilton Hotel on March 22.

The OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security – Regolith Explorer) team includes NASA’s Goddard Space Flight Center, Maryland; Lockheed Martin in Littleton, Colorado; University of Arizona, Tucson and KinetX in Tempe, Arizona.

NHQ202309240019~large.jpg?w=1920&h=1279&
The sample return capsule from NASA’s OSIRIS-REx mission is seen shortly after touching down in the desert Sept. 24, 2023, at the Department of Defense’s Utah Test and Training Range. The sample was collected from the asteroid Bennu in October 2020 by NASA’s OSIRIS-REx spacecraft.
NASA/Keegan Barber

The trophy is National Space Club’s highest honor and presented annually to the individual or group who has made a substantial contribution to U.S. leadership in astronautics or rocketry.

“The OSIRIS-REx team’s successful delivery of the asteroid Bennu sample to Earth will enable important scientific discoveries for generations to come,” said Lori Glaze, director of the Planetary Science Division at NASA Headquarters. “I’m so pleased to see the mission team recognized with the Robert H. Goddard Memorial Trophy for their accomplishments.”

Following its launch in 2016, the OSIRIS-REx mission made U.S. space history when it became the first U.S. spacecraft to touch an asteroid and capture a sample on Oct. 20, 2020, and again when it successfully returned with the sample to Earth on Sept. 24, 2023.

The sample, which is the largest asteroid sample ever delivered to Earth, is from the ancient asteroid Bennu and will give researchers worldwide a glimpse into the earliest days of our solar system, offering insights into planet formation and the origin of organics that led to life on Earth. Data collected by the spacecraft combined with future analysis of the Bennu sample will also aid our understanding of asteroids that can impact Earth.

The OSIRIS-REx mission conducted unprecedented centimeter-scale mapping of Bennu, surpassing precision levels achieved for any other planetary body and setting three Guinness World Records for: smallest object orbited by a spacecraft, closest orbit of an asteroid and highest resolution satellite map of any planetary body.

“The OSIRIS-REx mission rewrote U.S. space exploration history,” said Joe Vealencis, president, NSCF. “The data the spacecraft collected, plus all that we have yet to uncover from the sample it brought back, means scientists and engineers will be reaping the benefits of this mission for years to come.”

Following its successful sample return, the OSIRIS-REx spacecraft was renamed OSIRIS-APEX and will now enter an extended mission to visit and study near-Earth asteroid Apophis in 2029.

OSIRIS-REx’s success was made possible by the unique contributions of over 1,000 individuals from government and mission partners like the science lead at the University of Arizona, the project team at NASA’s Goddard Space Flight Center, the curation team at NASA’s Johnson Space Center, spacecraft design, operations, and recovery by Lockheed Martin, guidance and navigation at KinetX, and the launch provider at United Launch Alliance.

OSIRIS-REx is the third mission in NASA’s New Frontiers Program, managed by NASA’s Marshall Space Flight Center for the Science Mission Directorate at NASA Headquarters.

Read more about NASA’s OSIRIS-REx mission.

› Back to Top

Key Test Drive of Orion on NASA’s Artemis II to Aid Future Missions

Astronauts will test drive NASA’s Orion spacecraft for the first time during the agency’s Artemis II test flight next year. While many of the spacecraft’s maneuvers like big propulsive burns are automated, a key test called the proximity operations demonstration will evaluate the manual handling qualities of Orion.

During the approximately 70-minute demonstration set to begin about three hours into the mission, the crew will command Orion through a series of moves using the detached upper stage of the SLS (Space Launch System) rocket as a mark. The in-space propulsion stage, called the interim cryogenic propulsion stage (ICPS), includes an approximately two-foot target that will be used to evaluate how Orion flies with astronauts at the controls.

artemis-ii-piloting-demo-test-031224.jpg

“There are always differences between a ground simulation and what an actual spacecraft will fly like in space,” said Brian Anderson, Orion rendezvous, proximity operations, and docking manager within the Orion Program at NASA’s Johnson Space Center. “The demonstration is a flight test objective that helps us reduce risk for future missions that involve rendezvous and docking with other spacecraft.”

After NASA’s Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen are safely in space, the Moon rocket’s upper stage will fire twice to put Orion on a high Earth orbit trajectory. Then, the spacecraft will automatically separate from the rocket stage, firing several separation bolts before springs push Orion a safe distance away.

As the spacecraft and its crew move away, Orion will perform an automated backflip to turn around and face the stage. At approximately 300 feet away, Orion will stop its relative motion. The crew will take control and use the translational and rotational hand controllers and display system to make very small movements to ensure Orion is responding as expected.

Next, the crew will very slowly pilot Orion to within approximately 30 feet of the stage. A two-foot auxiliary target mounted inside the top of the stage, similar to the docking target used by spacecraft visiting the International Space Station, will guide their aim.

“The crew will view the target by using a docking camera mounted inside the docking hatch window on the top of the crew module to see how well aligned they are with the docking target mounted to the ICPS,” Anderson said.

“It’s a good stand in for what crews will see when they dock with Starship on Artemis III and to the Gateway on future missions.”

About 30 feet from the stage, Orion will stop and the crew will checkout the spacecraft’s fine handling qualities to evaluate how it performs in close proximity to another spacecraft. Small maneuvers performed very close to the ICPS will be done using the reaction control system thrusters on Orion’s European Service Module.

Orion will then back away and allow the stage to turn to protect its thermal properties. The crew will follow the stage, initiate a second round of manual maneuvers using another target mounted on the side of the stage, approach within approximately 30 feet, perform another fine handling quality check out, then back away.

At the end of the demonstration, Orion will perform an automated departure burn to move away from the ICPS before the stage then fires to re-enter Earth’s atmosphere over a remote location in the Pacific Ocean. During Orion’s departure burn, engineers will use the spacecraft’s docking camera to gather precise positioning measurements, which will help inform navigation during rendezvous activities on future missions in the lunar environment, where there is no GPS system. 

Because the Artemis II Orion is not docking with another spacecraft, it is not equipped with a docking module containing lights and therefore is reliant on the ICPS to be lit enough by the Sun to allow the crew to see the targets.

“As with many of our tests, it’s possible the proximity operations demonstration won’t go exactly as expected,” said Anderson. “Even if we don’t accomplish every part of the demonstration, we’ll continue on with the test flight as planned to accomplish our primary objectives, including evaluating Orion’s systems with crew aboard in the deep space environment and keeping the crew safe during the mission.”

The approximately 10-day Artemis II flight will test NASA’s foundational human deep space exploration capabilities, the SLS rocket and Orion spacecraft, for the first time with astronauts and will pave the way for lunar surface missions, including landing the first woman, first person of color, and first international partner astronaut on the Moon.

› Back to Top

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Dr. Misty Davies receives the prestigious AIAA Fellowship in May 2024 for her contributions to aerospace safety and autonomous systems, recognized at a ceremony in Washington, DC.NASA In May 2024, Dr. Misty Davies joined the American Institute of Aeronautics and Astronautics (AIAA) Class of 2024 Fellows at a ceremony in Washington, DC.  The AIAA website states that, “AIAA confers Fellow upon individuals in recognition of their notable and valuable contributions to the arts, sciences or technology of aeronautics and astronautics.”  The first AIAA Fellows were elected in 1934; since then only 2064 people have been selected for the honor.  Dr. Davies has focused her career at NASA Ames Research Center on developing tools and techniques that enable the safety assurance of increasingly autonomous systems.  She currently serves as the Associate Chief for Aeronautics Systems in the Intelligent Systems Division at NASA Ames and is the Aerospace Operations and Safety Program (AOSP) Technical Advisor for Assurance and Safety. More information on AIAA Fellows is at https://www.aiaa.org/news/news/2024/02/08/aiaa-announces-class-of-2024-honorary-fellows-and-fellows
      Share
      Details
      Last Updated Nov 22, 2024 Related Terms
      General Explore More
      8 min read SARP East 2024 Ocean Remote Sensing Group
      Article 52 mins ago 10 min read SARP East 2024 Atmospheric Science Group
      Article 52 mins ago 10 min read SARP East 2024 Hydroecology Group
      Article 52 mins ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      8 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Return to 2024 SARP Closeout Faculty Advisors:
      Dr. Tom Bell, Woods Hole Oceanographic Institution
      Dr. Kelsey Bisson, NASA Headquarters Science Mission Directorate
      Graduate Mentor:
      Kelby Kramer, Massachusetts Institute of Technology

      Kelby Kramer, Graduate Mentor
      Kelby Kramer, graduate mentor for the 2024 SARP Ocean Remote Sensing group, provides an introduction for each of the group members and shares behind-the scenes moments from the internship.
      Lucas DiSilvestro
      Shallow Water Benthic Cover Type Classification using Hyperspectral Imagery in Kaneohe Bay, Oahu, Hawaii
      Lucas DiSilvestro
      Quantifying the changing structure and extent of benthic coral communities is essential for informing restoration efforts and identifying stressed regions of coral. Accurate classification of shallow-water benthic coral communities requires high spectral and spatial resolution, currently not available on spaceborne sensors, to observe the seafloor through an optically complex seawater column. Here we create a shallow water benthic cover type map of Kaneohe Bay, Oahu, Hawaii using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) without requiring in-situ data as inputs. We first run the AVIRIS data through a semi-analytical inversion model to derive color dissolved organic matter, chlorophyll concentration, bottom albedo, suspended sediment, and depth parameters for each pixel, which are then matched to a Hydrolight simulated water column. Pure reflectance for coral, algae, and sand are then projected through each water column to create spectral endmembers for each pixel. Multiple Endmember Spectral Mixture Analysis (MESMA) provides fractional cover of each benthic class on a per-pixel basis. We demonstrate the efficacy of using simulated water columns to create surface reflectance spectral endmembers as Hydrolight-derived in-situ endmember spectra strongly match AVIRIS surface reflectance for corresponding locations (average R = 0.96). This study highlights the capabilities of using medium-fine resolution hyperspectral imagery to identify fractional cover type of localized coral communities and lays the groundwork for future spaceborne hyperspectral monitoring of global coral communities.

      Atticus Cummings
      Quantifying Uncertainty In Kelp Canopy Remote Sensing Using the Harmonized Landsat Sentinel-2 Dataset
      Atticus Cummings
      California’s giant kelp forests serve as a major foundation for the region’s rich marine biodiversity and provide recreational and economic value to the State of California. With the rising frequency of marine heatwaves and extreme weather onset by climate change, it has become increasingly important to study these vital ecosystems. Kelp forests are highly dynamic, changing across several timescales; seasonally due to nutrient concentrations, waves, and predator populations, weekly with typical growth and decay, and hourly with the tides and currents. Previous remote sensing of kelp canopies has relied on Landsat imagery taken with a eight-day interval, limiting the ability to quantify more rapid changes. This project aims to address uncertainty in kelp canopy detection using the Harmonized Landsat and Sentinel-2 (HLS) dataset’s zero to five-day revisit period. A random forest classifier was used to identify pixels that contain kelp, on which Multiple Endmember Spectral Mixture Analysis (MESMA) was then run to quantify intrapixel kelp density. Processed multispectral satellite images taken within 3 days of one another were paired for comparison. The relationship between fluctuations in kelp canopy density with tides and currents was assessed using in situ data from an acoustic doppler current profiler (ADCP) at the Santa Barbara Long Term Ecological Research site (LTER) and a NOAA tidal buoy. Preliminary results show that current and tidal trends cannot be accurately correlated with canopy detection due to other sources of error. We found that under cloud-free conditions, canopy detection between paired images varied on average by 42%. Standardized image processing suggests that this uncertainty is not created within the image processing step, but likely arises due to exterior factors such as sensor signal noise, atmospheric conditions, and sea state. Ultimately, these errors could lead to misinterpretation of remotely sensed kelp ecosystems, highlighting the need for further research to identify and account for uncertainties in remote sensing of kelp canopies.

      Jasmine Sirvent
      Kelp Us!: A Methods Analysis for Predicting Kelp Pigment Concentrations from Hyperspectral Reflectance
      Jasmine Sirvent
      Ocean color remote sensing enables researchers to assess the quantity and physiology of life in the ocean, which is imperative to understanding ecosystem health and formulating accurate predictions. However, without proper methods to analyze hyperspectral data, correlations between spectral reflectance and physiological traits cannot be accurately derived. In this study, I explored different methods—single variable regression, partial least squares regressions (PLSR), and derivatives—in analyzing in situ Macrocystis pyrifera (giant kelp) off the coast of Santa Barbara, California in order to predict pigment concentrations from AVIRIS hyperspectral reflectance. With derivatives as a spectral diagnostic tool, there is evidence suggesting high versus low pigment concentrations could be diagnosed; however, the fluctuations were within 10 nm of resolution, thus AVIRIS would be unable to reliably detect them. Exploring a different method, I plotted in situ pigment measurements — chlorophyll a, fucoxanthin, and the ratio of fucoxanthin to chlorophyll a—against hyperspectral reflectance that was resampled to AVIRIS bands. PLSR proved to be a more successful model because of its hyperdimensional analysis capabilities in accounting for multiple wavelength bands, reaching R2 values of 0.67. Using this information, I constructed a model that predicts kelp pigments from simulated AVIRIS reflectance using a spatial time series of laboratory spectral measurements and photosynthetic pigment concentrations. These results have implications, not only for kelp, but many other photosynthetic organisms detectable by hyperspectral airborne or satellite sensors. With these findings, airborne optical data could possibly predict a plethora of other biogeochemical traits. Potentially, this research would permit scientists to acquire data analogous to in situ measurements about floating matters that cannot financially and pragmatically be accessed by anything other than a remote sensor.

      Isabelle Cobb
      Correlations Between SSHa and Chl-a Concentrations in the Northern South China Sea
      Isabelle Cobb
      Sea surface height anomalies (SSHa)–variations in sea surface height from climatological averages–occur on seasonal timescales due to coastal upwelling and El Niño-Southern Oscillation (ENSO) cycles. These anomalies are heightened when upwelling plumes bring cold, nutrient-rich water to the surface, and are particularly strong along continental shelves in the Northern South China Sea (NSCS). This linkage between SSHa and nutrient availability has interesting implications for changing chlorophyll-a (chl-a) concentrations, a prominent indicator of phytoplankton biomass that is essential to the health of marine ecosystems. Here, we evaluate the long-term (15 years) relationship between SSHa and chl-a, in both satellite remote sensing data and in situ measurements. Level 3 SSHa data from Jason 1/2/3 satellites and chl-a data from MODIS Aqua were acquired and binned to monthly resolution. We found a significant inverse correlation between SSHa and chl-a during upwelling months in both the remote sensing (Spearman’s R=-0.57) and in situ data, with higher resolution in situ data from ORAS4 (an assimilation of buoy observations from 2003-2017) showing stronger correlations (Spearman’s R=-0.75). In addition, the data reveal that the magnitude of SSH increases with time during instances of high correlation, possibly indicating a trend of increased SSH associated with reduced seasonal chl-a concentrations. Thus, this relationship may inform future work predicting nutrient availability and threats to marine ecosystems as climate change continues to affect coastal sea surface heights.

      Alyssa Tou
      Exploring Coastal Sea Surface Temperature Anomalies and their effect on Coastal Fog through analyzing Plant Phenology
      Alyssa Tou
      Marine heat waves (MHW) have been increasing in frequency, duration and intensity, giving them substantial potential to influence ecosystems. Do these MHWs sufficiently enhance coastal precipitation such that plant growth is impacted? Recently, the Northeast Pacific experienced a long, intense MHW in 2014/2015, and another short, less intense MHW in 2019/2020. Here we investigate how the intensity and duration of MHWs influence the intensity and seasonal cycle of three different land cover types (‘grass’, ‘trees’, and a combination of both ‘combined’’) to analyze plant phenology trends in Big Sur, California. We hypothesize that longer intense MHWs decrease the ocean’s evaporative capacity, decreasing fog, thus lowering plant productivity, as measured by Normalized Difference Vegetation Index (NDVI). Sea surface temperature (SST) and NDVI data were collected from the NOAA Coral Reef Watch, and NASA MODIS/Terra Vegetation Indices 16-Day L3 Global 250m products respectively. Preliminary results show no correlation (R2=0.02) between SSTa and combined NDVI values and no correlation (R2=0.01) between SST and NDVI. This suggests that years with anomalously high SST do not significantly impact plant phenology. During the intense and long 2014/2015 MHW, peak NDVI values for ‘grass’ and ‘combined’ pixels were 2.0 and 1.7 standard deviations above the climatological average, while the shorter 2019/2020 MHW saw higher peaks of 3.2 and 2.4 standard deviations. However, the ‘grass’, ‘tree’ and ‘combined’ NDVI anomalies were statistically insignificant during both MHWs, showing that although NDVI appeared to increase during the shorter and less intense MHW, these values may be attributed to other factors. The data qualitatively suggest that MHW’s don’t impact the peak NDVI date, but more data at higher temporal resolution are necessary. Further research will involve analyzing fog indices and exploring confounding variables impacting NDVI, such as plant physiology, anthropogenic disturbance, and wildfires. In addition, it’s important to understand to what extent changes in NDVI are attributed to the driving factors of MHWs or the MHWs themselves. Ultimately, mechanistically understanding the impacts MHW intensity and duration have on terrestrial ecosystems will better inform coastal community resilience.


      Return to 2024 SARP Closeout Share
      Details
      Last Updated Nov 22, 2024 Related Terms
      General Explore More
      10 min read SARP East 2024 Atmospheric Science Group
      Article 21 mins ago 10 min read SARP East 2024 Hydroecology Group
      Article 21 mins ago 11 min read SARP East 2024 Terrestrial Fluxes Group
      Article 22 mins ago View the full article
    • By NASA
      10 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Return to 2024 SARP Closeout Faculty Advisors:
      Dr. Guanyu Huang, Stony Brook University
      Graduate Mentor:
      Ryan Schmedding, McGill University

      Ryan Schmedding, Graduate Mentor
      Ryan Schmedding, graduate mentor for the 2024 SARP Atmospheric Science group, provides an introduction for each of the group members and shares behind-the scenes moments from the internship.
      Danielle Jones
      Remote sensing of poor air quality in mountains: A case study in Kathmandu, Nepal
      Danielle Jones
      Urban activity produces particulate matter in the atmosphere known as aerosol particles. These aerosols can negatively affect human health and cause changes to the climate system. Measures for aerosols include surface level PM2.5 concentration and aerosol optical depth (AOD). Kathmandu, Nepal is an urban area that rests in a valley on the edge of the Himalayas and is home to over three million people. Despite the prevailing easterly winds, local aerosols are mostly concentrated in the valley from the residential burning of coal followed by industry. Exposure to PM2.5 has caused an estimated ≥8.6% of deaths annually in Nepal. We paired NASA satellite AOD and elevation data, model  meteorological data, and local AirNow PM2.5 and air quality index (AQI) data to determine causes of variation in pollutant measurement during 2023, with increased emphasis on the post-monsoon season (Oct. 1 – Dec. 31). We see the seasonality of meteorological data related to PM2.5 and AQI. During periods of low temperature, low wind speed, and high pressure, PM2.5 and AQI data slightly diverge. This may indicate that temperature inversions increase surface level concentrations of aerosols but have little effect on the total air column. The individual measurements of surface pressure, surface temperature, and wind speed had no observable correlation to AOD (which was less variable than PM2.5 and AQI over the entire year). Elevation was found to have no observable effect on AOD during the period of study. Future research should focus on the relative contributions of different pollutants to the AQI to test if little atmospheric mixing causes the formation of low-altitude secondary pollutants in addition to PM2.5 leading to the observed divergence in AQI and PM2.5.

      Madison Holland
      Analyzing the Transport and Impact of June 2023 Canadian Wildfire Smoke on Surface PM2.5 Levels in Allentown, Pennsylvania
      Madison Holland
      The 2023 wildfire season in Canada was unparalleled in its severity. Over 17 million hectares burned, the largest area ever burned in a single season. The smoke from these wildfires spread thousands of kilometers, causing a large population to be exposed to air pollution. Wildfires can release a variety of air pollutants, including fine particulate matter (PM2.5). PM2.5 directly affects human health – exposure to wildfire-related PM2.5 has been associated with respiratory issues such as the exacerbation of asthma and chronic obstructive pulmonary disease. In June 2023, smoke from the Canadian wildfires drifted southward into the United States. The northeastern United States reported unhealthy levels of air quality due to the transportation of the smoke. In particular, Pennsylvania reported that Canadian wildfires caused portions of the state to have “Hazardous” air quality. Our research focused on how Allentown, PA experienced hazardous levels of air quality from this event. To analyze the concentrations of PM2.5 at the surface level, NASA’s Hazardous Air Quality Ensemble System (HAQES) and the EPA’s Air Quality System (AQS) ground-based site data were utilized. By comparing HAQES’s forecast of hazardous air quality events with recorded daily average PM2.5 with the EPA’s AQS, we were able to compare how well the ensemble system was at predicting total PM2.5 during unhealthy air quality days. NOAA’s Hybrid Single-Particle Lagrangian Integrated Trajectory model, pyrsig, and the Canadian National Fire Database were used. These datasets revealed the trajectory of aerosols from the wildfires to Allentown, Pennsylvania, identified the densest regions of the smoke plumes, and provided a map of wildfire locations in southeastern Canada. By integrating these datasets, we traced how wildfire smoke transported aerosols from the source at the ground level.

      Michele Iraci
      Trends and Transport of Tropospheric Ozone From New York City to Connecticut in the Summer of 2023
      Michele Iraci
      Tropospheric Ozone, or O₃, is a criteria pollutant contributing to most of Connecticut and New York City’s poor air quality days. It has adverse effects on human health, particularly for high-risk individuals. Ozone is produced by nitrogen oxides and volatile organic compounds from fuel combustion reacting with sunlight. The Ozone Transport Region (OTR) is a collection of states in the Northeast and Mid-Atlantic United States that experience cross-state pollution of O₃. Connecticut has multiple days a year where O₃ values exceed the National Ambient Air Quality Standards requiring the implementation of additional monitoring and standards because it falls in the OTR. Partially due to upstream transport from New York City, Connecticut experiences increases in O₃ concentrations in the summer months. Connecticut has seen declines in poor air quality days from O₃ every year due to the regulations on ozone and its precursors. We use ground-based Lidar, Air Quality System data, and a back-trajectory model to examine a case of ozone enhancement in Connecticut caused by air pollutants from New York between June and August 2023. In this time period, Connecticut’s ozone enhancement was caused by air pollutants from New York City. As a result, New York City and Connecticut saw similar O₃ spikes and decline trends. High-temperature days increase O₃ in both places, and wind out of the southwest may transport O₃ to Connecticut. Production and transport of O₃ from New York City help contribute to Connecticut’s poor air quality days, resulting in the need for interstate agreements on pollution management.

      Stefan Sundin
      Correlations Between the Planetary Boundary Layer Height and the Lifting Condensation Level
      Stefan Sundin
      The Planetary Boundary Layer (PBL) characterizes the lowest layer in the atmosphere that is coupled with diurnal heating at the surface. The PBL grows during the day as solar heating causes pockets of air near the surface to rise and mix with cooler air above. Depending on the type of terrain and surface albedo that receives solar heating, the depth of the PBL can vary to a great extent. This makes PBL height (PBLH) a difficult variable to quantify spatially and temporally. While several methods have been used to obtain the PBLH such as wind profilers and lidar techniques, there is still a level of uncertainty associated with PBLH. One method of predicting seasonal PBLH fluctuation and potentially lessening uncertainty that will be discussed in this study is recognizing a correlation in PBLH with the lifting condensation level (LCL). Like the PBL, the LCL is used as a convective parameter when analyzing upper air data, and classifies the height in the atmosphere at which a parcel becomes saturated when lifted by a forcing mechanism, such as a frontal boundary, localized convergence, or orographic lifting. A reason to believe that PBLH and LCL are interconnected is their dependency on both the amount of surface heating and moisture that is present in the environment. These thermodynamic properties are of interest in heavily populated metropolitan areas within the Great Plains, as they are more susceptible to severe weather outbreaks and associated economic losses. Correlations between PBLH and LCL over the Minneapolis-St. Paul metropolitan statistical area during the summer months of 2019-2023 will be discussed.

      Angelica Kusen
      Coupling of Chlorophyll-a Concentrations and Aerosol Optical Depth in the Subantarctic Southern Ocean and South China Sea (2019-2021)
      Angelica Kusen
      Air-sea interactions form a complex feedback mechanism, whereby aerosols impact physical and biogeochemical processes in marine environments, which, in turn, alter aerosol properties. One key indicator of these interactions is chlorophyll-a (Chl-a), a pigment common to all phytoplankton and a widely used proxy for primary productivity in marine ecosystems. Phytoplankton require soluble nutrients and trace metals for growth, which typically come from oceanic processes such as upwelling. These nutrients can also be supplied via wet and dry deposition, where atmospheric aerosols are removed from the atmosphere and deposited into the ocean. To explore this interaction, we analyze the spatial and temporal variations of satellite-derived chl-a and AOD, their correlations, and their relationship with wind patterns in the Subantarctic Southern Ocean and the South China Sea from 2019 to 2021, two regions with contrasting environmental conditions.
      In the Subantarctic Southern Ocean, a positive correlation (r²= 0.26) between AOD and Chl-a was found, likely due to dust storms following Austrian wildfires. Winds deposit dust aerosols rich in nutrients, such as iron, to the iron-limited ocean, enhancing phytoplankton photosynthesis and increasing chl-a. In contrast, the South China Sea showed no notable correlation (r² = -0.02) between AOD and chl-a. Decreased emissions due to COVID-19 and stricter pollution controls likely reduced the total AOD load and shifted the composition of aerosols from anthropogenic to more natural sources.
      These findings highlight the complex interrelationship between oceanic biological activity and the chemical composition of the atmosphere, emphasizing that atmospheric delivery of essential nutrients, such as iron and phosphorus, promotes phytoplankton growth. Finally, NASA’s recently launched PACE mission will contribute observations of phytoplankton community composition at unprecedented scale, possibly enabling attribution of AOD levels to particular groups of phytoplankton.

      Chris Hautman
      Estimating CO₂ Emission from Rocket Plumes Using in Situ Data from Low Earth Atmosphere
      Chris Hautman
      Rocket emissions in the lower atmosphere are becoming an increasing environmental concern as space exploration and commercial satellite launches have increased exponentially in recent years. Rocket plumes are one of the few known sources of anthropogenic emissions directly into the upper atmosphere. Emissions in the lower atmosphere may also be of interest due to their impacts on human health and the environment, in particular, ground level pollutants transported over wildlife protected zones, such as the Everglades, or population centers near launch sites. While rockets are a known source of atmospheric pollution, the study of rocket exhaust is an ongoing task. Rocket exhaust can have a variety of compositions depending on the type of engine, the propellants used, including fuels, oxidizers, and monopropellants, the stoichiometry of the combustion itself also plays a role. In addition, there has been increasing research into compounds being vaporized in atmospheric reentry. These emissions, while relatively minimal compared to other methods of travel, pose an increasing threat to atmospheric stability and environmental health with the increase in human space activity. This study attempts to create a method for estimating the total amount of carbon dioxide released by the first stage of a rocket launch relative to the mass flow of RP-1, a highly refined kerosene (C₁₂H₂₆)), and liquid oxygen (LOX) propellants. Particularly, this study will focus on relating in situ CO₂ emission data from a Delta II rocket launch from Vandenberg Air Force Base on April 15, 1999, to CO₂ emissions from popular modern rockets, such as the Falcon 9 (SpaceX) and Soyuz variants (Russia). The findings indicate that the CO₂ density of any RP-1/LOX rocket is 6.9E-7 times the mass flow of the sum of all engines on the first stage. The total mass of CO₂ emitted can be further estimated by modeling the volume of the plume as cylindrical. Therefore, the total mass can be calculated as a function of mass flow and first stage main engine cutoff. Future CO₂ emissions on an annual basis are calculated based on these estimations and anticipated increases in launch frequency.


      Return to 2024 SARP Closeout Share
      Details
      Last Updated Nov 22, 2024 Related Terms
      General Explore More
      8 min read SARP East 2024 Ocean Remote Sensing Group
      Article 21 mins ago 10 min read SARP East 2024 Hydroecology Group
      Article 21 mins ago 11 min read SARP East 2024 Terrestrial Fluxes Group
      Article 22 mins ago View the full article
    • By NASA
      10 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Return to 2024 SARP Closeout Faculty Advisors:
      Dr. Dom Ciruzzi, College of William & Mary
      Graduate Mentor:
      Marley Majetic, Pennsylvania State University

      Marley Majetic, Graduate Mentor
      Marley Majetic, graduate mentor for the 2024 SARP Hydroecology group, provides an introduction for each of the group members and shares behind-the scenes moments from the internship.
      Jordan DiPrima
      How are different land cover types affected by land subsidence on the U.S. Atlantic Coast?
      Jordan DiPrima
      Land subsidence is a frequently overlooked geologic hazard that is caused by natural processes and, more recently, anthropogenic stressors. The goal of this study is to observe subsidence trends and hotspots among land cover types on Virginia’s Eastern Shore and Long Island, New York. This study utilizes interferometric synthetic aperture radar, or InSAR, satellite data from Sentinel-1 to map vertical land motion from 2017 to 2023. Land cover data were sourced from Landsat 8 satellite imagery. Subsidence was mapped within the following land cover types on the Eastern Shore: urban, wetland, cropland, temperate or sub-polar grassland, temperate or sub-polar shrubland, mixed forest, and temperate or subpolar needleleaf forest. These land cover types have mean vertical velocities ranging from -0.2 mm/yr to -5.2 mm/yr. Results suggest that land subsidence is most severe in cropland areas on the Eastern Shore, with a mean vertical velocity of -5.2 mm/yr. In contrast, wetlands display the most subsidence on Long Island with a mean vertical velocity of -2.1 mm/yr. Long Island lacked distinct trends among land cover types and instead showed evidence of subsidence hotspots. These hotspots exist in the following land cover types: temperate or sub-polar grassland, barren lands, wetland, cropland, and temperate or sub-polar broadleaf deciduous forest. Overall, Eastern Shore croplands and Long Island wetlands were determined to be the most susceptible land cover types. These findings highlight regions at risk of sea level rise, flooding, and coastal erosion as a result of subsidence. With further research, we can map subsiding landscapes on a global scale to improve resource allocation and mitigation techniques.

      Isabelle Peterson
      Total Thermokarst Lake Changes on the Seward Peninsula, Alaska: 2016 to 2024
      Isabelle Peterson
      Thermokarst landscapes have and will continue to change as the arctic landscape warms due to climate change. Permafrost underlies much of these arctic landscapes, and as it melts, thermokarst landscapes are left behind. The Seward Peninsula in Alaska has an abundance of these landscapes, and thermokarst lakes are present in the northernmost portion. Several lakes have come and gone, but with increasing climate instability and warming of the area, there is a possibility of more permafrost melting, creating more of these lakes. To capture these changes, Harmonized Landsat Sentinel-2 (HLS) imagery were used to create annual lake maps of the northern portion of the Seward Peninsula from 2016 to 2024. Much of the methodology was informed from Jones et al. (2011); however, their study used eCognition, while the present study used ArcGIS Pro. This caused some differences in results likely due to the differences in software, satellite imagery, and the proposed study area. Lake number changes were observed annually. From this annual change, several 10 to 40 ha lakes disappeared and reappeared within the study period, along with smaller lakes filling in where larger lakes once were. Thermokarst lake drainage is a process described by Jones and Arp (2015) which has devastating geomorphological impacts on the surrounding area, creating large drainage troughs which diminish surrounding permafrost in a quick time frame. To capture these events and overall changes, satellite imagery is essential. This is especially true in remote regions which are hard to reach by foot and require flight missions to be scheduled over the area for aerial photography. However, LVIS and other higher resolution aerial instruments would provide higher accuracy when identifying smaller lakes, as satellite imagery does not accurately capture lakes below 1 ha in the study area. This assertion is made due to conflicting results compared to Jones et al (2011). While the methodologies of this study have been executed manually, Qin, Zhang, and Lu (2023) have proposed the idea of using Sentinel-2 imagery to map thermokarst lakes through automatic methods. While automatization has not yet been perfected, the potential is there and can be used to analyze thermokarst areas effectively. With more satellite imagery, annual, monthly, and potentially daily changes can be captured in favorable months to monitor changing landscapes in arctic regions. Thermokarst lakes have been changing, and monitoring them can help in the process of understanding the changing climate in arctic areas, especially through the lens melting permafrost.

      Emmanelle Cuasay
      Finding Refuge in Climate Crisis: Analyzing the Differences between Refugia and Non-Refugia in the Northern Philippines Using Remote Sensing
      Emmanelle Cuasay
      Refugia are areas that are characterized by stable environmental conditions that can act as a refuge for species as Earth’s climate warms. In this study, fourteen Harmonized Landsat Sentinel-2 images from February 2014 – March 2024 of the northern Philippines region were used. The region of interest is the terrestrial biome by Lake Taal. Normalized Difference Vegetation Index (NDVI) maps were created from all fourteen images to determine the NDVI 25th highest quartiles of the long-term average NDVI images and of a dry and wet year NDVI image. These values were then used to create refugia and non-refugia maps using ArcGIS Pro. Land cover data from Sentinel-2 and a digital elevation model (DEM), using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), were plotted in ArcGIS Pro to determine the slope and aspect of the area. Global Ecosystems Dynamics Investigation (GEDI) data were used to look at forest height of the study area, and the distribution of forest height, slope, aspect, and elevation were plotted to determine their probability densities in refugia and non-refugia areas. Results of this study show increased biomass in refugia areas. This suggests that conservation practices are crucial to aid in the preservation of biodiversity and biomass within these refugia areas.

      Jayce Crayne
      Site-Based Observations of a Saharan Dust Storm’s Impacts on Evapotranspiration in North-Central Florida
      Jayce Crayne
      Saharan dust storms serve an important role in the western Atlantic’s climate in their contribution to Earth’s radiation budget, modulating sea surface temperatures (SSTs), fertilizing ecosystems, and suppressing cloud and precipitation patterns (Yuan et al., 2020). However, Saharan dust storms are expected to become less frequent in this region as SSTs continue to rise (Yuan et al., 2020). Predicting the climate response to this change requires a keen understanding of how the presence of these storms affect evapotranspiration (ET) and its indicators. This study utilizes site-based observational data from an AmeriFlux tower near Gainesville, FL recorded during a large dust storm in late June 2020. The storm’s progression was documented using satellite imagery from Aqua and Terra and aerosol optical depth (AOD) measurements from an Aerosol Robotic Network (AERONET) station co-located with the AmeriFlux tower. Indicators of ET such as surface air temperature, vapor pressure deficit, photosynthetic photon flux density, and net radiation were analyzed. Findings were compared to modeled ET and latent energy flux reanalysis data provided by the Global Land Data Assimilation System (GLDAS). Both model simulations and on-site observations support that ET decreased during the days dust concentrations were heaviest and for a short time thereafter. Cloud cover data adopted from meteorological aerodrome reports (METARs) provided by an automated surface observing system (ASOS) located in Gainesville showed that clouds were not a major contributor in decreasing ET during the days of heaviest dust. The results of this study show a considerable decrease in ET as a result of dust aerosols. Further research is necessary to determine whether changes in ET due to Saharan dust storms are significant enough to alter climates in the western Atlantic and, if so, what the climate response will be if the frequency of storms decreases.

      Brandon Wilson
      Predicting 2025 and 2028 dNBR and dNDIV for Csarf Smith River Complex / Evaluating the Effects of 2019 California Wildfire Fund
      Brandon Wilson
      Biodiverse regions across California remain vulnerable to harmful wildfires year round. Quantifying and measuring these regions’ wildfire resilience is necessary for understanding where/how to allocate environmental resources. Several ecological wildfire studies have been conducted utilizing artificial intelligence and remote sensing to analyze and predict biodiversity damage across wildfire prone regions, including Northern Algeria and Arkansas, USA. The current case study aims to analyze biodiversity damage from the 2023 Csarf Smith River Complex Fire in Six Rivers National Forest, California and predict the difference in Normalized Burn Ratio (dNBR) and difference in Normalized Difference Vegetation Index (dNDVI) for 2025 and 2028 using remote-sensing-based random forest (RF) regression. Furthermore, to observe, holistically, a practical method California has implemented to address state-wide wildfire damage, the 2019 California Wildfire Fund (AB 1054 and AB 111) was evaluated using the synthetic control method (SCM). For this case study, remote sensing data from the United States Geological Survey (USGS) and NASA (Landsat 9 Satellite C2 L2, TerraClimate and the Land Data Assimilation System) were utilized for processing relevant spectral indexes for the RF. Data from NOAA, Energy Information Agency, International Monetary Fund and Bureau of Economic Analysis were utilized as synthetic control datasets to evaluate the effects of the 2019 California Wildfire Fund. Elevated topography in this study area is susceptible to high severity burn effects, while less elevated topography burns less. This result affected dNBR and dNDVI predictions as elevated areas seemingly did not have strong resilience to rampant burns. This demonstrates a direct correlation to potential lower transpiration rates for elevated areas, warranting further analysis. Results of low variance, post-treatment, between the treated unit and the synthetic control unit, poses concern for the positive effect of the 2019 Wildfire Fund.

      Carrie Hashimoto
      Describing changes in evapotranspiration following the 2020 Creek Fire in the southern Sierra Nevada
      Carrie Hashimoto
      Climatic warming and high tree density have caused larger and more severe wildfires to occur in western United States forests over time. Wildfires affect both the hydrology and ecology of forests via alterations to the water balance (e.g., evapotranspiration, streamflow, infiltration, and more) and could shift vegetation communities and subsequent ecosystem structure and function. This project explores ecological characteristics of a landscape that predict the extent to which the Creek Fire in the southern Sierra Nevada has affected evapotranspiration. Strides in understanding of consequential evapotranspiration changes can create pathways to address emerging forest health challenges posed by similar western fires. For analysis, various remote sensing and modeled data were collected from OpenET, the North American Land Data Assimilation System, TerraClimate, Harmonized LandSat Sentinel-2 data, and the Shuttle Radar Topography Mission. Multiple linear regression and generalized additive models were constructed. Relative change in evapotranspiration served as the response variable. Model covariates included average temperature, total precipitation in the preceding months, average soil moisture, elevation, slope, aspect, northness, latitude, pre-fire normalized difference vegetation index (NDVI), and post-fire change in normalized burn ratio (dNBR). Best subset selection with cross validation demonstrated minimization of cross-validation error with a 7-covariate model. This reduced model yields lower complexity and more interpretability while sustaining an adjusted R2 of 0.626, compared to the full model’s adjusted R2 of 0.663. A reduced generalized additive model (GAM) with interaction terms drawn from the linear model variable selection demonstrated an adjusted R2 of 0.695, indicating a better fit that comes at the cost of reduced interpretability and higher computational requirements than the linear models. The goal of this work is to disentangle environmental indicators of post-fire evapotranspiration change, such that predictive modeling of future wildfire impacts on evapotranspiration can be achieved.


      Return to 2024 SARP Closeout Share
      Details
      Last Updated Nov 22, 2024 Related Terms
      General Explore More
      8 min read SARP East 2024 Ocean Remote Sensing Group
      Article 21 mins ago 10 min read SARP East 2024 Atmospheric Science Group
      Article 21 mins ago 11 min read SARP East 2024 Terrestrial Fluxes Group
      Article 22 mins ago View the full article
    • By NASA
      11 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Return to 2024 SARP Closeout Faculty Advisors:
      Dr. Lisa Haber, Virginia Commonwealth University
      Dr. Brandon Alveshere, Virginia Commonwealth University
      Dr. Chris Gough, Virginia Commonwealth University
      Graduate Mentor:
      Mindy Priddy, Virginia Commonwealth University

      Mindy Priddy, Graduate Mentor
      Mindy Priddy, graduate mentor for the 2024 SARP Terrestrial Fluxes group, provides an introduction for each of the group members and shares behind-the scenes moments from the internship.

      Angelina De La Torre
      Using NDVI as a Proxy for GPP to Predict Carbon Dioxide Fluxes
      Angelina De La Torre
      Climate change, driven primarily by greenhouse gases, poses a threat to the future of our planet. Among these gases is carbon dioxide (CO₂), which has a much longer atmospheric residence time compared to other greenhouse gases. One potential factor in reducing atmospheric CO₂ enrichment is plant productivity. Gross Primary Productivity (GPP) estimates the amount of CO₂ fixed during photosynthesis. The Normalized Difference Vegetation Index (NDVI) provides insight into the health of an ecosystem by measuring the density and greenness of vegetation. Therefore, it can be inferred that there is a relationship between NDVI and GPP, as greener plants are likely more productive. In this study, we used NDVI as a proxy for GPP and analyzed the effect NDVI had on CO₂ fluxes during California’s wet season between January and March 2023 in a restored tidal freshwater wetland. GPP and CO₂ flux data were obtained from the Dutch Slough AmeriFlux tower in Oakley, California. Landsat data were used to calculate the average NDVI. The influence of NDVI on GPP was assessed using linear regression. A second linear regression was then performed using NDVI and CO₂ flux, of which GPP is one component. We anticipate that wetlands with greater vegetation density will have lower CO₂ emissions.

      Because Landsat data scans in 16-day intervals, daily variation in NDVI could not be observed. This translates to a frequency discrepancy between the Landsat and AmeriFlux data, as AmeriFlux towers measure in half-hour intervals. Additionally, the wet season represented was limited by data availability, as the data before 2023 were unavailable. Despite data limitations in this study, the outlined process could be repeated in various wetland and climate classifications for further analysis of a larger sample size. This study could assist in developing strategies to increase CO₂ sequestration in an attempt to slow the effects of climate change.

      Samarth Jayadev
      Using Machine Learning to Assess Relationships between NDVI and Net Carbon Exchange During the COVID-19 Pandemic
      Samarth Jayadev
      Understanding the movement of carbon between Earth’s land surface and atmosphere is essential for ecosystem monitoring, creating climate change mitigation strategies, and assessing the carbon budget on national to global scales. Measures of greenness serve as indicators of processes such as photosynthesis that control carbon exchange and are vital in modeling of carbon fluxes. NASA’s Orbiting Carbon Observatory (OCO-2) provides high quality measurements of column-averaged CO₂ concentrations that can be used to derive net carbon exchange (NCE), a measure of CO₂ flux between terrestrial ecosystems and the atmosphere.
      From OCO-2, NCE data collected at the land nadir, land glint satellite position combined with in situ sampling can provide accurate measurements on a 1°x1° scale suitable for carbon flux characterization across the contiguous United States (CONUS). Normalized difference vegetation index (NDVI), which ranges from -1 to +1, measures the greenness of vegetation, serving as an indicator of plant density and health. This can help to understand ecosystem to carbon-cycle interactions and be leveraged for determining patterns with NCE. We examined the relationship between NDVI and NCE across CONUS during 2020 using Gradient Boosting Decision Trees (GBDT) which specialize in classifying and predicting non-linear relationships. This algorithm takes multiple weak learners (decision trees) and combines their predictions in an iterative ensemble method to improve prediction accuracy. Feature and permutation importance tests found that January and August (trough and peak NDVI, respectively) were the highest weighted predictor variables related to NCE. The dataset was split in a 90% training 10% test ratio across latitude/longitude grid cells to assess and verify model performance. Using the mean squared error loss function and hyperparameters with optimal estimators, tree depth, sample split, and learning rate the algorithm was able to converge the test predictions to match the deviance of the training data. The gradient boosting model can be applied to different months and years of NDVI/NCE to further explore these relationships or a multitude of research questions. Further studies should consider integrating land use and land cover change variables such as bare land and urbanization to improve predictions of NCE.

      Makai Ogoshi
      Deep-learning Derived Spaceborne Canopy Structural Metrics Predict Forest Carbon Fluxes
      Makai Ogoshi
      Terrestrial and airborne lidar data products describing canopy structure are potent predictors of forest carbon fluxes, but whether satellite data products produce similarly robust indicators of canopy structure is not known. The assessment of contemporary spaceborne lidar and other remote sensing data products as predictors of carbon fluxes is crucial to next generation instrument and data product design and large-spatial scale modeling. We investigated relationships between deciduous broadleaf forest canopy structure, derived from deep-learning models created with lidar data from GEDI and optical imagery from Sentinel-2, and forest carbon exchange. These included comparisons to in-situ continuous net ecosystem exchange (NEE), gross primary production (GPP), and net primary production (NPP). We find that the mean  canopy height from the gridded spaceborne product has a strong correlation with forest NPP, similar to prior analysis with ground-based lidar (portable canopy lidar; PCL). For comparison to NPP, heights taken from the gridded spaceborne product were compared by overlapping the product with nine terrestrial forest sites from the National Ecological Observatory Network (NEON). We used standard deviation of canopy height as a measure of canopy structural complexity. Complexity derived from the gridded spaceborne product does not show the same strong correlation with NPP as found when using PCL. Mean annual GPP and NEE across five years were compared to the gridded spaceborne product at six Fluxnet2015-tower sites with continuous, gap-filled carbon flux data. When compared to in-situ flux tower data, neither mean canopy height nor structural complexity strongly correlate to annual NEE or GPP. Primarily, the finding that derived spaceborne products exhibit a strong correlation between forest canopy height and NPP will advance global-scale application of forest-carbon flux predictions. Secondarily, a variety of limitations highlight shortcomings in the current terrestrial flux data network. A small number of available study sites, both spatially and temporally, and lack of resolution in vertical complexity of canopy structure both contribute to uncertainty in assessing the relationships to NEE and GPP.

      Sebastian Reed
      Porewater Methane Concentrations Vary Significantly Across A Freshwater Tidal Wetland
      Sebastian Reed
      Methane is a potent greenhouse gas that is over 80 times more powerful than CO₂ at trapping heat and accounts for an estimated 30% of global temperature rise associated with climate change. The largest natural source of methane worldwide is wetlands. Despite the role of methane in driving climate change, the magnitude of global annual wetland methane flux remains highly uncertain. This study analyzes the effects of greenness (assessed using Normalized Difference Vegetation Index; NDVI), plant species composition, rooting depth, atmospheric methane concentration, and plant longevity on porewater methane concentration at the Kimages Rice Rivers Center tidal freshwater wetland. Samples for atmospheric and porewater concentrations were conducted in situ in June 2024. For each sampling location (n = 23) we collected whole air samples (WAS) 2m above the marsh surface and porewater samples 5cm below the marsh surface. We visually assessed species composition at each sample location, with 12 species of wetland plants present overall. We used the TRY plant database to find the rooting depth, leaf nitrogen content, and lifespan of each species. Drone multispectral data from 2023 was used to estimate NDVI values. These variables were compared to the pore water methane concentration via stepwise linear regression. Leaf N content, NDVI, plant species, and WAS sampling did not show statistically significant correlation to porewater methane concentration. Rooting depth showed a slight positive correlation with porewater methane (alpha = 0.1, p = 0.08, R^2 = 0.1). Samples with only perennial plants (as opposed to annual plants) had a higher mean value of porewater methane (p = 0.1). Analyzing porewater methane provides insight as to what wetland components affect methanogenesis and methane release, which aids in assessing which plant functional traits are most responsible for driving or mitigating climate change. Results from this study and future research in this area has the potential to more accurately assess how methane cycles through wetlands to the atmosphere.

      Nohemi Rodarte
      Understanding the vertical profile of CO₂ concentration: How carbon dioxide levels change with altitude
      Nohemi Rodarte
      Carbon dioxide (CO₂) is one of the main greenhouse gasses that contribute to global warming.While the relationship between CO₂ concentrations and land cover types, such as forests and urban areas, is well documented, there is limited knowledge of how CO₂ concentrations vary with altitude at fine spatial scales. Guided by our hypothesis that CO₂ levels vary with altitude and increase with elevation, we used airborne data collected from the B200 aircraft, which flew at different altitudes (400 to 1200 feet) above the urban area of Hopewell, Virginia, between 9:40 AM and 10:40 AM. We analyzed the CO₂ concentrations recorded by the flight to obtain the median and range for each 100 feet of altitude. Our results reveal that carbon dioxide concentrations varied significantly across the range of altitudes investigated. Within the area studied, CO₂ concentrations were found to range between 410 and 470 ppm. The distribution of these concentrations along the altitude gradient shows a bimodal pattern, with notable peaks at altitudes of 700 to 800 feet and 1100 to 1200 feet. Although CO₂ levels were present at all measured altitudes, there was a noticeable drop in the mean concentration at 800 feet,which then stabilized until reaching 1,000 feet before rising again. This pattern indicates that the concentrations of this greenhouse gas are not uniformly distributed with altitude, but rather vary significantly, showing higher concentrations at certain elevations and lower concentrations at others. The CO₂ distribution fluctuates with altitude, showing higher or lower levels at specific heights rather than a smooth gradient, indicating that altitude impacts CO₂ concentrations. While we did not identify the drivers of this change, future studies could evaluate how factors such as surface emissions, atmospheric mixing, and local conditions may contribute to vertical CO₂ profiles, since the altitudes we considered in this research are within the troposphere.

      Camille Shaw
      Linking NDVI with CO₂ and CH₄ Fluxes: Insights into Vegetation and Urban Source-Sink Dynamics in the Great Dismal Swamp
      Camille Shaw
      In recent years, carbon dioxide, methane, and other greenhouse gases have gained attention because of their contribution to the rise in Earth’s global mean temperature. Methane and carbon dioxide have various sources and sinks, but an expanding array of sources have created a need to assess ongoing change in carbon balance. This study aims to quantify the relationship between Normalized Difference Vegetation Index, or NDVI, and methane and carbon dioxide fluxes. We measured carbon dioxide and methane concentrations within the boundary layer using the PICARRO instrument, focusing on the Great Dismal Swamp, a forested wetland, and surrounding areas in the Eastern Mid-Atlantic Region. Data collection occurred at various times of day and along different flight paths in 2016, 2017, and 2024, with each year representing data from a single season, either spring or fall, for temporal analysis. We calculated methane and carbon dioxide fluxes along the flight paths using airborne eddy covariance, a method for capturing accurate flux measurements while accounting for the mixing of gases in the boundary layer caused by heat. Additionally, we calculated NDVI for this area using NASA’s Landsat 8 and 9 satellite imagery. Analysis of the afternoon flight data revealed a negative linear correlation between NDVI and carbon dioxide flux. Urban areas, characterized by low NDVI, exhibit a positive carbon dioxide flux as a consequence of emissions from vehicles, while forested areas, with high NDVI, show a negative carbon dioxide flux because of photosynthesis. In contrast, methane flux shows minimal correlation with NDVI. The lack of correlation arises because forested wetlands, with high NDVI, emit substantial amounts of methane, while urban areas, despite having low NDVI, still produce significant methane emissions from landfills and industrial activities. Future research could further investigate how seasonal and diurnal variations influence the correlations between NDVI and greenhouse gases by collecting comprehensive data across all seasons within a given year and at various times of the day.

      Return to 2024 SARP Closeout Share
      Details
      Last Updated Nov 22, 2024 Related Terms
      General Explore More
      8 min read SARP East 2024 Ocean Remote Sensing Group
      Article 21 mins ago 10 min read SARP East 2024 Atmospheric Science Group
      Article 21 mins ago 10 min read SARP East 2024 Hydroecology Group
      Article 21 mins ago View the full article
  • Check out these Videos

×
×
  • Create New...