Jump to content

SOHO reaches 5000 comets


Recommended Posts

SOHO_reaches_5000_comets_card_full.jpg Image:

A citizen scientist digging through data from the ESA/NASA Solar and Heliospheric Observatory has found the mission’s 5000th comet.

The tiny comet – indicated between the vertical lines in the inset – belongs to the ‘Marsden group’, named after the British astronomer Brian Marsden, who first recognised the group based on SOHO observations. Marsden group comets are thought to be pieces shed by the much bigger Comet 96P/Machholz, which SOHO observes as it passes close to the Sun every 5.3 years.

This 5000th comet was discovered by Hanjie Tan, an astronomy PhD student in Prague, Czechia. Hanjie has been comet hunting since he was just 13 years old, discovering over 200 comets since 2009.

Hanjie explains how he felt upon spotting this comet in the data: “The Marsden group comets represent only about 1.5% of all SOHO comet discoveries, so finding this one as the 5000th SOHO comet felt incredibly fortunate. It's really exciting to be the first to see comets get bright near the Sun after they've been travelling through space for thousands of years.”

Launched in 1995, SOHO studies the Sun from its interior to its outer atmosphere, providing unique views and investigating the cause of the solar wind. During the last three decades, SOHO has become the most prolific discoverer of comets in astronomical history.

The telescope’s prowess as a comet-hunter was unplanned, but turned out to be an unexpected success. With its clear view of the Sun’s surroundings, SOHO can easily spot a special kind of comet called a sungrazer – so-called because of their close approach to the Sun.

Like most who have discovered comets in SOHO’s data, Hanjie Tan is a volunteer citizen scientist, searching for comets in his free time with the Sungrazer Project. This NASA-funded citizen science project, managed by Karl Battams from the US Naval Research Lab, grew out of the huge number of comet discoveries by citizen scientists early into SOHO’s mission.

“Prior to the launch of the SOHO mission and the Sungrazer Project, there were only a couple dozen sungrazing comets on record – that’s all we knew existed,” said Karl Battams, who is the principal investigator for the Sungrazer Project. “The fact that we’ve finally reached this milestone – 5000 comets – is just unbelievable to me.”

SOHO is a cooperative effort between ESA and NASA. Mission control is based at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. SOHO’s Large Angle and Spectrometric Coronagraph Experiment, or LASCO, which is the instrument that provides most of the comet imagery, was built by an international consortium, led by the US Naval Research Lab.

Full story

SOHO’s 4000th comet

SOHO’s 3000th comet

 

[Image description: A bright orange circle covers almost the whole image, with a smaller disc in the middle. Out of the smaller disc protrude wisps of the Sun's atmosphere. To the upper right of the inner circle, an inset zooms in on a small square, with vertical lines surrounding a faint smudge.]

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      NASA’s Swift Reaches 20th Anniversary in Improved Pointing Mode
      After two decades in space, NASA’s Neil Gehrels Swift Observatory is performing better than ever thanks to a new operational strategy implemented earlier this year. The spacecraft has made great scientific strides in the years since scientists dreamed up a new way to explore gamma-ray bursts, the most powerful explosions in the universe.
      “The idea for Swift was born during a meeting in a hotel basement in Estes Park, Colorado, in the middle of a conference,” said John Nousek, the Swift mission director at Pennsylvania State University in State College. “A bunch of astrophysicists got together to brainstorm a mission that could help us solve the problem of gamma-ray bursts, which were a very big mystery at the time.”
      Watch to learn how NASA’s Neil Gehrels Swift Observatory got its name.
      NASA’s Goddard Space Flight Center Gamma-ray bursts occur all over the sky without warning, with about one a day detected on average. Astronomers generally divide these bursts into two categories. Long bursts produce an initial pulse of gamma rays for two seconds or more and occur when the cores of massive stars collapse to form black holes. Short bursts last less than two seconds and are caused by the mergers of dense objects like neutron stars.
      But in 1997, at the time of that basement meeting, the science community disagreed over the origin models for these events. Astronomers needed a satellite that could move quickly to locate them and move to point additional instruments at their positions.
      What developed was Swift, which launched Nov. 20, 2004, from Complex 17A at what is now Cape Canaveral Space Force Station in Florida. Originally called the Swift Observatory for its ability to quickly point at cosmic events, the mission team renamed the spacecraft in 2018 after its first principal investigator Neil Gehrels.
      Swift uses several methods for orienting and stabilizing itself in space to study gamma-ray bursts.
      Sensors that detect the Sun’s location and the direction of Earth’s magnetic field provide the spacecraft with a general sense of its location. Then, a device called a star tracker looks at stars and tells the spacecraft how to maneuver to keep the observatory precisely pointed at the same position during long observations.
      Swift uses three spinning gyroscopes, or gyros, to carry out those moves along three axes. The gyros were designed to align at right angles to each other, but once in orbit the mission team discovered they were slightly misaligned. The flight operations team developed a strategy where one of the gyros worked to correct the misalignment while the other two pointed Swift to achieve its science goals.
      The team wanted to be ready in case one of the gyros failed, however, so in 2009 they developed a plan to operate Swift using just two.
      Swift orbits above Earth in this artist’s concept. NASA’s Goddard Space Flight Center Conceptual Image Lab Any change to the way a telescope operates once in space carries risk, however. Since Swift was working well, the team sat on their plan for 15 years.
      Then, in July 2023, one of Swift’s gyros began working improperly. Because the telescope couldn’t hold its pointing position accurately, observations got progressively blurrier until the gyro failed entirely in March 2024.
      “Because we already had the shift to two gyros planned out, we were able to quickly and thoroughly test the procedure here on the ground before implementing it on the spacecraft,” said Mark Hilliard, Swift’s flight operations team lead at Omitron, Inc. and Penn State. “Actually, scientists have commented that the accuracy of Swift’s pointing is now better than it was since launch, which is really encouraging.”
      For the last 20 years, Swift has contributed to groundbreaking results — not only for gamma-ray bursts but also for black holes, stars, comets, and other cosmic objects.
      “After all this time, Swift remains a crucial part of NASA’s fleet,” said S. Bradley Cenko, Swift’s principal investigator at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “The satellite’s abilities have helped pioneer a new era of astrophysics called multimessenger astronomy, which is giving us a more well-rounded view of how the universe works. We’re looking forward to all Swift has left to teach us.”
      Swift is a key part of NASA’s strategy to look for fleeting and unpredictable changes in the sky with a variety of telescopes that use different methods of studying the cosmos.
      Goddard manages the Swift mission in collaboration with Penn State, the Los Alamos National Laboratory in New Mexico, and Northrop Grumman Space Systems in Dulles, Virginia. Other partners include the University of Leicester and Mullard Space Science Laboratory in the United Kingdom, Brera Observatory in Italy, and the Italian Space Agency.

      Download high-resolution images on NASA’s Scientific Visualization Studio

      By Jeanette Kazmierczak
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact:
      Claire Andreoli
      301-286-1940
      claire.andreoli@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Facebook logo @NASAUniverse @NASAUniverse Instagram logo @NASAUniverse Share








      Details
      Last Updated Nov 20, 2024 Editor Jeanette Kazmierczak Location Goddard Space Flight Center Related Terms
      Astrophysics Gamma-Ray Bursts Goddard Space Flight Center Neil Gehrels Swift Observatory The Universe View the full article
    • By NASA
      6 min read
      NASA, NOAA: Sun Reaches Maximum Phase in 11-Year Solar Cycle
      In a teleconference with reporters on Tuesday, representatives from NASA, the National Oceanic and Atmospheric Administration (NOAA), and the international Solar Cycle Prediction Panel announced that the Sun has reached its solar maximum period, which could continue for the next year.
      The solar cycle is a natural cycle the Sun goes through as it transitions between low and high magnetic activity. Roughly every 11 years, at the height of the solar cycle, the Sun’s magnetic poles flip — on Earth, that’d be like the North and South poles swapping places every decade — and the Sun transitions from being calm to an active and stormy state.
      Visible light images from NASA’s Solar Dynamics Observatory highlight the appearance of the Sun at solar minimum (left, Dec. 2019) versus solar maximum (right, May 2024). During solar minimum, the Sun is often spotless. Sunspots are associated with solar activity and are used to track solar cycle progress. For these images and more relating to solar maximum, visit https://svs.gsfc.nasa.gov/14683.
      NASA/SDO Images from NASA’s Solar Dynamics Observatory highlight the appearance of the Sun at solar minimum (left, December 2019) versus solar maximum (right, May 2024). These images are in the 171-angstrom wavelength of extreme ultraviolet light, which reveals the active regions on the Sun that are more common during solar maximum. For these images and more relating to solar maximum, visit https://svs.gsfc.nasa.gov/14683.
      NASA/SDO




      NASA and NOAA track sunspots to determine and predict the progress of the solar cycle — and ultimately, solar activity. Sunspots are cooler regions on the Sun caused by a concentration of magnetic field lines. Sunspots are the visible component of active regions, areas of intense and complex magnetic fields on the Sun that are the source of solar eruptions.
      “During solar maximum, the number of sunspots, and therefore, the amount of solar activity, increases,” said Jamie Favors, director, Space Weather Program at NASA Headquarters in Washington. “This increase in activity provides an exciting opportunity to learn about our closest star — but also causes real effects at Earth and throughout our solar system.”
      The solar cycle is the natural cycle of the Sun as it transitions between low and high activity. During the most active part of the cycle, known as solar maximum, the Sun can unleash immense explosions of light, energy, and solar radiation — all of which create conditions known as space weather. Space weather can affect satellites and astronauts in space, as well as communications systems — such as radio and GPS — and power grids on Earth.
      Credits: Beth Anthony/NASA Solar activity strongly influences conditions in space known as space weather. This can affect satellites and astronauts in space, as well as communications and navigation systems — such as radio and GPS — and power grids on Earth. When the Sun is most active, space weather events become more frequent. Solar activity has led to increased aurora visibility and impacts on satellites and infrastructure in recent months.
      During May 2024, a barrage of large solar flares and coronal mass ejections (CMEs) launched clouds of charged particles and magnetic fields toward Earth, creating the strongest geomagnetic storm at Earth in two decades — and possibly among the strongest displays of auroras on record in the past 500 years.
      May 3–May 9, 2024, NASA’s Solar Dynamics Observatory observed 82 notable solar flares. The flares came mainly from two active regions on the Sun called AR 13663 and AR 13664. This video highlights all flares classified at M5 or higher with nine categorized as X-class solar flares.
      Credit: NASA “This announcement doesn’t mean that this is the peak of solar activity we’ll see this solar cycle,” said Elsayed Talaat, director of space weather operations at NOAA. “While the Sun has reached the solar maximum period, the month that solar activity peaks on the Sun will not be identified for months or years.”
      Scientists will not be able to determine the exact peak of this solar maximum period for many months because it’s only identifiable after they’ve tracked a consistent decline in solar activity after that peak. However, scientists have identified that the last two years on the Sun have been part of this active phase of the solar cycle, due to the consistently high number of sunspots during this period. Scientists anticipate that the maximum phase will last another year or so before the Sun enters the declining phase, which leads back to solar minimum. Since 1989, the Solar Cycle Prediction Panel — an international panel of experts sponsored by NASA and NOAA — has worked together to make their prediction for the next solar cycle.
      Solar cycles have been tracked by astronomers since Galileo first observed sunspots in the 1600s. Each solar cycle is different — some cycles peak for larger and shorter amounts of time, and others have smaller peaks that last longer.
      Sunspot number over the previous 24 solar cycles. Scientists use sunspots to track solar cycle progress; the dark spots are associated with solar activity, often as the origins for giant explosions — such as solar flares or coronal mass ejections — which can spew light, energy, and solar material out into space. For these images and more relating to solar maximum, visit https://svs.gsfc.nasa.gov/14683.
      NOAA’s Space Weather Prediction Center “Solar Cycle 25 sunspot activity has slightly exceeded expectations,” said Lisa Upton, co-chair of the Solar Cycle Prediction Panel and lead scientist at Southwest Research Institute in San Antonio, Texas. “However, despite seeing a few large storms, they aren’t larger than what we might expect during the maximum phase of the cycle.”
      The most powerful flare of the solar cycle so far was an X9.0 on Oct. 3 (X-class denotes the most intense flares, while the number provides more information about its strength).
      NOAA anticipates additional solar and geomagnetic storms during the current solar maximum period, leading to opportunities to spot auroras over the next several months, as well as potential technology impacts. Additionally, though less frequent, scientists often see fairly significant storms during the declining phase of the solar cycle.
      The Solar Cycle 25 forecast, as produced by the Solar Cycle 25 Prediction Panel. Sunspot number is an indicator of solar cycle strength — the higher the sunspot number, the stronger the cycle. For these images and more relating to solar maximum, visit https://svs.gsfc.nasa.gov/14683.
      NOAA’s Space Weather Prediction Center NASA and NOAA are preparing for the future of space weather research and prediction. In December 2024, NASA’s Parker Solar Probe mission will make its closest-ever approach to the Sun, beating its own record of closest human-made object to the Sun. This will be the first of three planned approaches for Parker at this distance, helping researchers to understand space weather right at the source.
      NASA is launching several missions over the next year that will help us better understand space weather and its impacts across the solar system.
      Space weather predictions are critical for supporting the spacecraft and astronauts of NASA’s Artemis campaign. Surveying this space environment is a vital part of understanding and mitigating astronaut exposure to space radiation. 
      NASA works as a research arm of the nation’s space weather effort. To see how space weather can affect Earth, please visit NOAA’s Space Weather Prediction Center, the U.S. government’s official source for space weather forecasts, watches, warnings, and alerts.
      By Abbey Interrante
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact:
      Sarah Frazier, NASA’s Goddard Space Flight Center, Greenbelt, Md.
      sarah.frazier@nasa.gov
      About the Author
      Abbey Interrante

      Share








      Details
      Last Updated Oct 15, 2024 Related Terms
      Goddard Space Flight Center Heliophysics Heliophysics Division Parker Solar Probe (PSP) Solar Science Sunspots The Sun The Sun & Solar Physics Explore More
      3 min read Eclipse Megamovie Coding Competition


      Article


      5 hours ago
      2 min read ESA/NASA’s SOHO Spies Bright Comet Making Debut in Evening Sky
      The Solar and Heliospheric Observatory (SOHO) has captured images of the second-brightest comet to ever pass…


      Article


      4 days ago
      2 min read Hubble Spots a Grand Spiral of Starbursts


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      Sunspots



      Solar Storms and Flares


      Solar storms and flares are eruptions from the Sun that can affect us here on Earth.


      Sun



      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…

      View the full article
    • By European Space Agency
      Video: 00:00:23 From 7 until 13 October 2024, ESA/NASA’s SOHO spacecraft recorded Comet C/2023 A3 (Tsuchinshan–ATLAS), the second brightest comet it has ever seen. Meanwhile, large amounts of material were being spewed out by the Sun (covered in the centre), and planet Mercury is visible to the left.
      The comet’s nucleus is clearly visible, surrounded by a dusty coma and trailing an impressively long tail. SOHO sees the large dust tail edge-on, curving in on itself as it is pushed outward by solar wind. 
      At the end of the video you can also see a rare phenomenon known as an ‘anti-tail’: a long, thin line that points towards the Sun. This tail is an optical illusion coming from SOHO getting an edge-on view of the larger cometary dust particles that accumulate in the comet’s orbital plane. 
      Comet C/2023 A3 was seen for the first time early last year. It most likely came from the distant Oort cloud, and the last time this comet flew through the inner Solar System (if ever) was at least 80 000 years ago.
      The comet reached an estimated peak brightness just beyond –4 magnitude. (The more negative the visual magnitude value, the brighter the object.) Of the more than 5000 comets SOHO has seen flying past the Sun, only Comet C/2006 P1 (McNaught) was brighter, with a visual magnitude of –5.5.
      SOHO’s location between the Sun and Earth gave it a front-row seat, but the same comet has been visible from Earth every evening since 12 October 2024. Throughout October, as the comet moves farther away from the Sun, it will gradually grow fainter and rise higher up in the western sky.
      The week that SOHO watched Comet Tsuchinshan–ATLAS was also a wild one in terms of space weather. The Sun unleashed no less than 4 X-class flares (the highest intensity type of flare), 28 medium-intensity M-class flares, and 31 coronal mass ejections – the latter being visible as white clouds of material in the video. All this activity led to two geomagnetic storms on Earth, resulting in beautiful auroras lighting up the night sky.
      SOHO, short for Solar and Heliospheric Observatory, is a joint ESA-NASA mission to study the Sun. For almost 29 years now, it has been watching the Sun itself as well as the much fainter light coming from the Sun’s outer atmosphere, called the solar corona. The data shown in this video were taken by the LASCO C3 coronagraph instrument.
      Special thanks to Simeon Schmauß, who processed the raw data to create this impressive video. For comparison, here is a video of the comet with more standard data processing – the comet is so bright that it partially saturated SOHO’s sensor.
      What types of comets are there?
      How are comets named?
      View the full article
    • By NASA
      2 min read
      ESA/NASA’s SOHO Spies Bright Comet Making Debut in Evening Sky
      The tail of comet C/2023 A3 Tsuchinshan-ATLAS spanned the view of the Solar and Heliospheric Observatory (SOHO) on Oct. 10, 2024. ESA/NASA The ESA (European Space Agency) and NASA Solar and Heliospheric Observatory (SOHO) has captured images of the second-brightest comet to ever pass through its field of view during the spacecraft’s nearly 29-year career.
      The bright comet is C/2023 A3 Tsuchinshan-ATLAS, which has been garnering a lot of attention from skywatchers recently, displaying a long, dusty tail in pre-dawn skies throughout late September and early October. (Comet McNaught, viewed in 2007, holds the record as the brightest comet SOHO has seen.)
      Between Oct. 7 and 11, the comet blazed through the view of SOHO’s LASCO (Large Angle and Spectrometric Coronagraph Experiment) instrument, which uses a disk to block out the bright light of the Sun so it’s easier to see details and objects near the Sun. This image, taken by SOHO on Oct. 10, 2024, shows the comet and its bright tail streaming from the upper left to the right. Mercury appears as a bright dot on the left.
      After crossing through SOHO’s field of view, the comet will begin putting on an evening show for skywatchers around the world just after sunset starting Saturday, Oct. 12. Each day throughout October, the comet will gradually rise higher and higher in the western sky as it moves farther away from the Sun. But as it does, it will become fainter and fainter. Eagle-eyed skywatchers may be able to spot it with the naked eye for a few days, but after that, observers will likely need binoculars or a telescope to see it as it grows fainter.
      Even if you are unable to spot this comet yourself, you can help SOHO search for others. Scientists and members of the general public have discovered more than 5,000 comets in SOHO imagery, and you can help find even more by visiting the Sungrazer Project.
      By Vanessa Thomas
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Oct 11, 2024 Related Terms
      Comets Goddard Space Flight Center Heliophysics Heliophysics Division Skywatching SOHO (Solar and Heliospheric Observatory) The Sun The Sun & Solar Physics Explore More
      2 min read Hubble Spots a Grand Spiral of Starbursts


      Article


      8 hours ago
      2 min read Sail Along with NASA’s Solar Sail Tech Demo in Real-Time Simulation


      Article


      22 hours ago
      6 min read NASA’s Hubble, New Horizons Team Up for a Simultaneous Look at Uranus


      Article


      2 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      2 min read
      Hubble Reaches a Lonely Light in the Dark
      NASA, ESA, C. Gallart (Instituto de Astrofisica de Canarias), A. del Pino Molina (Centro de Estudios de Fisica del Cosmos de Aragon), and R. van der Marel (Space Telescope Science Institute); Image Processing: Gladys Kober (NASA/Catholic University of America) A splatter of stars glows faintly at almost 3 million light-years away in this new image from NASA’s Hubble Space Telescope. Known as the Tucana Dwarf for lying in the constellation Tucana, this dwarf galaxy contains a loose bundle of aging stars at the far edge of the Local Group, an aggregation of galaxies including our Milky Way, bound together by gravity. The Tucana Dwarf was discovered in 1990 by R.J. Lavery, the same year Hubble launched.
      What makes the Tucana Dwarf distinct from other dwarf galaxies comes in two parts: its classification, and its isolation. As a dwarf spheroidal galaxy, it is much smaller and less luminous than most other dwarf galaxies. Dust is sparse and the stellar population skews towards the older range, giving them a dimmer look. Additionally, the Tucana Dwarf lies about 3.6 million light-years from the Local Group’s center of mass, far from the Milky Way and other galaxies. It is only one of two dwarf spheroidal galaxies in the Local Group to be this remote, making astronomers theorize that a close encounter with a larger galactic neighbor called Andromeda slingshotted it into the distance about 11 billion years ago.
      Having such pristine properties enables scientists to use the Tucana Dwarf as a cosmic fossil. Dwarf galaxies could be the early ingredients for larger galaxies, and with older stars residing in such an isolated environment, analyzing them can help trace galaxy formation back to the dawn of time. For that reason, Hubble reached far across the Local Group using the capabilities of the Advanced Camera for Surveys and Wide Field and Planetary Camera 2 to meet this distant, lonely galaxy. Examining its structure, composition, and star formation history sheds light on the epoch of reionization, when the first stars and galaxies arose from the dark billions of years ago.

      Download Image

      Explore More

      Hubble’s Galaxies

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Aug 23, 2024 Editor Michelle Belleville Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Galaxies Goddard Space Flight Center Hubble Space Telescope Stars Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Science



      Hubble’s Galaxies



      Stars


      View the full article
  • Check out these Videos

×
×
  • Create New...