Jump to content

Order Up: High School Students Compete to Launch Their Food into Space with NASA HUNCH Culinary Competition


NASA

Recommended Posts

  • Publishers
3c176944-f4fd-4e8a-93f9-d7eddb4dbd2d
3 Min Read

Order Up: High School Students Compete to Launch Their Food into Space with NASA HUNCH Culinary Competition

High school students in deep orange chef jackets stand above pots, pans and other cooking equipment as they prepare their savory breakfast meal for the NASA HUNCH Culinary Challenge.
High School students in chef jackets line long black tables at NASA's Langley Research Center preparing savory breakfast dishes fit for astronauts onboard the International Space Station.
Credits: NASA/Angelique Herring

On Monday, Feb. 26, visitors to the Integrated Engineering Services Building at NASA’s Langley Research Center in Hampton, Virginia, were greeted by the mouthwatering smell of roasted garlic, sautéed peppers and onions, fragrant herbs, and the unexpected discovery that the building’s main hallway had been turned into a pop-up kitchen for local high school students.

These students were participants in NASA HUNCH Culinary. NASA HUNCH (High School Students United with NASA to Create Hardware) is a Project Based Learning program where high school students participate in the design and fabrication of real world valued products for NASA. HUNCH has six areas of focus that students may choose to participate in: Precision Machining, Softgoods, Design and Prototype, Food Science, Communications, and Software.

High school students in matching grey aprons and black chefs hats chop vegetables on a long black table as they prepare their savory entry for NASA's HUNCH Culinary Challenge
High School students chop vegetables as they prepare their savory entry for NASA’s HUNCH Culinary Challenge.
NASA/Angelique Herring

The HUNCH Astronaut Culinary Program provides students the opportunity to create dishes for astronauts aboard the International Space Station. Students must create tasty recipes following a specific food processing procedure and meeting certain nutritional requirements. These dishes must meet the standards of the NASA Johnson Space Center Food Lab in Houston, Texas.

Through this program, students gain culinary experience as well as experience with research and presenting their work in a professional environment. Students spend weeks perfecting their recipes so that on competition day, they can recreate their dishes in person at various NASA centers across the country.

This year, HUNCH Culinary student teams were tasked with the challenge of creating a savory breakfast dish that included a vegetable. The recipes had to fall between 150 and 350 calories, contain less than 12 grams of fat and 250 milligrams of sodium, have at least one gram of fiber, and “must process well for spaceflight and for use in microgravity” among several other requirements.

An eager hand reaches for a small serving of eggs scrambled with vegetables and topped with seeds as a larger skillet of the savory breakfast dish sits to the left.
An eager hand reaches for a small serving of eggs scrambled with vegetables and topped with seeds as a larger skillet of the savory breakfast dish sits to the left.
NASA/Angelique Herring

Several students described challenges around creating a recipe under these guidelines. Nyland Clay, a student at Landstown High School in Virginia Beach, explained his team’s problem solving around the minimal sodium guideline.

“We were able to work around that by using different types of flavors in order to substitute for the extra sodium,” he said. “One of the ways we did this was with poblano peppers. When seared over a grill, they make a nice smoky flavor that doesn’t add any sodium whatsoever.”

Nyland’s team additionally chose to use ground turkey in their sweet potato hash recipe instead of ground beef to avoid unnecessary fat.

Travis Walker, culinary instructor at Phoebus High School in Hampton and former executive catering chef manager for the NASA Langley Exchange, spoke highly of his students as his reason for teaching.

“The most rewarding part is just watching the growth of the kids,” he said. “From the day you get them and they can’t boil water, to the time they get here and they’re in these competitions and excelling — that’s the most rewarding part.”

The student groups with the highest scores will be invited to Johnson Space Center in Houston for a final competition where their dishes will be judged by Johnson Food Lab personnel, industry professionals, the ISS program office, and astronauts. The criteria are quality, taste, and the students’ work on the research paper and presentation video. The winning entree will be processed by the Johnson Space Center Food Lab and sent up to the station for the astronauts to enjoy.

Share

Details

Last Updated
Mar 26, 2024

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 Min Read Why NASA Is a Great Place to Launch Your Career 
      Students at NASA's Jet Propulsion Laboratory pose for photos around the laboratory wearing their eclipse glasses. Credits: NASA/JPL-Caltech  Recently recognized as the most prestigious internship program by Vault.com, NASA has empowered countless students and early-career professionals to launch careers in science, technology, engineering, and mathematics (STEM) fields. NASA interns make real contributions to space and science missions, making it one of the best places to start your career. 
      “NASA internships give students the chance to work on groundbreaking projects alongside experts, providing impactful opportunities for professional growth,” said Mike Kincaid, associate administrator for NASA’s Office of STEM Engagement. “Since starting my career as an intern at NASA’s Johnson Space Center in Houston, I’ve experienced firsthand how NASA creates lasting connections and open doors—not just for me, but for former interns who are now colleagues across the agency. These internships build STEM skills, confidence, and networks, preparing the next generation of innovators and leaders.” 
      NASA interns achieve impressive feats, from discovering new exoplanets to becoming astronauts and even winning Webby Awards for their science communication efforts. These valuable contributors play a crucial role in NASA’s mission to explore the unknown for the benefit of all. Many NASA employees start their careers as interns, a testament to the program’s lasting impact. 
      Students congratulate the 23rd astronaut class at NASA’s Johnson Space Center in Houston on March 5, 2024.NASA/Josh Valcarcel Additionally, NASA is recognized as one of America’s Best Employers for Women and one of America’s Best Employers for New Graduates by Forbes, reflecting the agency’s commitment to fostering a diverse and inclusive environment. NASA encourages people from underrepresented groups to apply, creating a diverse cohort of interns who bring a wide range of perspectives and ideas to the agency.  
      “My internship experience has been incredible. I have felt welcomed by everyone I’ve worked with, which has been so helpful as a Navajo woman as I’ve often felt like an outsider in male-dominated STEM spaces,” said Tara Roanhorse, an intern for NASA’s Office of STEM Engagement. 
      If you’re passionate about space, technology, and making a difference in the world, NASA’s internship program is the perfect place to begin your journey toward a fulfilling and impactful career.  
      To learn more about NASA’s internship programs, visit: https://www.intern.nasa.gov/ 
      Keep Exploring Discover More STEM Topics From NASA
      For Colleges and Universities
      For Students Grades 9-12
      Join Artemis
      Learning Resources
      View the full article
    • By Space Force
      SecAF Kendall delivered a speech to USAFA cadets about the qualities necessary for strong leadership and why capable, insightful, moral leaders are more essential than ever in defense of the nation.

      View the full article
    • By NASA
      NASA astronaut and Expedition 72 Flight Engineer Nick Hague pedals on the Cycle Ergometer with Vibration Isolation and Stabilization (CEVIS), an exercise cycle located aboard the International Space Station’s Destiny laboratory module. CEVIS provides aerobic and cardiovascular conditioning through recumbent (leaning back position) or upright cycling activities.NASA Lee esta historia en español aquí.
      The International Space Station is humanity’s home in space and a research station orbiting about 250 miles above the Earth. NASA and its international partners have maintained a continuous human presence aboard the space station for more than 24 years, conducting research that is not possible on Earth.
      The people living and working aboard the microgravity laboratory also are part of the research being conducted, helping to address complex human health issues on Earth and prepare humanity for travel farther than ever before, including the Moon and Mars.
      Here are a few frequently asked questions about how NASA and its team of medical physicians, psychologists, nutritionists, exercise scientists, and other specialized caretakers ensure astronauts’ health and fitness aboard the orbiting laboratory. 
      How long is a typical stay aboard the International Space Station?
      A typical mission to the International Space Station lasts about six months, but can vary based on visiting spacecraft schedules, mission priorities, and other factors. NASA astronauts also have remained aboard the space station for longer periods of time. These are known as long-duration missions, and previous missions have given NASA volumes of data about long-term spaceflight and its effects on the human body, which the agency applies to any crewed mission. 
      During long-duration missions, NASA’s team of medical professionals focus on optimizing astronauts’ physical and behavioral health and their performance to help ensure mission success. These efforts also are helping NASA prepare for future human missions to the Moon, Mars, and beyond.
      How does NASA keep astronauts healthy while in space?
      NASA has a team of medical doctors, psychologists, and others on the ground dedicated to supporting the health and well-being of astronauts before, during, and after each space mission. NASA assigns physicians with specialized training in space medicine, called flight surgeons, to each crew once named to a mission. Flight surgeons oversee the health care and medical training as crew members prepare for their mission, and they monitor the crew’s health before, during, and after their mission to the space station.
      How does NASA support its astronauts’ mental and emotional well-being while in space?
      The NASA behavioral health team provides individually determined psychological support services for crew members and their families during each mission. Ensuring astronauts can thrive in extreme environments starts as early as the astronaut selection process, in which applicants are evaluated on competencies such as adaptability and resilience. Astronauts receive extensive training to help them use self-assessment tools and treatments to manage their behavioral health. NASA also provides training in expeditionary skills to prepare every astronaut for missions on important competencies, such as self-care and team care, communication, and leadership and followership skills.
      To help maintain motivation and morale aboard the space station, astronauts can email, call, and video conference with their family and friends, receive crew care packages aboard NASA’s cargo resupply missions, and teleconference with a psychologist, if needed.
      How does microgravity affect astronaut physical health?
      In microgravity, without the continuous load of Earth’s gravity, there are many changes to the human body. NASA understands many of the human system responses to the space environment, including adaptations to bone density, muscle, sensory-motor, and cardiovascular health, but there is still much to learn. These spaceflight effects vary from astronaut to astronaut, so NASA flight surgeons regularly monitor each crew member’s health during a mission and individualize diet and fitness routines to prioritize health and fitness while in space.
      Why do astronauts exercise in space?
      Each astronaut aboard the orbiting laboratory engages in specifically designed, Earth-like exercise plans. To maintain their strength and endurance, crew members are scheduled for two and a half hours of daily exercise to support muscle, bone, aerobic, and sensorimotor health. Current equipment onboard the space station includes the ARED (Advanced Resistive Exercise Device), which mimics weightlifting; a treadmill, called T2; and the CEVIS (Cycle Ergometer with Vibration Isolation and Stabilization System) for cardiovascular exercise.
      What roles do food and nutrition play in supporting astronaut health?
      Nutrition plays a critical role in maintaining an astronaut’s health and optimal performance before, during, and after their mission. Food also plays a psychosocial role during an astronaut’s long-duration stay aboard the space station. Experts working in NASA’s Space Food Systems Laboratory at the agency’s Johnson Space Center in Houston develop foods that are nutritious and appetizing. Crew members also have the opportunity to supplement the menu with personal favorites and off-the-shelf items, which can provide a taste of home.
      NASA astronaut and Expedition 71 Flight Engineer Tracy C. Dyson is pictured in the galley aboard the International Space Station’s Unity module showing off food packets from JAXA (Japan Aerospace Exploration Agency).NASA How does NASA know whether astronauts are getting the proper nutrients?
      NASA’s nutritional biochemistry dietitians and scientists determine the nutrients (vitamins, minerals, calories) the astronauts require while in space. This team tracks what each crew member eats through a tablet-based tracking program, which each astronaut completes daily. The data from the app is sent to the dietitians weekly to monitor dietary intake. Analyzing astronaut blood and urine samples taken before, during, and after space missions is a crucial part of studying how their bodies respond to the unique conditions of spaceflight. These samples provide valuable insight into how each astronaut adapts to microgravity, radiation, and other factors that affect human physiology in space.
      How do astronauts train to work together while in space?
      In addition to technical training, astronauts participate in team skills training. They learn effective group living skills and how to look out for and support one another. Due to its remote and isolated nature, long-duration spaceflight can make teamwork difficult. Astronauts must maintain situational awareness and implement the flight program in an ever-changing environment. Therefore, effective communication is critical when working as a team aboard station and with multiple support teams on the ground. Astronauts also need to be able to communicate complex information to people with different professional backgrounds. Ultimately, astronauts are people living and working together aboard the station and must be able to do a highly technical job and resolve any interpersonal issues that might arise.
      What happens if there is a medical emergency on the space station?
      All astronauts undergo medical training and have regular contact with a team of doctors closely monitoring their health on the ground. NASA also maintains a robust pharmacy and a suite of medical equipment onboard the space station to treat various conditions and injuries. If a medical emergency requires a return to Earth, the crew will return in the spacecraft they launched aboard to receive urgent medical care on the ground.
      Expedition 69 NASA astronaut Frank Rubio is seen resting and talking with NASA ISS Program Manager Joel Montalbano, kneeling left, NASA Flight Surgeon Josef Schmid, red hat, and NASA Chief of the Astronaut Office Joe Acaba, outside the Soyuz MS-23 spacecraft after he landed with Roscosmos cosmonauts Sergey Prokopyev and Dmitri Petelin in a remote area near the town of Zhezkazgan, Kazakhstan on Wednesday, Sept. 27, 2023.NASA/Bill Ingalls Learn more about NASA’s Human Health and Performance Directorate at:
      www.nasa.gov/hhp
      View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      ESI24 Zou Quadchart
      Min Zou
      University of Arkansas, Fayetteville
      Lunar dust, with its highly abrasive and electrostatic properties, poses serious threats to the longevity and functionality of spacecraft, habitats, and equipment operating on the Moon. This project aims to develop advanced bioinspired surface textures that effectively repel lunar dust, targeting critical surfaces such as habitat exteriors, doors, and windows. By designing and fabricating innovative micro-/nano-hierarchical core-shell textures, we aim to significantly reduce dust adhesion, ultimately enhancing the performance and durability of lunar infrastructure. Using cutting-edge fabrication methods like two-photon lithography and atomic layer deposition, our team will create resilient, dust-repelling textures inspired by natural surfaces. We will also conduct in-situ testing with a scanning electron microscope to analyze individual particle adhesion and triboelectric effects, gaining critical insights into lunar dust behavior on engineered surfaces. These findings will guide the development of durable surfaces for long-lasting, low-maintenance lunar equipment, with broader applications for other dust-prone environments.
      Back to ESI 2024
      Keep Exploring Discover More Topics From STRG
      Space Technology Mission Directorate
      STMD Solicitations and Opportunities
      Space Technology Research Grants
      About STRG
      View the full article
    • By NASA
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      The guitar shape in the “Guitar Nebula” comes from bubbles blown by particles ejected from the pulsar through a steady wind as it moves through space. A movie of Chandra (red) data taken in 2000, 2006, 2012, and 2021 has been combined with a single image in optical light from Palomar. X-rays from Chandra show a filament of energetic matter and antimatter particles, about two light-years long, blasting away from the pulsar (seen as the bright white dot). The movie shows how this filament has changed over two decades. X-ray: NASA/CXC/Stanford Univ./M. de Vries et al.; Optical full field: Palomar Obs./Caltech & inset: NASA/ESA/STScI; Image Processing: NASA/CXC/SAO/L. Frattare) Normally found only in heavy metal bands or certain post-apocalyptic films, a “flame-throwing guitar” has now been spotted moving through space. Astronomers have captured movies of this extreme cosmic object using NASA’s Chandra X-ray Observatory and Hubble Space Telescope.
      The new movie of Chandra (red) and Palomar (blue) data helps break down what is playing out in the Guitar Nebula. X-rays from Chandra show a filament of energetic matter and antimatter particles, about two light-years or 12 trillion miles long, blasting away from the pulsar (seen as the bright white dot connected to the filament).
      Astronomers have nicknamed the structure connected to the pulsar PSR B2224+65 as the “Guitar Nebula” because of its distinct resemblance to the instrument in glowing hydrogen light. The guitar shape comes from bubbles blown by particles ejected from the pulsar through a steady wind. Because the pulsar is moving from the lower right to the upper left, most of the bubbles were created in the past as the pulsar moved through a medium with variations in density.
      X-ray: NASA/CXC/Stanford Univ./M. de Vries et al.; Optical: (Hubble) NASA/ESA/STScI and (Palomar) Hale Telescope/Palomar/CalTech; Image Processing: NASA/CXC/SAO/L. Frattare At the tip of the guitar is the pulsar, a rapidly rotating neutron star left behind after the collapse of a massive star. As it hurtles through space it is pumping out a flame-like filament of particles and X-ray light that astronomers have captured with Chandra.
      How does space produce something so bizarre? The combination of two extremes — fast rotation and high magnetic fields of pulsars — leads to particle acceleration and high-energy radiation that creates matter and antimatter particles, as electron and positron pairs. In this situation, the usual process of converting mass into energy, famously determined by Albert Einstein’s E = mc2 equation, is reversed. Here, energy is being converted into mass to produce the particles.
      Particles spiraling along magnetic field lines around the pulsar create the X-rays that Chandra detects. As the pulsar and its surrounding nebula of energetic particles have flown through space, they have collided with denser regions of gas. This allows the most energetic particles to escape the confines of the Guitar Nebula and fly to the right of the pulsar, creating the filament of X-rays. When those particles escape, they spiral around and flow along magnetic field lines in the interstellar medium, that is, the space in between stars.
      The new movie shows the pulsar and the filament flying towards the upper left of the image through Chandra data taken in 2000, 2006, 2012 and 2021. The movie has the same optical image in each frame, so it does not show changes in parts of the “guitar.” A separate movie obtained with data from NASA’s Hubble Space Telescope (obtained in 1994, 2001, 2006, and 2021) shows the motion of the pulsar and the smaller structures around it.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Hubble Space Telescope data: 1994, 2001, 2006, and 2021.X-ray: NASA/CXC/Stanford Univ./M. de Vries et al.; Optical full field: Palomar Obs./Caltech & inset: NASA/ESA/STScI; Image Processing: NASA/CXC/SAO/L. Frattare) A study of this data has concluded that the variations that drive the formation of bubbles in the hydrogen nebula, which forms the outline of the guitar, also control changes in how many particles escape to the right of the pulsar, causing subtle brightening and fading of the X-ray filament, like a cosmic blow torch shooting from the tip of the guitar.
      The structure of the filament teaches astronomers about how electrons and positrons travel through the interstellar medium. It also provides an example of how this process is injecting electrons and positrons into the interstellar medium.
      A paper describing these results was published in The Astrophysical Journal and is available here.
      NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory.
      Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description:
      This release features two short videos and a labeled composite image, all featuring what can be described as a giant flame-throwing guitar floating in space.
      In both the six second multiwavelength Guitar Nebula timelapse video and the composite image, the guitar shape appears at our lower left, with the neck of the instrument pointing toward our upper left. The guitar shape is ghostly and translucent, resembling a wispy cloud on a dark night. At the end of the neck, the guitar’s headstock comes to a sharp point that lands on a bright white dot. This dot is a pulsar, and the guitar shape is a hydrogen nebula. The nebula was formed when particles being ejected by the pulsar produced a cloud of bubbles. The bubbles were then blown into a curvy guitar shape by a steady wind. The guitar shape is undeniable, and is traced by a thin white line in the labeled composite image.
      The pulsar, known as PSR B2224+65, has also released a long filament of energetic matter and antimatter particles approximately 12 trillion miles long. In both the composite image and the six second video, this energetic, X-ray blast shoots from the bright white dot at the tip of the guitar’s headstock, all the way out to our upper righthand corner. In the still image, the blast resembles a streak of red dots, most of which fall in a straight, densely packed line. The six second video features four separate images of the phenomenon, created with Chandra data gathered in 2000, 2006, 2012, and 2021. When shown in sequence, the density of the X-ray blast filament appears to fluctuate.
      A 12 second video is also included in this release. It features four images that focus on the headstock of the guitar shape. These images were captured by the Hubble Space Telescope in 1994, 2001, 2006, and 2021. When played in sequence, the images show the headstock shape expanding. A study of this data has concluded that the variations that drive the formation of bubbles in the hydrogen nebula also control changes in the pulsar’s blast filament. Meaning the same phenomenon that created the cosmic guitar also created the cosmic blowtorch shooting from the headstock.
      View the full article
  • Check out these Videos

×
×
  • Create New...