Jump to content

Tech Today: Cutting the Knee Surgery Cord


Recommended Posts

  • Publishers
Posted

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Lazurite's ArthroFree Wireless Camera System on a table, held by a person wearing surgical gloves.
Lazurite’s ArthroFree Wireless Camera System incorporated aerospace-grade lithium-ion batteries after developers consulted with NASA engineers.
Credit: Lazurite Holdings LLC

After Eugene Malinskiy saw a physician assistant trip over arthroscopic camera cords during a medical procedure, he and his brother, Ilya, set out to develop a wireless arthroscopic camera.

Early in the development process, the Malinskiys got a boost from engineers at NASA’s Glenn Research Center in Cleveland, who advised on technical specifications through the center’s Adopt-a-City program. This agency program enabled Glenn engineers to consult with them pro bono via a Space Act Agreement with the city of Cleveland.

The team also consulted with NASA engineers on their plan to use the ultra-wideband protocol – radio technology enabling encrypted transfer of a high-definition signal – and their planned processors and chips used in the device’s central processing unit.

Ilya Malinskiy said the company gave investors the space agency engineers’ feedback. “Being able to say we had very skilled NASA engineers take a look at our device and say we should keep going was very, very useful.”

It turned out that the first wireless arthroscopic camera wasn’t entirely unlike CubeSats – tiny satellites that often orbit Earth in clusters.

“We had a lot of the same issues,” Ilya Malinskiy said. “We both have very small devices that need reliable power without adding a lot of weight.”

Ultimately, the NASA engineers connected the Lazurite team with several high-fidelity aerospace lithium-ion battery vendors.

In 2022, Lazurite’s ArthroFree Wireless Camera System became the first FDA-cleared wireless camera system for minimally invasive surgery. Since then, the device has assisted in countless surgeries, and the company has raised tens of millions of dollars.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA uses radio frequency (RF) for a variety of tasks in space, including communications. The Europa Clipper RF panel — the box with the copper wiring near the top — will send data carried by radio waves through the spacecraft between the electronics and eight antennas. Credit: NASA Even before we’re aware of heart trouble or related health issues, our bodies give off warning signs in the form of vibrations. Technology to detect these signals has ranged from electrodes and patches to watches. Now, an innovative wall-mounted technology is capable of monitoring vital signs. Advanced TeleSensors Inc. developed the Cardi/o Monitor with an exclusive license from NASA’s Jet Propulsion Laboratory in Southern California. 

      Over the course of five years, NASA engineers created a small, inexpensive, contactless device to measure vital signs, a challenging task partly because monitoring heart rate requires picking out motions of about one three-thousandth of an inch, which are easily swamped by other movement in the environment.  

      By the late 1990s, hardware and computing technology could meet the challenge, and the NASA JPL team created a prototype the size of a thick textbook. It would emit a radio beam toward a stationary person, working similarly to a radar, and algorithms differentiated cardiac and respiratory activity from the “noise” of other movements.  

      When Sajol Ghoshal, now CEO of Austin, Texas-based Advanced TeleSensors, participated in a demonstration of the prototype, he saw the potential for in-home monitoring. By then, developing an affordable device was possible due to the miniaturization of sensors and computing technology.  
      The Cardi/o vital sign monitor uses NASA-developed technology to continually monitor vital signs. The data collected can be sent directly to medical care providers, cutting down on the number of home healthcare visits. Credit: Advanced TeleSensors Inc. The Cardi/o Monitor is 3 inches square and mounts to a ceiling or wall. It can detect vital signs from up to 10 feet. Multiple devices can be scattered throughout a house, with a smartphone app controlling settings and displaying all data on a single dashboard. The algorithms NASA developed detect heartbeat and respiration, and the company added heart rate variability detection that indicates stress and sleep apnea.  

      If there’s an anomaly, such as a dramatic heart rate increase, an alert in the app calls attention to the situation. Up to six months of data is stored in a secure cloud, making it accessible to healthcare providers. This limits the need for regular in-person visits, which is particularly important for conditions such as infectious diseases, which can put medical professionals and other patients at risk.  

      Through the commercialization of this life-preserving technology, NASA is at the heart of advancing health solutions.  
      Read More Share
      Details
      Last Updated Apr 07, 2025 Related Terms
      Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
      2 min read NASA Cloud Software Helps Companies Find their Place in Space 
      Article 2 weeks ago 2 min read NASA Expertise Helps Record all the Buzz
      Article 3 weeks ago 2 min read What is a NASA Spinoff? We Asked a NASA Expert: Episode 53
      Article 1 month ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Jet Propulsion Laboratory – News
      Solar System

      View the full article
    • By Amazing Space
      The Sun Today - 1st April - Close Up View.
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A NASA F/A-18 research aircraft flies above California near NASA’s Armstrong Flight Research Center in Edwards, California, testing a commercial precision landing technology for future space missions. The Psionic Space Navigation Doppler Lidar (PSNDL) system is installed in a pod located under the right wing of the aircraft.NASA Nestled in a pod under an F/A-18 Hornet aircraft wing, flying above California, and traveling up to the speed of sound, NASA put a commercial sensor technology to the test. The flight tests demonstrated the sensor accuracy and navigation precision in challenging conditions, helping prepare the technology to land robots and astronauts on the Moon and Mars. 
      The Psionic Space Navigation Doppler Lidar (PSNDL) system is rooted in NASA technology that Psionic, Inc. of Hampton, Virginia, licensed and further developed. They miniaturized the NASA technology, added further functionality, and incorporated component redundancies that make it more rugged for spaceflight. The PSNDL navigation system also includes cameras and an inertial measurement unit to make it a complete navigation system capable of accurately determining a vehicle’s position and velocity for precision landing and other spaceflight applications. 
      NASA engineers and technicians install the Psionic Space Navigation Doppler Lidar (PSNDL) system into a testing pod on a NASA F/A-18 research aircraft ahead of February 2025 flight tests at NASA’s Armstrong Flight Research Center in Edwards, California.NASA The aircraft departed from NASA’s Armstrong Flight Research Center in Edwards, California, and conducted a variety of flight paths over several days in February 2025. It flew a large figure-8 loop and conducted several highly dynamic maneuvers over Death Valley, California, to collect navigation data at various altitudes, velocities, and orientations relevant for lunar and Mars entry and descent. Refurbished for these tests, the NASA F/A-18 pod can support critical data collection for other technologies and users at a low cost. 
      Doppler Lidar sensors provide a highly accurate measurement of speed by measuring the frequency shift between laser light emitted from the sensor reflected from the ground. Lidar are extremely useful in sunlight-challenged areas that may have long shadows and stark contrasts, such as the lunar South Pole. Pairing PSNDL with cameras adds the ability to visually compare pictures with surface reconnaissance maps of rocky terrain and navigate to landing at interesting locations on Mars. All the data is fed into a computer to make quick, real-time decisions to enable precise touchdowns at safe locations. 
      Psionic Space Navigation Doppler Lidar (PSNDL) system installed in a testing pod on a NASA F/A-18 research aircraft ahead of February 2025 flight tests at NASA’s Armstrong Flight Research Center in Edwards, California.NASA Since licensing NDL in 2016, Psionic has received funding and development support from NASA’s Space Technology Mission Directorate through its Small Business Innovative Research program and Tipping Point initiative. The company has also tested PSNDL prototypes on suborbital vehicles via the Flight Opportunities program. In 2024, onboard a commercial lunar lander, NASA successfully demonstrated the predecessor NDL system developed by the agency’s Langley Research Center in Hampton, Virginia. 
      Explore More
      4 min read NASA Starling and SpaceX Starlink Improve Space Traffic Coordination
      Article 10 mins ago 6 min read How NASA’s Perseverance Is Helping Prepare Astronauts for Mars
      Article 36 mins ago 2 min read NASA Cloud Software Helps Companies Find their Place in Space 
      Article 20 hours ago Facebook logo @NASATechnology @NASA_Technology Share
      Details
      Last Updated Mar 26, 2025 EditorLoura Hall Related Terms
      Armstrong Flight Research Center Game Changing Development Program Space Communications Technology Space Technology Mission Directorate Technology Technology for Living in Space Technology for Space Travel View the full article
    • By Amazing Space
      Incredible Video Of Our Sun TODAY - 17th March
    • By NASA
      Creating a golden streak in the night sky, a SpaceX Falcon 9 rocket carrying Intuitive Machines’ Nova-C lunar lander (IM-2) and NASA’s Lunar Trailblazer soars upward after liftoff from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 7:16 p.m. EST, Wednesday, Feb. 26. The IM-2 launch, which is part of NASA’s CLPS (Commercial Lunar Payload Services) initiative, is carrying NASA technology and science demonstrations, and other commercial payloads to Mons Mouton, a lunar plateau to advance our understanding of the Moon and planetary processes, while paving the way for future crewed missions. (Credit: NASA) The next set of NASA science and technology demonstrations is on its way to the lunar surface, where they will gather data about Earth’s nearest neighbor and help pave the way for American astronauts to explore the Moon and beyond, for the benefit of all.
      Carrying NASA instruments as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, Intuitive Machines’ IM-2 mission launched at 7:16 p.m. EST, Feb. 26, aboard a SpaceX Falcon 9 rocket from Launch Complex 39A at the agency’s Kennedy Space Center in Florida. Intuitive Machines’ lunar lander is scheduled to touch down on Thursday, March 6, in Mons Mouton, a plateau in the Moon’s South Pole.
      “With each CLPS mission, the United States is leading the way in expanding our reach and refining our capabilities, turning what was once dreams into reality,” said NASA acting Administrator Janet Petro. “These science and technology demonstrations are more than payloads – they represent the foundation for future explorers who will live and work on the Moon. By partnering with American industry, we are driving innovation, strengthening our leadership in space, and preparing for sending humans farther into the solar system, including Mars.”
      Intuitive Machines’ NOVA-C lunar lander captures a selfie with Earth in the background shortly after separation.  Credit: Intuitive Machines Once on the Moon, the NASA CLPS investigations will aim to measure the potential presence of volatiles or gases from lunar soil – one of the first on-site demonstrations of resource use on the Moon. In addition, a passive Laser Retroreflector Array on the top deck of the lander will bounce laser light back at any future orbiting or incoming spacecraft to give them a permanent reference point on the lunar surface. Other technology instruments on this delivery will demonstrate a robust surface communications system and deploy a propulsive drone designed to hop across the lunar surface.
      NASA’s Lunar Trailblazer spacecraft, which launched as a rideshare with the IM-2 mission, also began its journey to lunar orbit, where it will map the distribution of the different forms of water on the Moon. Lunar Trailblazer will discover where the Moon’s water is, what form it is in, and how it changes over time. Observations gathered during its two-year prime mission will contribute to the understanding of water cycles on airless bodies throughout the solar system while also supporting future human and robotic missions to the Moon by identifying where water is located. 
      NASA’s Artemis campaign includes conducting more science to better understand planetary processes and evolution, to search for evidence of water and other resources, and support long-term, sustainable human exploration.
      The NASA science and technology instruments that launched aboard the IM-2 mission are:
      Polar Resources Ice Mining Experiment-1 (PRIME-1): This experiment will explore the Moon’s subsurface and analyze where lunar resources may reside. The experiment’s two key instruments will demonstrate the ability to extract and analyze lunar soil to detect volatile chemical compounds that turn into gas. The two instruments will work in tandem: The Regolith and Ice Drill for Exploring New Terrains will drill into the Moon’s surface to collect samples, while the Mass Spectrometer Observing Lunar Operations will analyze these samples to determine the gas composition released across the sampling depth. The PRIME-1 technology will provide valuable data to better understand the Moon’s surface and how to work with and on it. Laser Retroreflector Array (LRA): This collection of eight retroreflectors will enable precision laser ranging, which is a measurement of the distance between the orbiting or landing spacecraft to the reflector on the lander. The LRA is a passive optical instrument and will function as a permanent location marker on the Moon for decades to come.    Micro Nova Hopper: Funded by NASA’s Space Technology Mission Directorate Tipping Point initiative, Intuitive Machines’ Micro Nova hopper, Grace, is designed to enable high-resolution surveying of the lunar surface under its flight path. This autonomous propulsive drone aims to deploy to the surface and hop into a nearby crater to survey the lunar surface and send science data back to the lander. It’s designed to hop in and out of a permanently shadowed region, providing a first look into undiscovered regions that may provide critical information to sustain a human presence on the Moon. Nokia Lunar Surface Communications System (LSCS): Also developed with funding from NASA’s Tipping Point initiative, Nokia’s LSCS 4G/LTE communications system will demonstrate cellular communications between the Intuitive Machines lander, a Lunar Outpost rover, and the Micro Nova hopper. Engineered to transmit high-definition video, command-and-control messages, and sensor and telemetry data, the LSCS aims to demonstrate an ultra-compact advanced communication solution for future infrastructure on the Moon and beyond. Learn more about NASA’s CLPS initiative at:
      https://www.nasa.gov/clps
      -end-
      Karen Fox / Jasmine Hopkins
      Headquarters, Washington
      202-358-1600 / 321-432-4624
      karen.c.fox@nasa.gov / jasmine.s.hopkins@nasa.gov
      Natalia Riusech / Nilufar Ramji
      Johnson Space Center, Houston
      281-483-5111
      nataila.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
      Antonia Jaramillo
      Kennedy Space Center, Florida
      321-501-8425
      antonia.jaramillobotero@nasa.gov
      Share
      Details
      Last Updated Feb 27, 2025 LocationJohnson Space Center Related Terms
      Commercial Lunar Payload Services (CLPS) Artemis Missions View the full article
  • Check out these Videos

×
×
  • Create New...