Jump to content

Recommended Posts

Posted
Marvel_at_stunning_echo_of_800-year-old_ Image:

In the year 1181 a rare supernova explosion appeared in the night sky, staying visible for 185 consecutive days. Historical records show that the supernova looked like a temporary ‘star’ in the constellation Cassiopeia shining as bright as Saturn.

Ever since, scientists have tried to find the supernova’s remnant. At first it was thought that this could be the nebula around the pulsar (dead star) 3C 58. However closer investigations revealed that the pulsar is older than supernova 1181.

In the last decade, another contender was discovered; Pa 30 is a nearly circular nebula with a central star in the constellation Cassiopeia. It is pictured here combining images from several telescopes. This composite image uses data across the electromagnetic spectrum and shows a new spectacular view of the supernova remnant. Allowing us to marvel at the same object that appeared in our ancestors’ night sky more than 800 years ago.

X-ray observations by ESA’s XMM-Newton (blue) show the full extent of the nebula and NASA’s Chandra X-ray Observatory (cyan) pinpoints its central source. The nebula is barely visible in optical light but shines bright in infrared light, collected by NASA’s Wide-field Infrared Space Explorer (red and pink). Interestingly, the radial structure in the image consists of heated sulphur that glows in visible light, observed with the ground-based Hiltner 2.4 m telescope at the MDM Observatory (green) in Arizona, USA, as do the stars in the background by Pan-STARRS (white) in Hawaii, USA.

Studies of the composition of the different parts of the remnant have led scientists to believe that it was formed in a thermonuclear explosion, and more precisely a special kind of supernova called a sub-luminous Type Iax event. During this event two white dwarf stars merged, and typically no remnant is expected for this kind of explosion. But incomplete explosions can leave a kind of ‘zombie’ star, such as the massive white dwarf star in this system. This very hot star, one of the hottest stars in the Milky Way (about 200 000 degrees Celsius), has a fast stellar wind with speeds up to 16 000 km/h. The combination of the star and the nebula makes it a unique opportunity for studying such rare explosions.

[Image description: A composite image of the remnant of supernova 1181. A spherical bright nebula sits in the middle surrounded by a field of white dotted stars. Within the nebula several rays point out like fireworks from a central star.]

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Image: On 20 September, the Copernicus Sentinel-2C satellite captured its first stunning image of the Moon, achieved by rolling the satellite sideways in a unique manoeuvre. Although Sentinel-2C is primarily designed for Earth observation, this image – intended for calibration and cross-mission comparisons – exceeded expectations. View the full article
    • By European Space Agency
      Less than two weeks after being launched into orbit, Sentinel-2C has delivered its first images. These spectacular views of Earth offer a sneak peek at the data that this new satellite will provide for Copernicus – Europe’s world-leading Earth observation programme.
      View the full article
    • By Amazing Space
      Unveiling Quasar RX J1131-1231: Stunning Discoveries by the James Webb Space Telescope
    • By NASA
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      A detailed 3D animation of NASA's Gateway space station, showcasing its modules and structural components from various angles against the backdrop of deep space.NASA/Bradley Reynolds, Alberto Bertolin NASA and its international partners will explore the scientific mysteries of deep space with Gateway, humanity’s first space station to orbit the Moon. Starting with the Artemis IV mission in 2028, the international teams of astronauts living, conducting science, and preparing for missions to the lunar South Pole region on Gateway will be the first humans to make their home in deep space.
      This artist’s computer-generated animation presents an exterior tour of Gateway in stunning detail. Depicted Gateway elements are the:
      Power and Propulsion Element that will make Gateway the most powerful solar electric spacecraft ever flown. The module will use the Sun’s energy to power the space station’s subsystems and ionize xenon gas to produce the thrust that will maintain Gateway’s unique polar orbit around the Moon. HALO (Habitation and Logistics Outpost), Gateway’s command and control nexus providing communications between Earth and the lunar surface with the Lunar Link system provided by ESA (European Space Agency). HALO will house life support systems, including exercise equipment, and science payload banks. Lunar I-Hab, provided by ESA with hardware contributions from JAXA (Japan Aerospace Exploration Agency), will host environmental control and life support systems, sleeping quarters, and a galley, among other features. Lunar View, provided by ESA, will have refueling capabilities for the Power and Propulsion Element, cargo storage, and large windows. Crew and Science Airlock, provided by the Mohammad Bin Rashid Space Centre of the United Arab Emirates, for crew and hardware transfer from Gateway’s interior to the vacuum of space. Canadarm3 advanced external robotic system provided by CSA (Canadian Space Agency). Deep Space Logistics spacecraft that will transport cargo to Gateway to support Artemis missions. Initial Gateway science payloads that will study solar and cosmic radiation, a little-understood phenomenon that is a chief concern for people and hardware traveling through deep space, including Mars. The payloads visible in this video are ERSA (European Radiation Sensors Array), provided by ESA, attached to the Power and Propulsion Element, and the NASA-led HERMES (Heliophysics Environmental and Radiation Measurement Experiment Suite) is attached to HALO. A third radiation science payload, IDA (Internal Dosimeter Array), provided by ESA and JAXA, will be inside of HALO. This video also depicts:
      The Orion spacecraft docked to the Crew and Science Airlock. Orion will transport international teams of astronauts and three modules (Lunar I-Hab, Lunar View and the Crew and Science Airlock) to the Gateway space station. Government-reference Human Landing System (HLS) that will ferry astronauts to and from the lunar South Pole region. SpaceX and Blue Origin are on contract to provide the Starship HLS and Blue Moon HLS, respectively. Gateway is part of the Artemis architecture to return humans to the lunar surface for scientific discovery and chart a path for human exploration further into the solar system, such as to Mars and beyond.
      Learn More About Gateway Facebook logo @NASAGateway @NASA_Gateway Instagram logo @nasaartemis Share
      Details
      Last Updated Jun 25, 2024 EditorBriana R. ZamoraContactBriana R. Zamorabriana.r.zamora@nasa.govLocationJohnson Space Center Related Terms
      Gateway Space Station Artemis Gateway Program General Johnson Space Center Explore More
      2 min read Through Astronaut Eyes, Virtual Reality Propels Gateway Forward  
      NASA astronauts are using virtual reality to explore Gateway. When they slip on their headsets,…
      Article 3 months ago 6 min read NASA’s Artemis IV: Building First Lunar Space Station
      Article 3 months ago 4 min read NASA, Aerojet Rocketdyne Put Gateway Thruster System to the Test
      Testing of Gateway’s revolutionary propulsion system, known as the Advanced Electric Propulsion System, begins at…
      Article 12 months ago Keep Exploring Discover More Topics From NASA
      Gateway
      Built with international and commercial partners, Gateway will be humanity’s first space station around the Moon as a vital component…
      Artemis
      Moon to Mars Architecture
      Orion Spacecraft
      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A red giant star and white dwarf orbit each other in this animation of a nova similar to T Coronae Borealis. The red giant is a large sphere in shades of red, orange, and white, with the side facing the white dwarf the lightest shades. The white dwarf is hidden in a bright glow of white and yellows, which represent an accretion disk around the star. A stream of material, shown as a diffuse cloud of red, flows from the red giant to the white dwarf. When the red giant moves behind the white dwarf, a nova explosion on the white dwarf ignites, creating a ball of ejected nova material shown in pale orange. After the fog of material clears, a small white spot remains, indicating that the white dwarf has survived the explosion.NASA/Goddard Space Flight Center Around the world this summer, professional and amateur astronomers alike will be fixed on one small constellation deep in the night sky. But it’s not the seven stars of Corona Borealis, the “Northern Crown,” that have sparked such fascination.
      It’s a dark spot among them where an impending nova event – so bright it will be visible on Earth with the naked eye – is poised to occur.
      “It’s a once-in-a-lifetime event that will create a lot of new astronomers out there, giving young people a cosmic event they can observe for themselves, ask their own questions, and collect their own data,” said Dr. Rebekah Hounsell, an assistant research scientist specializing in nova events at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “It’ll fuel the next generation of scientists.”
      T Coronae Borealis, dubbed the “Blaze Star” and known to astronomers simply as “T CrB,” is a binary system nestled in the Northern Crown some 3,000 light-years from Earth. The system is comprised of a white dwarf – an Earth-sized remnant of a dead star with a mass comparable to that of our Sun – and an ancient red giant slowly being stripped of hydrogen by the relentless gravitational pull of its hungry neighbor.
      The hydrogen from the red giant accretes on the surface of the white dwarf, causing a buildup of pressure and heat. Eventually, it triggers a thermonuclear explosion big enough to blast away that accreted material. For T CrB, that event appears to reoccur, on average, every 80 years.
      Don’t confuse a nova with a supernova, a final, titanic explosion that destroys some dying stars, Hounsell said. In a nova event, the dwarf star remains intact, sending the accumulated material hurtling into space in a blinding flash. The cycle typically repeats itself over time, a process which can carry on for tens or hundreds of thousands of years.
      “There are a few recurrent novae with very short cycles, but typically, we don’t often see a repeated outburst in a human lifetime, and rarely one so relatively close to our own system,” Hounsell said. “It’s incredibly exciting to have this front-row seat.”
      Finding T Coronae Borealis
      A conceptual image of how to find Hercules and the “Northern Crown” in the night sky, created using planetarium software. Look up after sunset during summer months to find Hercules, then scan between Vega and Arcturus, where the distinct pattern of Corona Borealis may be identified. NASA The first recorded sighting of the T CrB nova was more than 800 years ago, in autumn 1217, when a man named Burchard, abbot of Ursberg, Germany, noted his observance of “a faint star that for a time shone with great light.”
      The T CrB nova was last seen from Earth in 1946. Its behavior over the past decade appears strikingly similar to observed behavior in a similar timeframe leading up to the 1946 eruption. If the pattern continues, some researchers say, the nova event could occur by September 2024.
      What should stargazers look for? The Northern Crown is a horseshoe-shaped curve of stars west of the Hercules constellation, ideally spotted on clear nights. It can be identified by locating the two brightest stars in the Northern Hemisphere – Arcturus and Vega – and tracking a straight line from one to the other, which will lead skywatchers to Hercules and the Corona Borealis.
      The outburst will be brief. Once it erupts, it will be visible to the naked eye for a little less than a week – but Hounsell is confident it will be quite a sight to see.
      A coordinated scientific approach
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Watch V407 Cyg go nova! In this animation, gamma rays (magenta) arise when accelerated particles in the explosion's shock wave crash into the red giant's stellar wind.NASA/Conceptual Image Lab/Goddard Space Flight Center Dr. Elizabeth Hays, chief of the Astroparticle Physics Laboratory at NASA Goddard, agreed. She said part of the fun in preparing to observe the event is seeing the enthusiasm among amateur stargazers, whose passion for extreme space phenomena has helped sustain a long and mutually rewarding partnership with NASA.
      “Citizen scientists and space enthusiasts are always looking for those strong, bright signals that identify nova events and other phenomena,” Hays said. “Using social media and email, they’ll send out instant alerts, and the flag goes up. We’re counting on that global community interaction again with T CrB.”
      Hays is the project scientist for NASA’s Fermi Gamma-ray Space Telescope, which has made gamma-ray observations from low Earth orbit since 2008. Fermi is poised to observe T CrB when the nova eruption is detected, along with other space-based missions including NASA’s James Webb Space Telescope, Neil Gehrels Swift Observatory, IXPE (Imaging X-ray Polarimetry Explorer), NuSTAR (Nuclear Spectroscopic Telescope Array), NICER (Neutron star Interior Composition Explorer), and the European Space Agency’s INTEGRAL (Extreme Universe Surveyor). Numerous ground-based radio telescopes and optical imagers, including the National Radio Astronomy Observatory’s Very Large Array in Mexico, also will take part. Collectively, the various telescopes and instruments will capture data across the visible and non-visible light spectrum.
      “We’ll observe the nova event at its peak and through its decline, as the visible energy of the outburst fades,” Hounsell said. “But it’s equally critical to obtain data during the early rise to eruption – so the data collected by those avid citizen scientists on the lookout now for the nova will contribute dramatically to our findings.”
      For astrophysics researchers, that promises a rare opportunity to shed new light on the structure and dynamics of recurring stellar explosions like this one.
      “Typically, nova events are so faint and far away that it’s hard to clearly identify where the erupting energy is concentrated,” Hays said. “This one will be really close, with a lot of eyes on it, studying the various wavelengths and hopefully giving us data to start unlocking the structure and specific processes involved. We can’t wait to get the full picture of what’s going on.”
      Some of those eyes will be very new. Gamma-ray imagers didn’t exist the last time T CrB erupted in 1946, and IXPE’s polarization capability – which identifies the organization and alignment of electromagnetic waves to determine the structure and internal processes of high-energy phenomena – is also a brand-new tool in X-ray astronomy. Combining their data could offer unprecedented insight into the lifecycles of binary systems and the waning but powerful stellar processes that fuel them.
      Is there a chance September will come and go without the anticipated nova outburst from T CrB? Experts agree there are no guarantees – but hope abides.
      “Recurrent novae are unpredictable and contrarian,” said Dr. Koji Mukai, a fellow astrophysics researcher at NASA Goddard. “When you think there can’t possibly be a reason they follow a certain set pattern, they do – and as soon as you start to rely on them repeating the same pattern, they deviate from it completely. We’ll see how T CrB behaves.”
      Learn more about NASA astrophysics at:
      https://science.nasa.gov/astrophysics
      Jonathan Deal
      Marshall Space Flight Center, Huntsville, Ala.
      256-544-0034
      jonathan.e.deal@nasa.gov
      Share
      Details
      Last Updated Jun 06, 2024 Related Terms
      Marshall Space Flight Center General Goddard Space Flight Center Explore More
      5 min read NASA Marshall Engineer Receives AIAA Honors Award
      Article 2 hours ago 5 min read Meet the Simunauts: Ohio State Students to Test Space Food Solutions for NASA
      Article 19 hours ago 26 min read The Marshall Star for June 5, 2024
      Article 19 hours ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...