Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Video: 01:08:00 Watch the replay of our Hera mission Mars flyby event. On 12 March 2025, ESA’s Hera mission came to within 5000 km of the surface of the red planet and 300 km of Mars’s more distant and enigmatic moon Deimos. During this flyby, Hera performed observations of both Mars and the city-sized Deimos. Hera then needed to swing its High Gain Antenna back to Earth to transmit its data home. On Thursday, 13 March, these images were premiered by Hera’s science team from ESA’s ESOC mission control centre in Darmstadt, Germany, explaining what they reveal, during our public webcast starting at 11:50 CET. The team was joined by ESA astronaut Alexander Gerst and renowned science fiction writer Andy Weir, author of The Martian and Project Hail Mary, as well as a surprise special guest!
      View the full article
    • By Amazing Space
      Total Lunar Eclipse TONIGHT - Viewing Tips And Best Locations To Watch
    • By European Space Agency
      While performing yesterday’s flyby of Mars, ESA’s Hera mission for planetary defence made the first use of its payload for scientific purposes beyond Earth and the Moon. Activating a trio of instruments, Hera imaged the surface of the red planet as well as the face of Deimos, the smaller and more mysterious of Mars’s two moons.
      View the full article
    • By NASA
      The NISAR mission will help map crops and track their development through the entire growing season. Using synthetic aperture radar, the satellite will be able to observe both small plots of farmland and monitor trends across broad regions, gathering data to in-form agricultural decision making.Adobe Stock/Greg Kelton Data from the NISAR satellite will be used to map crop growth, track plant health, and monitor soil moisture — offering detailed, timely information for decision making.
      When it launches this year, the NISAR (NASA-ISRO Synthetic Aperture Radar) satellite will provide a powerful data stream that could help farmers in the U.S. and around the world. This new Earth mission by NASA and the Indian Space Research Organisation will help monitor the growth of crops from planting to harvest, generating crucial insights on how to time plantings, adjust irrigation schedules, and, ultimately, make the most of another precious resource: time.
      Using synthetic aperture radar, NISAR will discern the physical characteristics of crops, as well as the moisture content of the plants and the soil they grow in. The mission will have the resolution to see small plots of farmland, but a potentially more meaningful benefit will come from its broad, frequent coverage of agricultural regions.
      The satellite will image nearly all of Earth’s land twice every 12 days and will be able to resolve plots down to 30 feet (10 meters) wide. The cadence and resolution could allow users to zoom in to observe week-to-week changes on small farms or zoom out to monitor thousands of farms for broader trends. Such big-picture perspective will be useful for authorities managing crops or setting farm policy.
      Tapping NISAR data, decision-makers could, for example, estimate when rice seedlings were planted across a region and track their height and blooming through the season while also monitoring the wetness of the plants and paddies over time. An unhealthy crop or drier paddies may signal the need to shift management strategies.
      NISAR will provide maps of croplands on a global basis every two weeks. Observations will be uninterrupted by weather and provide up-to-date information on the large-scale trends that affect international food security. Credit: NASA/JPL-Caltech “It’s all about resource planning and optimizing, and timing is very important when it comes to crops: When is the best time to plant? When is the best time to irrigate? That is the whole game here,” said Narendra Das, a NISAR science team member and agricultural engineering researcher at Michigan State University in East Lansing.
      Mapping Crops
      NISAR is set to launch this year from ISRO’s Satish Dhawan Space Centre on India’s southeastern coast. Once in operation, it will produce about 80 terabytes of data products per day for researchers and users across numerous areas, including agriculture.
      Satellites have been used for large-scale crop monitoring for decades. Because microwaves pass through clouds, radar can be more effective at observing crops during rainy seasons than other technologies such as thermal and optical imaging. The NISAR satellite will be the first radar satellite to employ two frequencies, L- and S-band, which will enable it to observe a broader range of surface features than a single instrument working at one frequency.
      Microwaves from the mission’s radars will be able to penetrate the canopies of crops such as corn, rice, and wheat, then bounce off the plant stalks, soil, or water below, and then back to the sensor. This data will enable users to estimate the mass of the plant matter (biomass) that’s aboveground in an area. By interpreting the data over time and pairing it with optical imagery, users will be able to distinguish crop types based on growth patterns.
      Data gathered in 2017 by the European Sentinel-1 SAR satellite program shows changes to croplands in the region southeast of Florida’s Lake Okeechobee. Colors in the fields indicate various crops in different parts of their growth and harvest cycles. NISAR will gather similar data in L- and S-band radar frequencies.ESA; processing and visualization by Earth Big Data LLC Additionally, NISAR’s radars will measure how the polarization, or vertical and horizontal orientation of signals, changes after they bounce back to the satellite from the surface. This will enable a technique called polarimetry that, when applied to the data, will help identify crops and estimate crop production with better accuracy.
      “Another superpower of NISAR is that when its measurements are integrated with traditional satellite observations, especially vegetation health indexes, it will significantly enhance crop information,” added Brad Doorn, who oversees NASA’s water resources and agriculture research program.
      The NISAR satellite’s high-resolution data on which crops are present and how well they are growing could feed into agricultural productivity forecasts.
      “The government of India — or any government in the world — wants to know the crop acreage and the production estimates in a very precise way,” said Bimal Kumar Bhattacharya, the agricultural applications lead at ISRO’s Space Applications Centre in Ahmedabad. “The high-repeat time-series data of NISAR will be very, very helpful.”
      Tracking Soil Moisture
      The NISAR satellite can also help farmers gauge the water content in soil and vegetation. In general, wetter soils tend to return more signals and show up brighter in radar imagery than drier soils. There is a similar relationship with plant moisture.
      A collaboration between NASA and the Indian Space Research Organisation, NISAR will use synthetic aperture radar to offer insights into change in Earth’s ecosystems, including its agricultural lands. The spacecraft, depicted here in an artist’s concept, will launch from India.NASA/JPL-Caltech These capabilities mean that NISAR can estimate the water content of crops over a growing season to help determine if they are water-stressed, and it can use signals that have scattered back from the ground to estimate soil moisture.
      The soil moisture data could potentially inform agriculture and water managers about how croplands respond to heat waves or droughts, as well as how quickly they absorb water and then dry out following rain — information that could support irrigation planning.
      “Resource managers thinking about food security and where resources need to go are going to be able to use this sort of data to have a holistic view of their whole region,” said Rowena Lohman, an Earth sciences researcher at Cornell University in Ithaca, New York, and soil moisture lead on the NISAR science team.
      More About NISAR
      The NISAR satellite is a joint collaboration between NASA and ISRO and marks the first time the two agencies have cooperated on flight hardware for an Earth-observing mission. Managed by Caltech, NASA’s Jet Propulsion Laboratory leads the U.S. component of the project and provided the L-band SAR. NASA JPL also provided the radar reflector antenna, the deployable boom, a high-rate communication subsystem for science data, GPS receivers, a solid-state recorder, and payload data subsystem. NASA’s Goddard Space Flight Center manages the Near Space Network, which will receive NISAR’s L-band data.
      The ISRO Space Applications Centre is providing the mission’s S-band SAR. The U R Rao Satellite Centre provided the spacecraft bus. The launch vehicle is from Vikram Sarabhai Space Centre, launch services are through Satish Dhawan Space Centre, and satellite mission operations are by the ISRO Telemetry Tracking and Command Network. The National Remote Sensing Centre is responsible for S-band data reception, operational products generation, and dissemination.
      To learn more about NISAR, visit:
      https://nisar.jpl.nasa.gov
      How NISAR Will See Earth What Sets NISAR Apart From Other Earth Satellites News Media Contacts
      Andrew Wang / Jane J. Lee
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-379-6874 / 818-354-0307
      andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov
      2025-035
      Share
      Details
      Last Updated Mar 12, 2025 Related Terms
      NISAR (NASA-ISRO Synthetic Aperture Radar) Earth Earth Science Earth Science Division Explore More
      13 min read The NASA DC-8 Retires: Reflections on its Contributions to Earth System Science
      Introduction Since 1987, a highly modified McDonnell Douglas DC-8 aircraft has been a workhorse in…
      Article 23 hours ago 27 min read Summary of Special Engage Session on “Remote Sensing and the Future of Earth Observations”
      Introduction On October 16, 2024, a special session of the NASA Goddard Engage series took…
      Article 23 hours ago 2 min read How Do We Know the Earth Isn’t Flat? We Asked a NASA Expert: Episode 53
      Article 1 day ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read
      Sols 4475-4476: Even the Best-Laid Plans
      NASA’s Mars rover Curiosity acquired this image of “Gould Mesa,” named for a hill near NASA’s Jet Propulsion Laboratory in Southern California, using its Right Navigation Camera on March 6, 2025 — sol 4472, or Martian day 4,472 of the Mars Science Laboratory mission — at 01:37:17 UTC. NASA/JPL-Caltech Written by Deborah Padgett, OPGS Task Lead at NASA’s Jet Propulsion Laboratory
      Earth planning date: Friday, March 7, 2025
      In Curiosity’s last plan, the team decided to drive toward a very interesting nodular rock. The rover team hoped to do a detailed study of its surface texture over the weekend. However, Curiosity did not receive its expected Friday morning downlink of images taken after its drive. The MSL team did receive a tiny bit of data confirming that Curiosity’s drive finished as expected. Unfortunately, without images to determine exactly where Curiosity was located relative to its intended destination, the team was unable to do any instrument pointing at nearby objects, known as “targeted” observations. However, the rover team showed its resilience by filling the weekend plan with a full slate of fascinating remote observations of the terrain and sky around Curiosity’s current perch, high in the canyons of Mount Sharp. Our science and instrument teams always keep a list of backup observations close at hand — frequently those taking too much time to fit in a typical sol plan — in case they get an unexpected opportunity to use them!
           On sol 4475, Curiosity will start its first science block midday with two back-to-back dust-devil surveys with Navcam. These searches for Martian whirlwinds will be followed by a measurement of atmospheric dust with Mastcam. Mastcam will then do its first large panorama image of the plan, an 11×3 mosaic starboard of the rover to document bedrock and regolith in an area with a dark band of material seen from orbit. This long observation will be followed by an AEGIS activity, using Navcam to find targets for ChemCam’s laser spectrograph. Curiosity will then repeat its post-drive imaging at high quality, hopefully to be received at JPL before Monday’s planning day. In the evening, APXS will do atmospheric composition studies for several hours. 
      The next day will be a “soliday,” without any observations. Early in the morning of sol 4476, Mastcam will take its second large panorama, which will be a fantastic 37×4 mosaic of sunrise on the slopes of Gould Mesa (see image).  In the afternoon, there will be a Mastcam dust measurement, ChemCam calibration observation, ChemCam passive sky, and two more dust-devil surveys. The next morning, there will be a set of Navcam cloud movies, a dust measurement, and sky phase function observations to support the Mars aphelion cloud-belt campaign. On sol 4477, we will use the post-drive imaging taken over the weekend to plan contact science, then drive away from this location on sol 4478, continuing Curiosity’s journey toward the mysterious boxwork features to the west.
      Share








      Details
      Last Updated Mar 11, 2025 Related Terms
      Blogs Explore More
      2 min read Sealing the Deal


      Article


      5 days ago
      5 min read Sols 4473-4474: So Many Rocks, So Many Textures!


      Article


      5 days ago
      2 min read Sols 4471-4472: Marching Through the Canyon


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
  • Check out these Videos

×
×
  • Create New...