Members Can Post Anonymously On This Site
SMOS and Swarm team up to spot huge solar storm
-
Similar Topics
-
By NASA
As part of NASA’s Artemis campaign, the Commercial Lunar Payload Services (CLPS) initiative, managed out of Johnson Space Center in Houston, is paving the way for conducting lunar science for the benefit of humanity.
Through CLPS, NASA teams worked closely with commercial companies to develop a new model for space exploration, enabling a sustainable return to the Moon. These commercial missions deliver NASA science and technology to the lunar surface, providing insights into the environment and demonstrating new technologies that will support future astronauts—on the Moon and, eventually, on Mars.
Carrying a suite of NASA science and technology, Firefly Aerospace’s Blue Ghost Mission 1 successfully landed at 3:34 a.m. EST on Sunday, March 2, 2025, near a volcanic feature called Mons Latreille within Mare Crisium, a more than 300-mile-wide basin located in the northeast quadrant of the Moon’s near side.Firefly Aerospace Intuitive Machines’ IM-2 captured an image March 6, 2025, after landing in a crater from the Moon’s South Pole. The lunar lander is on its side about 820 feet from the intended landing site, Mons Mouton. In the center of the image between the two lander legs is the Polar Resources Ice Mining Experiment 1 suite, which shows the drill deployed.Credit: Intuitive Machines 2025: A Year of Lunar Firsts
This year has already seen historic milestones. Firefly Aerospace’s Blue Ghost Mission 1 successfully delivered 10 science and technology instruments to the Moon on March 2, 2025. It touched down near a volcanic feature called Mons Latreille within Mare Crisium, a basin over 300 miles wide in the northeast quadrant of the Moon’s near side. Intuitive Machines’ IM-2 Mission, landed near the Moon’s South Pole on March 6, marking the southernmost lunar landing ever achieved.
The lunar deliveries for NASA have collected valuable insights and data to inform the next giant leap in humanity’s return to the Moon, helping scientists address challenges like lunar dust mitigation, resource utilization, and radiation tolerance.
Meet the Johnson employees contributing to lunar innovations that are helping to shape the future of human presence on the Moon.
Mark Dillard: Pioneering Payload Integration
Official NASA portrait of CLPS Payload Integration Manager Mark Dillard. NASA/James Blair Mark Dillard, Blue Ghost Mission 1 payload integration manager, has been at the forefront of space exploration for more than 40 years, including 28 years with the International Space Station Program. Beyond ensuring all NASA payloads are integrated onto the lunar landers, he oversees schedules, costs, and technical oversight while fostering strong partnerships with CLPS vendors and NASA science teams.
“I believe NASA is about to enter its next Golden Age,” said Dillard. “The enthusiasm of Firefly’s engineering team is contagious, and it has been a privilege to witness their success.”
Dillard’s career includes five years as NASA’s resident manager in Torino, Italy, where he oversaw the development of International Space Station modules, including three logistics modules, the European Space Agency’s Columbus module, and two space station nodes.
Mark Dillard in the clean room with Firefly Aerospace’s Blue Ghost Mission 1 lander behind him. “Like Apollo, Shuttle, and the International Space Station Programs, Artemis will add the next building block for space exploration,” said Dillard. “The CLPS initiative is a significant building block, aiming to establish reliable and long-term access to the lunar surface.”
Susan Lederer: Guiding Science in Real Time
Official portrait of CLPS Project Scientist Susan Lederer.NASA/Bill Stafford Susan Lederer, IM-2 project scientist, has spent years ensuring all the NASA instruments are fully prepared for lunar operations. She oversees real-time science operations from IM’s Nova Control Center, working to maximize the mission’s scientific return and prepare for the next generation of astronauts to explore the Moon, Mars, and beyond.
“We have done our best with remote data, but the only way to truly understand the Moon—how to drill for resources, how to live on another celestial body—is to go there and do the experiments,” she said. “Now, we get to do that.”
Lederer’s path to CLPS was shaped by a background in space exploration, astrophysics, and planetary science. She has contributed to multiple spacecraft missions, including NASA’s Deep Impact mission, which sent a projectile into Comet Tempel 1, and a separate mission that retrieved a sample from asteroid Itokawa.
On Ascension Island, a remote joint U.S. Air Force and Royal Air Force base, she co-led the construction of a 20,000-pound optical telescope to study space debris. Her work spans collaborations with the Defense Advanced Research Projects Agency, a tenure as a physics professor, and the design of impact experiments at NASA’s Experimental Impact Lab, where she used a vertical gun firing projectiles at speeds exceeding those of sniper rifles to study asteroid and comet collisions.
Lederer has logged hundreds of hours conducting observing runs at professional observatories worldwide, where she refined both her scientific precision and her ability to repair instruments while working alone on remote mountaintops.
As a private pilot and SciComm (the science equivalent of Capsule Communicator) for NASA’s Desert Research and Technology Studies, she honed her mission communication skills. She was also part of an international team that discovered two extrasolar planetary systems—one with a single Earth-sized planet and another with seven—orbiting ultracool red dwarf stars.
Her expertise has uniquely prepared her to oversee real-time science operations for lunar missions in high-intensity environments.
NASA and Intuitive Machines IM-1 lunar lander mission status press briefing. From left to right: Steve Altemus, Intuitive Machines’ chief executive officer and co-founder; Dr. Joel Kearns, NASA’s deputy associate administrator, Exploration, Science Mission Directorate; Dr. Tim Crain, Intuitive Machines’ chief technology officer and co-founder; and CLPS Project Scientist Susan Lederer. NASA/Robert Markowitz Lederer emphasizes the importance of both scientific discovery and the practical realities of living and working on another world—a challenge NASA is tackling for the first time in history.
“Honestly, it’s when things don’t go as planned that you learn the most,” she said. “I’m looking forward to the surprises that we get to solve together as a team. That’s our greatest strength—the knowledge and teamwork that make this all happen.”
Lederer credits the success of CLPS lunar deliveries to the dedication of teams working on payloads like Polar Resources Ice Mining Experiment-1 and Lunar Retroreflector Array, as well as peers within NASA’s Science Mission Directorate, Space Technology Mission Directorate, and Intuitive Machines.
“What we do every day in CLPS creates a new world for exploration that is efficient in schedule, cost, and gaining science and technology knowledge in these areas like we’ve never done before,” said Lederer. “It feels very much like being a trailblazer for inspiring future generations of explorers – at least that’s my hope, to keep the next generation inspired and engaged in the wonders of our universe.”
View the full article
-
By NASA
This video sparkles with synthetic supernovae from the OpenUniverse project, which simulates observations from NASA’s upcoming Nancy Grace Roman Space Telescope. More than a million exploding stars flare into visibility and then slowly fade away. The true brightness of each transient event has been magnified by a factor of 10,000 for visibility, and no background light has been added to the simulated images. The pattern of squares shows Roman’s full field of view.Credit: NASA’s Goddard Space Flight Center and M. Troxel The universe is ballooning outward at an ever-faster clip under the power of an unknown force dubbed dark energy. One of the major goals for NASA’s upcoming Nancy Grace Roman Space Telescope is to help astronomers gather clues to the mystery. One team is setting the stage now to help astronomers prepare for this exciting science.
“Roman will scan the cosmos a thousand times faster than NASA’s Hubble Space Telescope can while offering Hubble-like image quality,” said Rebekah Hounsell, an assistant research scientist at the University of Maryland-Baltimore county working at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and a co-principal investigator of the Supernova Cosmology Project Infrastructure Team preparing for the mission’s High-Latitude Time-Domain Survey. “We’re going to have an overwhelming amount of data, and we want to make it so scientists can use it from day one.”
Roman will repeatedly look at wide, deep regions of the sky in near-infrared light, opening up a whole new view of the universe and revealing all sorts of things going bump in the night. That includes stars being shredded as they pass too close to a black hole, intense emissions from galaxy centers, and a variety of stellar explosions called supernovae.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
This data sonification transforms a vast simulation of a cosmic survey from NASA’s upcoming Nancy Grace Roman Space Telescope into a symphony of stellar explosions. Each supernova’s brightness controls its volume, while its color sets its pitch –– redder, more distant supernovae correspond to deep, low tones while bluer, nearer ones correspond to higher frequencies. The sound in stereo mirrors their locations in the sky. The result sounds like celestial wind chimes, offering a way to “listen” to cosmic fireworks. Credit: NASA’s Goddard Space Flight Center, M. Troxel, SYSTEM Sounds (M. Russo, A. Santaguida) Cosmic Radar Guns
Scientists estimate around half a dozen stars explode somewhere in the observable universe every minute. On average, one of them will be a special variety called type Ia that can help astronomers measure the universe.
These explosions peak at a similar intrinsic brightness, allowing scientists to find their distances simply by measuring how bright they appear.
Scientists can also study the light of these supernovae to find out how quickly they are moving away from us. By comparing how fast they’re receding at different distances, scientists will trace cosmic expansion over time.
Using dozens of type Ia supernovae, scientists discovered that the universe’s expansion is accelerating. Roman will find tens of thousands, including very distant ones, offering more clues about the nature of dark energy and how it may have changed throughout the history of the universe.
“Roman’s near-infrared view will help us peer farther because more distant light is stretched, or reddened, as it travels across expanding space,” said Benjamin Rose, an assistant professor at Baylor University in Waco, Texas, and a co-principal investigator of the infrastructure team. “And opening a bigger window, so to speak, will help us get a better understanding of these objects as a whole,” which would allow scientists to learn more about dark energy. That could include discovering new physics, or figuring out the universe’s fate.
The People’s Telescope
Members of the planning team have been part of the community process to seek input from scientists worldwide on how the survey should be designed and how the analysis pipeline should work. Gathering public input in this way is unusual for a space telescope, but it’s essential for Roman because each large, deep observation will enable a wealth of science in addition to fulfilling the survey’s main goal of probing dark energy.
Rather than requiring that many individual scientists submit proposals to reserve their own slice of space telescope time, Roman’s major surveys will be coordinated openly, and all the data will become public right away.
“Instead of a single team pursuing one science goal, everyone will be able to comb through Roman’s data for a wide variety of purposes,” Rose said. “Everyone will get to play right away.”
This animation shows a possible tiling pattern of part of NASA’s Nancy Grace Roman Space Telescope’s High Latitude Time-Domain Survey. The observing program, which is being designed by a community process, is expected to have two components: wide (covering 18 square degrees, a region of sky as large as about 90 full moons) and deep (covering about 5.5 square degrees, about as large as 25 full moons). This animation shows the deeper portion, which would peer back to when the universe was about 500 million years old, less than 4 percent of its current age of 13.8 billion years.Credit: NASA’s Goddard Space Flight Center This Is a Drill
NASA plans to announce the survey design for Roman’s three core surveys, including the High-Latitude Time-Domain Survey, this spring. Then the planning team will simulate it in its entirety.
“It’s kind of like a recipe,” Hounsell said. “You put in your observing strategy — how many days, which filters — and add in ‘spices’ like uncertainties, calibration effects, and the things we don’t know so well about the instrument or supernovae themselves that would affect our results. We can inject supernovae into the synthetic images and develop the tools we’ll need to analyze and evaluate the data.”
Scientists will continue using the synthetic data even after Roman begins observing, tweaking all aspects of the simulation and correcting unknowns to see which resulting images best match real observations. Scientists can then fine-tune our understanding of the universe’s underlying physics.
“We assume that all supernovae are the same regardless of when they occurred in the history of the universe, but that might not be the case,” Hounsell said. “We’re going to look further back in time than we’ve ever done with type Ia supernovae, and we’re not completely sure if the physics we understand now will hold up.”
There are reasons to suspect they may not. The very first stars were made almost exclusively of hydrogen and helium, compared to stars today which contain several dozen elements. Those ancient stars also lived in very different environments than stars today. Galaxies were growing and merging, and stars were forming at a furious pace before things began calming down between about 8 and 10 billion years ago.
“Roman will very dramatically add to our understanding of this cosmic era,” Rose said. “We’ll learn more about cosmic evolution and dark energy, and thanks to Roman’s large deep view, we’ll get to do much more science too with the same data. Our work will help everyone hit the ground running after Roman launches.”
For more information about the Roman Space Telescope visit www.nasa.gov/roman.
The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media contact:
Claire Andreoli
NASA’s Goddard Space Flight Center, Greenbelt, Md.
301-286-1940
Explore More
7 min read NASA’s Roman and ESA’s Euclid Will Team Up To Investigate Dark Energy
Article 2 years ago 7 min read NASA’s Roman Mission to Probe Cosmic Secrets Using Exploding Stars
Article 4 years ago 4 min read NASA Successfully Joins Sunshade to Roman Observatory’s ‘Exoskeleton’
Article 4 weeks ago Share
Details
Last Updated Mar 11, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
Nancy Grace Roman Space Telescope Dark Energy Goddard Space Flight Center Stars The Universe View the full article
-
By European Space Agency
Help us uncover the secrets of the Sun! Our Solar Orbiter spacecraft has been watching the Sun since February 2020. With five years’ worth of data waiting to be explored, it’s time to dig in. The new ‘Solar Radio Burst Tracker’ Zooniverse project is ready for you.
View the full article
-
By NASA
Technicians with ESA (European Space Agency) and Airbus installed the four solar array wings on NASA’s Orion spacecraft for Artemis II on March 3. The solar array wings, attached to the service module, deploy after Orion reaches space to power the spacecraft.
Orion’s service module provides propulsion, thermal control, and electrical power, as well as air and water for the crew during their mission around the Moon.
Each solar array wing has 15,000 solar cells to convert sunlight to electricity and is nearly 23 feet in length when fully deployed. In space, the arrays can turn on two axes to remain aligned with the Sun.
Artemis II is the first crewed mission under NASA’s Artemis campaign. Through Artemis, the agency will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
Image credit: NASA/Kim Shiflett
View the full article
-
By NASA
Credit: NASA NASA has selected Firefly Aerospace Inc. of Cedar Park, Texas, to provide the launch service for the agency’s Investigation of Convective Updrafts (INCUS) mission, which aims to understand why, when, and where tropical convective storms form, and why some storms produce extreme weather. The mission will launch on the company’s Alpha rocket from NASA’s Wallops Flight Facility in Virginia.
The selection is part of NASA’s Venture-Class Acquisition of Dedicated and Rideshare (VADR) launch services contract. This contract allows the agency to make fixed-price indefinite-delivery/indefinite-quantity awards during VADR’s five-year ordering period, with a maximum total value of $300 million across all contracts.
The INCUS mission, comprised of three SmallSats flying in tight coordination, will investigate the evolution of the vertical transport of air and water by convective storms. These storms form when rapidly rising water vapor and air create towering clouds capable of producing rain, hail, and lightning. The more air and water that rise, the greater the risk of extreme weather. Convective storms are a primary source of precipitation and cause of the most severe weather on Earth.
Each satellite will have a high frequency precipitation radar that observes rapid changes in convective cloud depth and intensities. One of the three satellites also will carry a microwave radiometer to provide the spatial content of the larger scale weather observed by the radars. By flying so closely together, the satellites will use the slight differences in when they make observations to apply a novel time-differencing approach to estimate the vertical transport of convective mass.
NASA selected the INCUS mission through the agency’s Earth Venture Mission-3 solicitation and Earth System Science Pathfinder program. The principal investigator for INCUS is Susan van den Heever at Colorado State University in Fort Collins. Several NASA centers support the mission, including Langley Research Center in Hampton, Virginia, the Jet Propulsion Laboratory in Southern California, Goddard Space Flight Center in Greenbelt, Maryland, and Marshall Space Flight Center in Huntsville, Alabama. Key satellite system components will be provided by Blue Canyon Technologies and Tendeg LLC, both in Colorado. NASA’s Launch Services Program, based at the agency’s Kennedy Space Center in Florida, manages the VADR contract.
To learn more about NASA’s INCUS mission, visit:
https://science.nasa.gov/mission/incus
-end-
Tiernan Doyle
Headquarters, Washington
202-358-1600
tiernan.doyle@nasa.gov
Patti Bielling
Kennedy Space Center, Florida
321-501-7575
patricia.a.bielling@nasa.gov
Share
Details
Last Updated Mar 04, 2025 LocationNASA Headquarters Related Terms
Investigation of Convective Updrafts (INCUS) Earth Science Planetary Science Division Science & Research Science Mission Directorate SmallSats Program Wallops Flight Facility View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.