Members Can Post Anonymously On This Site
Process Astronomical Images on Your Home Computer Just Like the Experts
-
Similar Topics
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA uses radio frequency (RF) for a variety of tasks in space, including communications. The Europa Clipper RF panel — the box with the copper wiring near the top — will send data carried by radio waves through the spacecraft between the electronics and eight antennas. Credit: NASA Even before we’re aware of heart trouble or related health issues, our bodies give off warning signs in the form of vibrations. Technology to detect these signals has ranged from electrodes and patches to watches. Now, an innovative wall-mounted technology is capable of monitoring vital signs. Advanced TeleSensors Inc. developed the Cardi/o Monitor with an exclusive license from NASA’s Jet Propulsion Laboratory in Southern California.
Over the course of five years, NASA engineers created a small, inexpensive, contactless device to measure vital signs, a challenging task partly because monitoring heart rate requires picking out motions of about one three-thousandth of an inch, which are easily swamped by other movement in the environment.
By the late 1990s, hardware and computing technology could meet the challenge, and the NASA JPL team created a prototype the size of a thick textbook. It would emit a radio beam toward a stationary person, working similarly to a radar, and algorithms differentiated cardiac and respiratory activity from the “noise” of other movements.
When Sajol Ghoshal, now CEO of Austin, Texas-based Advanced TeleSensors, participated in a demonstration of the prototype, he saw the potential for in-home monitoring. By then, developing an affordable device was possible due to the miniaturization of sensors and computing technology.
The Cardi/o vital sign monitor uses NASA-developed technology to continually monitor vital signs. The data collected can be sent directly to medical care providers, cutting down on the number of home healthcare visits. Credit: Advanced TeleSensors Inc. The Cardi/o Monitor is 3 inches square and mounts to a ceiling or wall. It can detect vital signs from up to 10 feet. Multiple devices can be scattered throughout a house, with a smartphone app controlling settings and displaying all data on a single dashboard. The algorithms NASA developed detect heartbeat and respiration, and the company added heart rate variability detection that indicates stress and sleep apnea.
If there’s an anomaly, such as a dramatic heart rate increase, an alert in the app calls attention to the situation. Up to six months of data is stored in a secure cloud, making it accessible to healthcare providers. This limits the need for regular in-person visits, which is particularly important for conditions such as infectious diseases, which can put medical professionals and other patients at risk.
Through the commercialization of this life-preserving technology, NASA is at the heart of advancing health solutions.
Read More Share
Details
Last Updated Apr 07, 2025 Related Terms
Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
2 min read NASA Cloud Software Helps Companies Find their Place in Space
Article 2 weeks ago 2 min read NASA Expertise Helps Record all the Buzz
Article 3 weeks ago 2 min read What is a NASA Spinoff? We Asked a NASA Expert: Episode 53
Article 1 month ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Jet Propulsion Laboratory – News
Solar System
View the full article
-
By European Space Agency
Week in images: 31 March - 04 April 2025
Discover our week through the lens
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s SPHEREx, which will map millions of galaxies across the entire sky, captured one of its first exposures March 27. The observatory’s six detectors each captured one of these uncalibrated images, to which visible-light colors have been added to represent infrared wavelengths. SPHEREx’s complete field of view spans the top three images; the same area of the sky is also captured in the bottom three images. NASA/JPL-Caltech Processed with rainbow hues to represent a range of infrared wavelengths, the new pictures indicate the astrophysics space observatory is working as expected.
NASA’s SPHEREx (short for Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) has turned on its detectors for the first time in space. Initial images from the observatory, which launched March 11, confirm that all systems are working as expected.
Although the new images are uncalibrated and not yet ready to use for science, they give a tantalizing look at SPHEREx’s wide view of the sky. Each bright spot is a source of light, like a star or galaxy, and each image is expected to contain more than 100,000 detected sources.
There are six images in every SPHEREx exposure — one for each detector. The top three images show the same area of sky as the bottom three images. This is the observatory’s full field of view, a rectangular area about 20 times wider than the full Moon. When SPHEREx begins routine science operations in late April, it will take approximately 600 exposures every day.
Each image in this uncalibrated SPHEREx exposure contains about 100,000 light sources, including stars and galaxies. The two insets at right zoom in on sections of one image, showcasing the telescope’s ability to capture faint, distant galaxies. These sections are processed in grayscale rather than visible-light color for ease of viewing.NASA/JPL-Caltech “Our spacecraft has opened its eyes on the universe,” said Olivier Doré, SPHEREx project scientist at Caltech and NASA’s Jet Propulsion Laboratory, both in Southern California. “It’s performing just as it was designed to.”
The SPHEREx observatory detects infrared light, which is invisible to the human eye. To make these first images, science team members assigned a visible color to every infrared wavelength captured by the observatory. Each of the six SPHEREx detectors has 17 unique wavelength bands, for a total of 102 hues in every six-image exposure.
Breaking down color this way can reveal the composition of an object or the distance to a galaxy. With that data, scientists can study topics ranging from the physics that governed the universe less than a second after its birth to the origins of water in our galaxy.
“This is the high point of spacecraft checkout; it’s the thing we wait for,” said Beth Fabinsky, SPHEREx deputy project manager at JPL. “There’s still work to do, but this is the big payoff. And wow! Just wow!”
During the past two weeks, scientists and engineers at JPL, which manages the mission for NASA, have executed a series of spacecraft checks that show all is well so far. In addition, SPHEREx’s detectors and other hardware have been cooling down to their final temperature of around minus 350 degrees Fahrenheit (about minus 210 degrees Celsius). This is necessary because heat can overwhelm the telescope’s ability to detect infrared light, which is sometimes called heat radiation. The new images also show that the telescope is focused correctly. Focusing is done entirely before launch and cannot be adjusted in space.
“Based on the images we are seeing, we can now say that the instrument team nailed it,” said Jamie Bock, SPHEREx’s principal investigator at Caltech and JPL.
How It Works
Where telescopes like NASA’s Hubble and James Webb space telescopes were designed to target small areas of space in detail, SPHEREx is a survey telescope and takes a broad view. Combining its results with those of targeted telescopes will give scientists a more robust understanding of our universe.
The observatory will map the entire celestial sky four times during its two-year prime mission. Using a technique called spectroscopy, SPHEREx will collect the light from hundreds of millions of stars and galaxies in more wavelengths any other all-sky survey telescope.
Track the real-time location of NASA’s SPHEREx space observatory using the agency’s 3D visualization tool, Eyes on the Solar System. When light enters SPHEREx’s telescope, it’s directed down two paths that each lead to a row of three detectors. The observatory’s detectors are like eyes, and set on top of them are color filters, which are like color-tinted glasses. While a standard color filter blocks all wavelengths but one, like yellow- or rose-tinted glasses, the SPHEREx filters are more like rainbow-tinted glasses: The wavelengths they block change gradually from the top of the filter to the bottom.
“I’m rendered speechless,” said Jim Fanson, SPHEREx project manager at JPL. “There was an incredible human effort to make this possible, and our engineering team did an amazing job getting us to this point.”
More About SPHEREx
The SPHEREx mission is managed by JPL for the agency’s Astrophysics Division within the Science Mission Directorate at NASA Headquarters. BAE Systems (formerly Ball Aerospace) built the telescope and the spacecraft bus. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions in the U.S., two in South Korea, and one in Taiwan. Caltech managed and integrated the instrument. Data will be processed and archived at IPAC at Caltech. The mission’s principal investigator is based at Caltech with a joint JPL appointment. The SPHEREx dataset will be publicly available at the NASA-IPAC Infrared Science Archive. Caltech manages JPL for NASA.
For more about SPHEREx, visit:
https://science.nasa.gov/mission/spherex/
News Media Contact
Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
626-808-2469
calla.e.cofield@jpl.nasa.gov
2025-045
Share
Details
Last Updated Apr 01, 2025 Related Terms
SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) Astrophysics Galaxies Origin & Evolution of the Universe The Search for Life The Universe Explore More
3 min read Discovery Alert: Four Little Planets, One Big Step
The Discovery Four rocky planets much smaller than Earth orbit Barnard’s Star, the next closest…
Article 13 hours ago 5 min read NASA Awards Astrophysics Postdoctoral Fellowships for 2025
The highly competitive NASA Hubble Fellowship Program (NHFP) recently named 24 new fellows to its…
Article 1 day ago 2 min read Hubble Spots a Chance Alignment
The subject of today’s NASA/ESA Hubble Space Telescope image is the stunning spiral galaxy NGC…
Article 4 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
Sols 4493-4494: Just Looking Around
NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on March 25, 2025 — sol 4491, or Martian day 4,491 of the Mars Science Laboratory mission — at 17:16:50 UTC. NASA/JPL-Caltech Written by Alex Innanen, atmospheric scientist at York University
Earth planning date: Wednesday, March 26, 2025
It’s my second shift of the week as the Environmental theme lead and keeper of the plan (a bit of a mouthful we shorten to ESTLK) and today started out feeling eerily similar to Monday. Once again, Curiosity is posing like a geologist, which means that once again we can’t unstow the arm and will be skipping contact science. The silver lining is that this means we have extra time to have a good look around.
The plan also looks similar to Monday’s — targeted remote sensing on the first sol before driving away, and then untargeted remote sensing on the next. On sol 4493 we start our remote sensing, almost as remote as we can get, with a suprahorizon movie looking for clouds in the south. A dust-devil survey rounds out the sol’s environmental observations, and then the geology theme group can get down to the serious business of looking at rocks. For Mastcam this means observing a group of bedrock targets all called “Observatory Trail” (one of which you can see in the middle of the image above), pointing out some interesting veins in “Point Loma,” and casting their gaze out toward “Black Butte” (which I could not think of a fun pun for…). ChemCam has a LIBS observation of “Cholla,” as well as two long-distance observations of the Texoli Butte and the boxwork structures. Our second sol is a little more restrained, as untargeted sols tend to be. But Curiosity will still have plenty of energy after a good rest. We’re taking advantage of that with an extra-long dust-devil movie. Even though we’re in our cloudy season, we still sometimes see dust lifting, and having that extra time to look out for it increases our chances of catching a wind gust or a dust devil in action. Alongside that we also have a Mastcam tau observation to keep an eye on the amount of dust in the atmosphere, and wrap up with a ChemCam AEGIS activity to autonomously choose a LIBS target.
Share
Details
Last Updated Mar 28, 2025 Related Terms
Blogs Explore More
2 min read Sols 4491-4492: Classic Field Geology Pose
Article
2 days ago
3 min read Sols 4488-4490: Progress Through the Ankle-Breaking Terrain (West of Texoli Butte, Climbing Southward)
Article
4 days ago
3 min read Sols 4486-4487: Ankle-Breaking Kind of Terrain!
Article
7 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.