Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 Min Read Celebrating 20 Years: Night Sky Network
      2023 Partial Solar Eclipse Viewing at Camino Real Marketplace with the View the Santa Barbara Astronomical Unit. Credits:
      Photo by Chuck McPartlin by Vivan White & Kat Troche of the Astronomical Society of the Pacific
      NASA’s Night Sky Network is one of the most successful and longstanding grassroots initiatives for public engagement in astronomy education. Started in 2004 with the PlanetQuest program out of the Jet Propulsion Laboratory and currently supported by NASA’s Science Activation, the Night Sky Network (NSN) plays a critical role in fostering science literacy through astronomy. By connecting NASA science and missions to support amateur astronomy clubs, NSN leverages the expertise and enthusiasm of club members, who bring this knowledge to schools, museums, observatories, and other organizations, bridging the gap between NASA science and the public. Now in its 20th year, NSN supports over 400 astronomy clubs dedicated to bringing the wonder of the night sky to their communities across the US, connecting with 7.4 million people across the United States and its territories since its inception.
      International Observe the Moon Night, September 2024 Credit: Oklahoma City Astronomy Club Humble Beginnings
      It all started with an idea – astronomy clubs already do great outreach, and club members know a lot of astronomy (shown definitively by founder Marni Berendsen’s research), and they love to talk with the public – how could NASA support these astronomy clubs in sharing current research and ideas using informal activities designed for use in the places that amateur astronomers do outreach.  Thanks to funding through NASA JPL’s PlanetQuest public engagement program, the Night Sky Network was born in 2004, with more than 100 clubs joining the first year.
      Raynham Public Observing Night, February 2004 Credit: Astronomical Society of Southern New England/Mark Gibson As quoted from the first NSN news article, “NASA is very excited to be working closely with the amateur astronomy community,” said Michael Greene, current Director for Communications and Education and former head of public engagement for JPL’s Navigator Program and PlanetQuest initiatives, “Amateurs want more people to look at the sky and understand astronomy, and so do we. Connecting what we do with our missions to the sense of wonder that comes when you look up at the stars and the planets is one of our long-term objectives. We have a strong commitment to inspiring the next generation of explorers. Lending support to the energy that the amateur astronomy community brings to students and the public will allow NASA to reach many more people.”
      Taking off like a rocket, Night Sky Network had over 100 clubs registered on their website within the first year.
      The Toolkits
      Outreach Toolkits were developed to assist clubs with their endeavors. These kits included educational materials, hands-on activities, and guides to explaining topics in an accessible way. So far, 13 toolkits have been created with topics ranging from the scale of the universe to how telescopes work. To qualify for these free Toolkits, clubs must be active in their communities, hosting two outreach events every three months or five outreach events within a calendar year. Supplemental toolkits were also created based on special events, such as the solar eclipses and the 50th anniversary of Apollo’s Moon landing. A new toolkit is in development to teach audiences about solar science, and NSN is on track to support clubs well into the future.
      Rye Science Day, October 2014 Credit: Southern Colorado Astronomical Society/Malissa Pacheco NSN also hosts archived video trainings on these toolkits and other topics via its YouTube channel and a monthly webinar series with scientists from various institutions worldwide. Lastly, a monthly segment called Night Sky Notes is produced for clubs to share with their audiences via newsletters and mailing lists.
      Sharing the Universe
      In 2007, a National Science Foundation grant provided funding for further research into astronomy club needs. From that came three resources for clubs – the Growing Your Astronomy Club and Getting Started with Outreach video series, as well as an updated website with a national calendar and club and event coordination. Now you can find hundreds of events each month across the country, including virtual events that you can join from anywhere.
      Night Sky Network: Current and Future
      Map of Night Sky Network clubs within the United States, as of November 2024 Credit: Night Sky Network/Google Maps View the full article
    • By Amazing Space
      'Twas the Night Before Christmas: A Star Trek TNG Holiday Special 🎄🖖
    • By NASA
      Scientists find that cometary dust affects interpretation of spacecraft measurements, reopening the case for comets like 67P as potential sources of water for early Earth. 
      Researchers have found that water on Comet 67P/Churyumov–Gerasimenko has a similar molecular signature to the water in Earth’s oceans. Contradicting some recent results, this finding reopens the case that Jupiter-family comets like 67P could have helped deliver water to Earth.  
      Water was essential for life to form and flourish on Earth and it remains central for Earth life today. While some water likely existed in the gas and dust from which our planet materialized around 4.6 billion years ago, much of the water would have vaporized because Earth formed close to the Sun’s intense heat. How Earth ultimately became rich in liquid water has remained a source of debate for scientists.
      Research has shown that some of Earth’s water originated through vapor vented from volcanoes; that vapor condensed and rained down on the oceans. But scientists have found evidence that a substantial portion of our oceans came from the ice and minerals on asteroids, and possibly comets, that crashed into Earth. A wave of comet and asteroid collisions with the solar system’s inner planets 4 billion years ago would have made this possible.   
      This image, taken by ESA’s Rosetta navigation camera, was taken from a about 53 miles from the center of Comet 67P/Churyumov-Gerasimenko on March 14, 2015. The image resolution is 24 feet per pixel and is cropped and processed to bring out the details of the comet’s activity. ESA/Rosetta/NAVCAM While the case connecting asteroid water to Earth’s is strong, the role of comets has puzzled scientists. Several measurements of Jupiter-family comets — which contain primitive material from the early solar system and are thought to have formed beyond the orbit of Saturn — showed a strong link between their water and Earth’s. This link was based on a key molecular signature scientists use to trace the origin of water across the solar system.
      This signature is the ratio of deuterium (D) to regular hydrogen (H) in the water of any object, and it gives scientists clues about where that object formed. Deuterium is a rare, heavier type — or isotope — of hydrogen. When compared to Earth’s water, this hydrogen ratio in comets and asteroids can reveal whether there’s a connection.  
      Because water with deuterium is more likely to form in cold environments, there’s a higher concentration of the isotope on objects that formed far from the Sun, such as comets, than in objects that formed closer to the Sun, like asteroids. 
      Measurements within the last couple of decades of deuterium in the water vapor of several other Jupiter-family comets showed similar levels to Earth’s water. 
      “It was really starting to look like these comets played a major role in delivering water to Earth,” said Kathleen Mandt, planetary scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Mandt led the research, published in Science Advances on Nov. 13, that revises the abundance of deuterium in 67P. 

      About Kathleen Mandt

      But in 2014, ESA’s (European Space Agency) Rosetta mission to 67P challenged the idea that Jupiter-family comets helped fill Earth’s water reservoir. Scientists who analyzed Rosetta’s water measurements found the highest concentration of deuterium of any comet, and about three times more deuterium than there is in Earth’s oceans, which have about 1 deuterium atom for every 6,420 hydrogen atoms.  
      “It was a big surprise and it made us rethink everything,” Mandt said.  
      Mandt’s team decided to use an advanced statistical-computation technique to automate the laborious process of isolating deuterium-rich  water in more than 16,000 Rosetta measurements. Rosetta made these measurements in the “coma” of gas and dust surrounding 67P. Mandt’s team, which included Rosetta scientists, was the first to analyze all of the European mission’s water measurements spanning the entire mission. 
      The researchers wanted to understand what physical processes caused the variability in the hydrogen isotope ratios measured at comets. Lab studies and comet observations showed that cometary dust could affect the readings of the hydrogen ratio that scientists detect in comet vapor, which could change our understanding of where comet water comes from and how it compares to Earth’s water. 
      What are comets made of? It’s one of the questions ESA’s Rosetta mission to comet 67P/Churyumov-Gerasimenko wanted to answer. “So I was just curious if we could find evidence for that happening at 67P,” Mandt said. “And this is just one of those very rare cases where you propose a hypothesis and actually find it happening.” 
      Indeed, Mandt’s team found a clear connection between deuterium measurements in the coma of 67P and the amount of dust around the Rosetta spacecraft, showing that the measurements taken near the spacecraft in some parts of the coma may not be representative of the composition of a comet’s body.  
      As a comet moves in its orbit closer to the Sun, its surface warms up, causing gas to release from the surface, including dust with bits of water ice on it. Water with deuterium sticks to dust grains more readily than regular water does, research suggests. When the ice on these dust grains is released into the coma, this effect could make the comet appear to have more deuterium than it has.  
      Mandt and her team reported that by the time dust gets to the outer part of the coma, at least 75 miles from the comet body, it is dried out. With the deuterium-rich water gone, a spacecraft can accurately measure the amount of deuterium coming from the comet body.
      This finding, the paper authors say, has big implications not only for understanding comets’ role in delivering Earth’s water, but also for understanding comet observations that provide insight into the formation of the early solar system.  
      “This means there is a great opportunity to revisit our past observations and prepare for future ones so we can better account for the dust effects,” Mandt said. 
      By Lonnie Shekhtman
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Explore More
      9 min read Towards Autonomous Surface Missions on Ocean Worlds


      Article


      31 mins ago
      1 min read Coming Spring 2025: Planetary Defenders Documentary
      ow would humanity respond if we discovered an asteroid headed for Earth? NASA’s Planetary Defenders…


      Article


      52 mins ago
      5 min read What’s Up: December 2024 Skywatching Tips from NASA


      Article


      1 day ago
      Share








      Details
      Last Updated Dec 03, 2024 Editor Lonnie Shekhtman Contact Lonnie Shekhtman lonnie.shekhtman@nasa.gov Location Goddard Space Flight Center Related Terms
      Comets Goddard Space Flight Center Planetary Science Planetary Science Division Rosetta Science Mission Directorate The Solar System View the full article
    • By NASA
      4 min read
      December’s Night Sky Notes: Spot the King of Planets
      by Kat Troche of the Astronomical Society of the Pacific
      Jupiter is our solar system’s undisputed king of the planets! Jupiter is bright and easy to spot from our vantage point on Earth, helped by its massive size and banded, reflective cloud tops. Jupiter even possesses moons the size of planets: Ganymede, its largest, is bigger than the planet Mercury. What’s more, you can easily observe Jupiter and its moons with a modest instrument, just like Galileo did over 400 years ago.
      This image taken on Feb. 7 by NASA’s Juno spacecraft, reveals swirling cloud formations in the northern area of Jupiter’s north temperate belt. Citizen scientist Kevin M. Gill processed the image using data from the JunoCam imager. NASA, JPL-Caltech, SwRI, MSSS | Image processing by Kevin M. Gill, © CC BY Jupiter’s position as our solar system’s largest planet is truly earned; you could fit 11 Earths along Jupiter’s diameter, and in case you were looking to fill up Jupiter with some Earth-size marbles, you would need over 1300 Earths to fill it up – and that would still not be quite enough! However, despite its formidable size, Jupiter’s true rule over the outer solar system comes from its enormous mass. If you took all of the planets in our solar system and put them together, they would still only be half as massive as Jupiter all by itself. Jupiter’s mighty mass has shaped the orbits of countless comets and asteroids. Its gravity can fling these tiny objects towards our inner solar system and also draw them into itself, as famously observed in 1994 when Comet Shoemaker-Levy 9, drawn towards Jupiter in previous orbits, smashed into the gas giant’s atmosphere. Its multiple fragments slammed into Jupiter’s cloud tops with such violence that the fireballs and dark impact spots were not only seen by NASA’s orbiting Galileo probe but also by observers back on Earth! 
      Look for Jupiter near the Eye of the Bull, Aldebaran, in the Taurus constellation on the evening of December 15, 2024. Binoculars may help you spot Jupiter’s moons as small bright star-like objects on either side of the planet. A small telescope will show them easily, along with Jupiter’s famed cloud bands. How many can you count? Credit: Stellarium Web Jupiter is easy to observe at night with our unaided eyes, as well-documented by the ancient astronomers who carefully recorded its slow movements from night to night. It can be one of the brightest objects in our nighttime skies, bested only by the Moon, Venus, and occasionally Mars, when the red planet is at opposition. That’s impressive for a planet that, at its closest to Earth, is still over 365 million miles (587 million km) away. It’s even more impressive that the giant world remains very bright to Earthbound observers at its furthest distance: 600 million miles (968 million km)! While the King of Planets has a coterie of 95 known moons, only the four large moons that Galileo originally observed in 1610 – Io, Europa, Ganymede, and Calisto – can be easily observed by Earth-based observers with very modest equipment. These are called, appropriately enough, the Galilean moons. Most telescopes will show the moons as faint star-like objects neatly lined up close to bright Jupiter. Most binoculars will show at least one or two moons orbiting the planet. Small telescopes will show all four of the Galilean moons if they are all visible, but sometimes they can pass behind or in front of Jupiter or even each other. Telescopes will also show details like Jupiter’s cloud bands and, if powerful enough, large storms like its famous Great Red Spot, and the shadows of the Galilean moons passing between the Sun and Jupiter. Sketching the positions of Jupiter’s moons during the course of an evening – and night to night – can be a rewarding project! You can download an activity guide from the Astronomical Society of the Pacific at bit.ly/drawjupitermoons
      Now in its eighth year, NASA’s Juno mission is one of just nine spacecraft to have visited this impressive world. Juno entered Jupiter’s orbit in 2016 to begin its initial mission to study this giant world’s mysterious interior. The years have proven Juno’s mission a success, with data from the probe revolutionizing our understanding of this gassy world’s guts. Juno’s mission has since been extended to include the study of its large moons, and since 2021 the plucky probe, increasingly battered by Jupiter’s powerful radiation belts, has made close flybys of the icy moons Ganymede and Europa, along with volcanic Io. What else will we potentially learn in 2030 with the Europa Clipper mission? 
      Find the latest discoveries from Juno and NASA’s missions to Jupiter at science.nasa.gov/jupiter/
      Originally posted by Dave Prosper: February 2023
      Last Updated by Kat Troche: November 2024
      View the full article
    • By European Space Agency
      Video: 00:09:09 On 12 November 2014, after a ten-year journey through the Solar System and over 500 million kilometres from home, Rosetta’s lander Philae made space exploration history by touching down on a comet for the first time. On the occasion of the tenth anniversary of this extraordinary feat, we celebrate by taking a look back over the mission's highlights.
      Rosetta was an ESA mission with contributions from its Member States and NASA. It studied Comet 67P/Churyumov-Gerasimenko for over two years, including delivering lander Philae to the comet’s surface. Philae was provided by a consortium led by DLR, MPS, CNES and ASI.
      read the article Philae’s extraordinary comet landing relived.
      View the full article
  • Check out these Videos

×
×
  • Create New...