Jump to content

NASA to Launch Sounding Rockets into Moon’s Shadow During Solar Eclipse


NASA

Recommended Posts

  • Publishers

5 min read

NASA to Launch Sounding Rockets into Moon’s Shadow During Solar Eclipse

NASA will launch three sounding rockets during the total solar eclipse on April 8, 2024, to study how Earth’s upper atmosphere is affected when sunlight momentarily dims over a portion of the planet.

The Atmospheric Perturbations around Eclipse Path (APEP) sounding rockets will launch from NASA’s Wallops Flight Facility in Virginia to study the disturbances in the ionosphere created when the Moon eclipses the Sun. The sounding rockets had been previously launched and successfully recovered from White Sands Test Facility in New Mexico, during the October 2023 annular solar eclipse. They have been refurbished with new instrumentation and will be relaunched in April 2024. The mission is led by Aroh Barjatya, a professor of engineering physics at Embry-Riddle Aeronautical University in Florida, where he directs the Space and Atmospheric Instrumentation Lab.

A group of people wearing blue jackets pose for the picture. They stand inside a tall, industrial room. Three silver rockets are behind them.
This photo shows the three APEP sounding rockets and the support team after successful assembly. The team lead, Aroh Barjatya, is at the top center, standing next to the guardrails on the second floor.
NASA/Berit Bland

The sounding rockets will launch at three different times: 45 minutes before, during, and 45 minutes after the peak local eclipse. These intervals are important to collect data on how the Sun’s sudden disappearance affects the ionosphere, creating disturbances that have the potential to interfere with our communications.

This conceptual animation is an example of what observers might expect to see during a total solar eclipse, like the one happening over the United States on April 8, 2024.
NASA’s Scientific Visualization Studio.

The ionosphere is a region of Earth’s atmosphere that is between 55 to 310 miles (90 to 500 kilometers) above the ground. “It’s an electrified region that reflects and refracts radio signals, and also impacts satellite communications as the signals pass through,” said Barjatya. “Understanding the ionosphere and developing models to help us predict disturbances is crucial to making sure our increasingly communication-dependent world operates smoothly.”

The ionosphere forms the boundary between Earth’s lower atmosphere – where we live and breathe – and the vacuum of space. It is made up of a sea of particles that become ionized, or electrically charged, from the Sun’s energy, or solar radiation. When night falls, the ionosphere thins out as previously ionized particles relax and recombine back into neutral particles. However, Earth’s terrestrial weather and space weather can impact these particles, making it a dynamic region and difficult to know what the ionosphere will be like at a given time. 

A cartoon Earth becomes shadowed as it turns from day to night, to day again. Red swirls sweep across the planet when it's daytime. Satellites orbit around the planet.
An animation depicts changes in the ionosphere over a 24-hour period. The red and yellow swaths represent high-density ionized particles during the day. The purple dots represent neutral, relaxed particles at night.
NASA/Krystofer Kim

It’s often difficult to study short-term changes in the ionosphere during an eclipse with satellites because they may not be at the right place or time to cross the eclipse path. Since the exact date and times of the total solar eclipse are known, NASA can launch targeted sounding rockets to study the effects of the eclipse at the right time and at all altitudes of the ionosphere.

As the eclipse shadow races through the atmosphere, it creates a rapid, localized sunset that triggers large-scale atmospheric waves and small-scale disturbances, or perturbations. These perturbations affect different radio communication frequencies. Gathering the data on these perturbations will help scientists validate and improve current models that help predict potential disturbances to our communications, especially high frequency communication. 

A map of the U.S. on a graph. The map is covered with light green, teal, and yellow dots. As the path of the Moon's shadow sweeps from the northwest US to the southeast US, the dots changed to a dark blue color.
The animation depicts the waves created by ionized particles during the 2017 total solar eclipse.
MIT Haystack Observatory/Shun-rong Zhang. Zhang, S.-R., Erickson, P. J., Goncharenko, L. P., Coster, A. J., Rideout, W. & Vierinen, J. (2017). Ionospheric Bow Waves and Perturbations Induced by the 21 August 2017 Solar Eclipse. Geophysical Research Letters, 44(24), 12,067-12,073. https://doi.org/10.1002/2017GL076054.

The APEP rockets are expected to reach a maximum altitude of 260 miles (420 kilometers). Each rocket will measure charged and neutral particle density and surrounding electric and magnetic fields. “Each rocket will eject four secondary instruments the size of a two-liter soda bottle that also measure the same data points, so it’s similar to results from fifteen rockets, while only launching three,” explained Barjatya. Three secondary instruments on each rocket were built by Embry-Riddle, and the fourth one was built at Dartmouth College in New Hampshire.

In addition to the rockets, several teams across the U.S. will also be taking measurements of the ionosphere by various means. A team of students from Embry-Riddle will deploy a series of high-altitude balloons. Co-investigators from the Massachusetts Institute of Technology’s Haystack Observatory in Massachusetts, and the Air Force Research Laboratory in New Mexico, will operate a variety of ground-based radars taking measurements. Using this data, a team of scientists from Embry-Riddle and Johns Hopkins University Applied Physics Laboratory are refining existing models. Together, these various investigations will help provide the puzzle pieces needed to see the bigger picture of ionospheric dynamics.

A sounding rocket is able to carry science instruments between 30 and 300 miles above Earth’s surface. These altitudes are typically too high for science balloons and too low for satellites to access safely, making sounding rockets the only platforms that can carry out direct measurements in these regions.
NASA’s Goddard Space Flight Center

When the APEP sounding rockets launched during the 2023 annular solar eclipse, scientists saw a sharp reduction in the density of charged particles as the annular eclipse shadow passed over the atmosphere. “We saw the perturbations capable of affecting radio communications in the second and third rockets, but not during the first rocket that was before peak local eclipse” said Barjatya. “We are super excited to relaunch them during the total eclipse, to see if the perturbations start at the same altitude and if their magnitude and scale remain the same.”

The next total solar eclipse over the contiguous U.S. is not until 2044, so these experiments are a rare opportunity for scientists to collect crucial data.

The APEP launches will be live streamed via NASA’s Wallops’ official YouTube page and featured in NASA’s official broadcast of the total solar eclipse. The public can also watch the launches in person from 1-4 p.m. at the NASA Wallops Flight Facility Visitor Center.

By Desiree Apodaca
NASA’s Goddard Space Flight Center, Greenbelt, Md.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      El viceministro de Políticas para la Defensa del Ministerio de Defensa de Perú, César Medardo Torres Vega, el administrador de la NASA, Bill Nelson, y el director de la Comisión Nacional de Investigación y Desarrollo Aeroespacial del Perú (CONIDA), mayor general Roberto Melgar Sheen, se reúnen en Lima, Perú, el 14 de noviembre de 2024, donde EE. UU. y Perú firmaron un memorando de entendimiento acordando estudiar una potencial campaña de cohetes sonda.Crédito: Embajada de EE. UU. en Perú Read this release in English here.
      La NASA y la Comisión Nacional de Investigación y Desarrollo Aeroespacial del Perú (CONIDA) sentaron las bases para una posible campaña de varios años de duración para el lanzamiento de pequeños cohetes científicos desde Perú, conjuntamente con Estados Unidos.
      Ambos países firmaron el jueves un memorando de entendimiento no vinculante que incluye capacitación en seguridad, un estudio de factibilidad conjunto para la posible campaña, y asistencia técnica para CONIDA en lanzamientos de cohetes sonda. Los cohetes sonda son pequeños cohetes de bajo costo que proporcionan acceso suborbital al espacio.
      “Estamos entusiasmados de analizar la posibilidad de lanzar nuevamente cohetes sonda desde Perú”, dijo el administrador de la NASA, Bill Nelson, quien firmó en nombre de Estados Unidos. “Este acuerdo profundiza nuestra colaboración internacional con Perú y la investigación científica que llevamos a cabo debido a la ubicación del país en el ecuador magnético. Juntos iremos más lejos”.
      El mayor general Roberto Melgar Sheen, jefe institucional de CONIDA, firmó en nombre de Perú. Brian Nichols, subsecretario de Asuntos del Hemisferio Occidental del Departamento de Estado de EE. UU., y Stephanie Syptak-Ramnath, embajadora de EE. UU. en Perú, también participaron, entre otros funcionarios peruanos. El evento tuvo lugar durante la semana del Foro de Cooperación Económica Asia-Pacífico que comenzó el 9 de noviembre en Lima.
      Durante su visita a Perú, Nelson también discutió la importancia de las asociaciones y la colaboración internacionales en el espacio y celebró la firma de los Acuerdos Artemis por parte de Perú a principios de este año.
      Estados Unidos y Perú tienen una larga historia de cooperación espacial. La NASA llevó a cabo campañas de cohetes sonda en la base de lanzamiento Punta Lobos de CONIDA en 1975 y 1983.
      La NASA utiliza cohetes sonda para transportar instrumentos científicos al espacio en vuelos suborbitales para recopilar importantes datos científicos y poner a prueba prototipos de instrumentos. Con ellos se obtienen datos de incalculable valor que mejoran nuestra comprensión de la atmósfera y el clima de la Tierra, nuestro sistema solar y el universo, y se ponen a prueba equipamientos para viajes espaciales más profundos.
      Comprender la atmósfera de la Tierra y cómo es influenciada por el Sol es crucial para proteger los recursos terrestres y espaciales de los que dependemos todos los días, desde la red eléctrica hasta los datos meteorológicos e incluso la navegación.
      Para obtener más información sobre las asociaciones internacionales de la NASA (en inglés), visita:
      https://www.nasa.gov/oiir
      -fin-
      Meira Bernstein / Elizabeth Shaw
      Headquarters, Washington
      202-358-1600
      meira.b.bernstein@nasa.gov / elizabeth.a.shaw@nasa.gov
      Share
      Details
      Last Updated Nov 14, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Office of International and Interagency Relations (OIIR) Artemis Accords Sounding Rockets View the full article
    • By NASA
      Credit: NASA NASA, on behalf of the National Oceanic and Atmospheric Administration (NOAA), has selected Southwest Research Institute of San Antonio to build three coronagraphs for the Lagrange 1 Series project, part of NOAA’s Space Weather Next program.
      Once operational, the coronagraphs will provide critical data to NOAA’s Space Weather Prediction Center, which issues forecasts, warnings, and alerts that help mitigate space weather impacts, including electric power outages and interruption to communications and navigation systems.
      This cost-plus-fixed-fee contract is valued at approximately $60 million, and the anticipated period of performance is from this November through January 2034, concluding after launch of the second coronagraph aboard a NOAA spacecraft. The third coronagraph will be delivered as a flight spare.
      This contract award marks a transfer of coronagraph development from the government to the U.S. commercial sector. The contract scope includes design, analysis, development, fabrication, integration, test, verification, and evaluation of the      coronagraphs; launch support; supply and maintenance of ground support equipment; and support of post-launch instrument operations at the NOAA Satellite Operations Facility. The work will take place at Southwest Research Institute’s facility in San Antonio.
      The coronagraphs will observe the density structure of the Sun’s faint outermost atmosphere — the corona — and will detect Earth-directed coronal mass ejections shortly after they erupt, providing the longest possible lead time for geomagnetic storm watches. With this forewarning, public and private organizations affected by space weather can take actions to protect their assets. The coronagraphs will also provide data continuity from the Space Weather follow-on Lagrange 1 mission.
      NASA and NOAA oversee the development, launch, testing and operation of all the satellites in the project. NOAA is the program owner providing the requirements and funding along with managing the program, operations, data products, and dissemination to users. NASA and its commercial partners develop and build the instruments, spacecraft, and provide launch services on behalf of NOAA.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Abbey Donaldson
      Headquarters, Washington
      202-358-1600
      Abbey.a.donaldson@nasa.gov
      Jeremy Eggers
      Goddard Space Flight Center, Greenbelt, Md.
      757-824-2958
      jeremy.l.eggers@nasa.gov
      View the full article
    • By NASA
      Johnson Space Center Vibration Test FacilityNASA Nov. 14, 2024
      NASA Johnson Invites Proposals to Lease Vibration Test Facility
      NASA’s Johnson Space Center is seeking proposals for the use of its historic, but underused, Vibration and Acoustic Test Facility. Prospective tenants must submit facility walk-through requests by Monday, Nov. 18.
      Final proposals are due by 12 p.m. EST Monday, Dec. 16, and must promote activities that will build, expand, modernize, or operate aerospace-related capabilities at NASA Johnson and help preserve the historic and iconic building through preservation and adaptive reuse.
      NASA plans to sign a National Historic Preservation Act (NHPA) lease agreement for the facility, also known as Building 49, for a five-year base period and one five-year extension to be negotiated between NASA and the tenant. To request a walk-through, send an email to hq-realestate@mail.nasa.gov.
      “This historic facility has been used for decades to ensure the success and safety of all human spaceflight missions by putting engineering designs and hardware to the ultimate stress tests,” said NASA Johnson Director Vanessa Wyche. “For more than 60 years, NASA Johnson has been the hub of human space exploration and this agreement will be a vital part of the center’s efforts to develop a robust and durable space economy that refines our understanding of the solar system and space exploration.”
      All proposals must adhere to the guidelines detailed in the Agency Announcement for Proposals describing concept plans for development of the property, including any modifications proposed to the building; a statement of financial capability to successfully achieve and sustain operations, demonstrated experience with aerospace-related services or other space-related activities, and a detailed approach to propelling the space economy.
      The nine-story building complex has a gross square footage of 62,737 square feet and consists of a north wing measuring 62 feet long, 268 feet wide and 106 feet tall, and a central wing about 64 feet long and 115 feet wide. Building 49 currently houses five laboratories, including the General Vibration Laboratory, Modal Operations Laboratory, Sonic Fatigue Laboratory, Spacecraft Acoustic Laboratory, and Spacecraft Vibration Laboratory. The south administrative portion of the building is not included in the property offered for lease. 
      As the home of Mission Control Center for the agency’s human space missions, astronaut training, robotics, human health and space medicine, NASA Johnson leads the way for the human exploration. Leveraging its unique role and location, the center is developing multiple lease agreements, including the recently announced Exploration Park, to sustain its key role in helping the human spaceflight community foster a robust space.
      In the coming years, NASA and its academic, commercial, and international partners will see the completion of the International Space Station Program, the commercial development of low Earth orbit, and the first human Artemis campaign missions establishing sustainable human presence on the Moon in preparation for human missions to Mars.
      Johnson already is leading the commercialization of space with the commercial cargo and crew programs and private astronaut missions to the space station. The center also is supporting the development of commercial space stations in low Earth orbit, and lunar-capable commercial spacesuits and lunar landers that will be provided as services to both NASA and the private sector to accelerate human access to space. Through the development of Exploration Park, the center will broaden the scope of the human spaceflight community that is tackling the many difficult challenges ahead.
      Learn more about NASA Johnson’s efforts to collaborate with industry partners:
      https://www.nasa.gov/johnson/frontdoor
      -end-
      Kelly Humphries
      Johnson Space Center, Houston
      281-483-5111
      kelly.o.humphries@nasa.gov
      View the full article
    • By NASA
      Peru’s Vice Minister of Defense Policies for Ministry of Defense César Medardo Torres Vega, NASA Administrator Bill Nelson, and Director of Peru’s National Commission for Aerospace Research and Development (CONIDA) Maj. Gen. Roberto Melgar Sheen meet in Lima, Peru, Nov. 14, 2024, where the U.S. and Peru signed a memorandum of understanding agreeing to study a potential sounding rocket campaign.Credit: U.S. Embassy Peru NASA and Peru’s National Commission for Aerospace Research and Development (CONIDA) laid the groundwork for a potential multi-year scientific rocket launch campaign in the South American country.
      Both countries signed a non-binding memorandum of understanding Thursday that includes safety training, a joint feasibility study for the potential campaign, and technical assistance for CONIDA on sounding rocket launches. Sounding rockets are small, low-cost rockets that provide suborbital access to space.
      “We are excited to look at the possibility of once again launching sounding rockets from Peru,” said NASA Administrator Bill Nelson, who signed on behalf of the United States. “This agreement deepens our international partnership with Peru and the scientific research we conduct because of the country’s location along the magnetic equator. Together we will go farther.” 
      Maj. Gen. Roberto Melgar Sheen, head of CONIDA, signed on behalf of Peru. Brian Nichols, assistant secretary for Western Hemisphere Affairs for the U.S. State Department, and Stephanie Syptak-Ramnath, U.S. ambassador to Peru, also participated, among other Peruvian officials. The event took place during the week of the Asia-Pacific Economic Cooperation forum beginning Nov. 9 in Lima.
      During his visit to Peru, Nelson also discussed the importance of international partnerships and collaboration in space and celebrated Peru’s signing of the Artemis Accords earlier this year.
      The United States and Peru have a long history of space cooperation. NASA conducted sounding rocket campaigns at CONIDA’s Punta Lobos launch base in 1975 and 1983.
      NASA uses sounding rockets to carry scientific instruments into space on suborbital flights to collect important science data and test prototype instruments. They yield invaluable data that enhance our understanding of Earth’s atmosphere and weather, our solar system, and the universe, and test equipment for deeper space travel.
      Understanding our Earth’s atmosphere and how it is influenced by the Sun is crucial to protecting ground and space-based assets that we rely on every day, from the power grid to weather data and even navigation. 
      For more information about NASA’s international partnerships, visit:
      https://www.nasa.gov/oiir
      -end-
      Meira Bernstein / Elizabeth Shaw
      Headquarters, Washington
      202-358-1600
      meira.b.bernstein@nasa.gov / elizabeth.a.shaw@nasa.gov
      Share
      Details
      Last Updated Nov 14, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Office of International and Interagency Relations (OIIR) Sounding Rockets View the full article
    • By NASA
      In the unforgiving lunar environment, the possibility of an astronaut crewmember becoming incapacitated due to unforeseen circumstances (injury, medical emergency, or a mission-related accident) is a critical concern, starting with the upcoming Artemis III mission, where two astronaut crewmembers will explore the Lunar South Pole. The Moon’s surface is littered with rocks ranging from 0.15 to 20 meters in diameter and craters spanning 1 to 30 meters wide, making navigation challenging even under optimal conditions. The low gravity, unique lighting conditions, extreme temperatures, and availability of only one person to perform the rescue, further complicate any rescue efforts. Among the critical concerns is the safety of astronauts during Extravehicular Activities (EVAs). If an astronaut crewmember becomes incapacitated during a mission, the ability to return them safely and promptly to the human landing system is essential. A single crew member should be able to transport an incapacitated crew member distances up to 2 km and a slope of up to 20 degrees on the lunar terrain without the assistance of a lunar rover. This pressing issue opens the door for innovative solutions. We are looking for a cutting-edge design that is low in mass and easy to deploy, enabling one astronaut crewmember to safely transport their suited (343 kg (~755lb)) and fully incapacitated partner back to the human landing system. The solution must perform effectively in the Moon’s extreme South Pole environment and operate independently of a lunar rover. Your creativity and expertise could bridge this critical gap, enhancing the safety measures for future lunar explorers. By addressing this challenge, you have the opportunity to contribute to the next “giant leap” in human space exploration.
      Award: $45,000 in total prizes
      Open Date: November 14, 2024
      Close Date: January 23, 2025
      For more information, visit: https://www.herox.com/NASASouthPoleSafety
      View the full article
  • Check out these Videos

×
×
  • Create New...