Jump to content

Partnerships that Prepare for Success: The Research Institution Perspective on the M-STTR Initiative


NASA

Recommended Posts

  • Publishers
3 Min Read

Partnerships that Prepare for Success: The Research Institution Perspective on the M-STTR Initiative

Professor with students at Oakwood University
Dr. Darayas Patel (left), professor of mathematics and computer science at Oakwood University, and four Oakwood University students record data related to their NASA STTR research.
Credits: Oakwood University

Editor’s Notes (March 2024): Oakwood University and its small business partner—SSS Optical Technologies, LLCwere awarded a STTR Phase II in November 2023 to continue their work. Also in 2023, M-STTR awards became part of what is now MPLAN.

In 2022, Oakwood University, a Historically Black College based in Huntsville, Alabama, became a first-time research institution participant in NASA’s Small Business Technology Transfer (STTR) program. Partnering with SSS Optical Technologies, LLC (SSSOT) of Huntsville, Alabama, the team received a 2022 Phase I award to develop UV protective coating for photovoltaic solar cells in space. The PANDA (Polymer Anti-damage Nanocomposite Down-converting Armor) technology could be used to protect solar cells, which convert sunlight into energy but can suffer damage from UV rays.

Prior to this STTR award, Oakwood University and SSSOT prepared for the solicitation by participating in a pilot NASA opportunity. In 2021, NASA launched the M-STTR initiative for Minority-Serving Institutions (MSIs) to propose for Small Business Technology Transfer (STTR) research planning grants. The program is a partnership between NASA’s Space Technology Mission Directorate (STMD) and NASA’s Office of STEM Engagement’s Minority University Research and Education Project (MUREP).

The 2021 solicitation resulted in 11 selected proposals to receive M-STTR planning grants—six from Historically Black Colleges and Universities (HBCUs) and five from Hispanic Serving Institutions (HSIs). Oakwood University was among the selected research institution teams; with its grant, the university developed a partnership with SSSOT.

Dr. Darayas Patel, professor of mathematics and computer science at Oakwood University, shared the university perspective on how the M-STTR program helped the team form a partnership and prepare for the 2022 STTR solicitation. Dr. Patel is supporting the Phase I STTR contract, which is the university’s first time working with the SBIR/STTR program. Prior to the NASA STTR award, Oakwood University has received grants from other government agencies, including the Department of Defense and the National Science Foundation. Oakwood University also has past involvement in NASA’s MUREP program, which helps engage, fund, and connect underserved university communities. Learning about opportunities from the MUREP network, the Oakwood University team proposed to the pilot M-STTR program, working together with SSSOT on photovoltaic solar cell technology.

“M-STTR helped us solidify the collaboration with SSSOT by focusing our team on specific, tangible goals.”

Dr. Darayas Patel

Dr. Darayas Patel

Professor at Oakwood University

Oakwood University and SSSOT formed a partnership based on Dr. Patel’s existing relationship with SSSOT’s founder Dr. Sergey Sarkisov, who was on Dr. Patel’s Ph.D. committee at Alabama A&M University. According to Dr. Patel, the M-STTR grant allowed the team to generate preliminary data about the solar cell technology that would later be proposed for the 2022 STTR award. In addition to providing supplementary data for the STTR solicitation, Dr. Patel said, “M-STTR helped us solidify the collaboration with SSSOT by focusing our team on specific, tangible goals.” The result was a more unified team with a defined action plan for approaching the STTR proposal.

When asked what advice he had for other research institutions interested in participating in the NASA SBIR/STTR program, Dr. Patel shared, “Keep your eyes wide open and try to reach out to nearby small businesses interested in transferring your technology to the market. And remember: it should line up with what NASA is looking for.” From working with NASA on these initiatives, Dr. Patel says he has broadened his network within the NASA community, which helps him stay informed of future opportunities.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      In partnership with the Air Force Research Laboratory, the United States Space Force is currently accepting proposals for USSF University Consortium/Space Strategic Technology Institute 4, focused on Advanced Remote Sensing.
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Coastal locations, such as Drakes Bay on the Point Reyes peninsula in Northern California, are increasingly vulnerable to sea level rise.NOAA/NMFS/WCR/CCO The information will help people who live in coastal areas prepare for impacts caused by rising sea levels.
      Earth’s ocean is rising, disrupting livelihoods and infrastructure in coastal communities around the world. Agencies and organizations are working to prepare people as their world changes around them, and NASA information is helping these efforts.
      The agency’s global data is now available in the sea level section of the Earth Information Center. NASA developed the global sea level change website in collaboration with the U.S. Department of Defense, the World Bank, the U.S. Department of State, and the United Nations Development Programme.  
      The site includes information on projected sea level rise through the year 2150 for coastlines around the world, as well as estimates of how much flooding a coastal community or region can expect to see in the next 30 years. The projections come from data collected by NASA and its partners and from computer models of ice sheets and the ocean, as well as the latest sea level assessment from the Intergovernmental Panel on Climate Change, and other sources.
      “NASA innovates for the benefit of humanity. Our cutting-edge instruments and data-driven information tools help communities and organizations respond to natural hazards and extreme weather, and inform critical coastal infrastructure planning decisions,” said Karen St. Germain, director of the Earth science division at NASA Headquarters in Washington.
      Information to Action
      International organizations such as the World Bank will use the data from the global sea level change site for tasks including the creation of Climate Risk Profiles for countries especially vulnerable to sea level rise.
      The Defense Department will continue to incorporate sea level rise data into its plans to anticipate and respond to hazards posed to its facilities by the effects of rising oceans. Similarly, the State Department uses the information for activities ranging from disaster preparedness to long-term adaptation planning to supporting partners around the world in related efforts.
      “We are at a moment of truth in our fight against the climate crisis. The science is unequivocal and must serve as the bedrock upon which decision-making is built. With many communities around the world already facing severe impacts from sea-level rise, this new resource provides a vital tool to help them protect lives and livelihoods. It also illustrates what is at stake between a 1.5-degree-Celsius world and a current-policies trajectory for all coastal communities worldwide,” said Assistant Secretary-General Selwin Hart, special adviser to the United Nations secretary-general on climate action and just transition.
      Rising Faster
      NASA-led data analyses have revealed that between 1970 and 2023, 96% of countries with coastlines have experienced sea level rise. The rate of that global rise has also accelerated, more than doubling from 0.08 inches (0.21 centimeters) per year in 1993 to about 0.18 inches (0.45 centimeters) per year in 2023.
      As the rate of sea level rise increases, millions of people could face the related effects sooner than previously projected, including larger storm surges, more saltwater intrusion into groundwater, and additional high-tide flood days — also known as nuisance floods or sunny day floods.
      “This new platform shows the timing of future floods and the magnitude of rising waters in all coastal countries worldwide, connecting science and physics to impacts on people’s livelihoods and safety,” said Nadya Vinogradova Shiffer, director of the ocean physics program at NASA Headquarters in Washington.
      Data released earlier this year found that Pacific Island nations will experience at least 6 inches (15 centimeters) of sea level rise in the next 30 years. The number of high-tide flood days will increase by an order of magnitude for nearly all Pacific Island nations by the 2050s.
      “The data is clear: Sea levels are rising around the world, and they’re rising faster and faster,” said Ben Hamlington, a sea level researcher at NASA’s Jet Propulsion Laboratory in Southern California and head of the agency’s sea level change science team. “Having the best information to make decisions about how to plan for rising seas is more crucial than ever.”
      To explore the global sea level change site:
      https://earth.gov/sealevel
      News Media Contacts
       
      Karen Fox / Elizabeth Vlock
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / elizabeth.a.vlock@nasa.gov
      Jane J. Lee / Andrew Wang
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-0307 / 626-379-6874
      jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
      2024-158
      Share
      Details
      Last Updated Nov 13, 2024 Related Terms
      Oceans Climate Change Earth Jet Propulsion Laboratory Natural Disasters Explore More
      5 min read JPL Workforce Update
      Article 17 hours ago 6 min read Inia Soto Ramos, From the Mountains of Puerto Rico to Mountains of NASA Earth Data
      Dr. Inia Soto Ramos became fascinated by the mysteries of the ocean while growing up…
      Article 22 hours ago 4 min read NASA-developed Technology Supports Ocean Wind Speed Measurements from Commercial Satellite
      A science antenna developed with support from NASA’s Earth Science Technology Office (ESTO) is now…
      Article 1 day ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      5 Min Read Wearable Tech for Space Station Research
      A wearable monitoring device is visible on the left wrist of NASA astronaut Jeanette Epps. Credits: NASA Science in Space Nov 2024
      Many of us wear devices that count our steps, measure our heart rate, track sleep patterns, and more. This information can help us make healthy decisions – research shows the devices encourage people to move more, for example – and could flag possible problems, such as an irregular heartbeat.
      Wearable monitors also have become common tools for research on human health, including studies on the International Space Station. Astronauts have worn special watches, headbands, vests, and other devices to help scientists examine sleep quality, effectiveness of exercise, heart health, and more.
      Warm to the core
      Spaceflight can affect body temperature regulation and daily rhythms due to factors such as the absence of convection (a natural process that transfers heat away from the body) and changes in the cardiovascular and metabolic systems.
      A current investigation from ESA (European Space Agency), Thermo-Mini or T-Mini examines how the body regulates its core temperature during spaceflight. The study uses a non-invasive headband monitor that astronauts can wear for hours at a time. Data from the monitor allow researchers to determine the effect on body temperature from environmental and physiological factors such as room temperature and humidity, time of day, and physical stress. The same type of sensor already is used on Earth for research in clinical environments, such as improving incubators, and studies of how hotter environments affect human health.
      Thermolab, an earlier ESA investigation, examined thermoregulatory and cardiovascular adaptations during rest and exercise in microgravity. Researchers found that core body temperature rises higher and faster during exercise in space than on Earth and that the increase was sustained during rest, a phenomenon that could affect the health of crew members on long-term spaceflight. The finding also raises questions about the thermoregulatory set point humans are assumed to have as well as our ability to adapt to climate change on Earth.
      NASA astronaut Nick Hague wears the T-mini device while exercising.NASA To sleep, perchance to dream
      Spaceflight is known to disrupt sleep-wake patterns. Actiwatch Spectrum, a device worn on the wrist, contains an accelerometer to measure motion and photodetectors to monitor ambient lighting. It is an upgrade of previous technology used on the space station to monitor the length and quality of crew member sleep. Data from earlier missions show that crew members slept significantly less during spaceflight than before and after. The Actiwatch Sleep-Long investigation used an earlier version of the device to examine how ambient light affects the sleep-wake cycle and found an association between sleep deficiency and changes during spaceflight in circadian patterns, or the body’s response to a normal 24-hour light and dark cycle. Follow up studies are testing lighting systems to address these effects and help astronauts maintain healthy circadian rhythms.
      NASA astronaut Sunita Williams wears an Actiwatch as she conducts research.NASA Wearable Monitoring tested a lightweight vest with embedded sensors to monitor heart rate and breathing patterns during sleep and help determine whether changes in heart activity affect sleep quality. The technology offers a significant advantage by monitoring heart activity without waking the test subject and could help patients on Earth with sleep disorders. Researchers reported positive performance and good quality of recorded signals, suggesting that the vest can contribute to comprehensive monitoring of individual health on future spaceflight and in some settings on Earth as well.
      These and other studies support development of countermeasures to improve sleep for crew members, helping to maintain alertness and lessen fatigue during missions.
      (Not) waiting to exhale
      Humans exhale carbon dioxide and too much of it can build up in closed environments, causing headaches, dizziness, and other symptoms. Spacecraft have systems to remove this substance from cabin air, but pockets of carbon dioxide can form and be difficult to detect and remove. Personal CO2 Monitor tested specially designed sensors attached to clothing to monitor the wearer’s immediate surroundings. Researchers reported that the devices functioned adequately as either crew-worn or static monitors, an important step toward using them to determine how carbon dioxide behaves in enclosed systems like spacecraft.
      One of the wearable carbon dioxide monitors clipped to the wall near a crew sleeping compartment. Radiation in real time
      EVARM, an investigation from CSA (Canadian Space Agency), used small wireless dosimeters carried in a pocket to measure radiation exposure during spacewalks. The data showed that this method is a feasible way to measure radiation exposure, which could help focus routine dosage monitoring where it is most needed. Any shielding and countermeasures developed also could help protect people who work in high-radiation areas on Earth.
      ESA’s Active Dosimeter tested a radiation dosimeter worn by crew members to measure changes in their exposure over time based on the space station’s orbit and altitude, the solar cycle, and solar flares. Measurements from the device allowed researchers to analyze radiation dosage across an entire space mission.
      ESA astronaut Thomas Pesquet holds one of the mobile units for the Active Dosimeter study.NASA The Active Dosimeter also was among the instruments used to measure radiation on NASA’s Orion spacecraft during its 25.5-day uncrewed Artemis I mission around the Moon and back in 2022.
      Another device tested on the space station and then on Artemis I, AstroRad Vest is designed to protect astronauts from solar particle events. Researchers used these and other radiation measuring devices to show that Orion’s design can protect its crew from potentially hazardous radiation levels during lunar missions.
      The International Space Station serves as an important testbed for these technologies and many others being developed for future missions to the Moon and beyond.
      Melissa Gaskill
      International Space Station Research Communications Team
      Johnson Space Center
      Keep Exploring Discover More Topics From NASA
      Humans In Space
      Space Station Technology Demonstration
      Space Station Research and Technology
      Station Science 101: Human Research
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA provides a variety of pathways for those outside the agency to contribute to authentic and meaningful research. Whether you’re a student pursuing a degree in STEM (science, technology, engineering, or mathematics), an educator looking for new ways to engage your classroom, or a citizen scientist enthusiastic about sharing your observations, there’s a wide array of opportunities to get involved in NASA research.
      Citizen scientists around the world participate in environmental observation and measurement efforts through GLOBE.NASA Everybody
      People from all around the world can make contributions to NASA research through citizen science projects and other opportunities available to the public.
      Share your observations and take measurements in your part of the world through GLOBE (Global Learning and Observations to Benefit the Environment), an international science and education initiative that engages students, teachers, and the public in collecting and analyzing environmental data. Do you have a relevant idea for human health science research that could be performed on the future Gateway lunar space station? Follow these steps to share your idea for consideration. The Prizes, Challenges, and Crowdsourcing program through NASA’s Space Technology Mission Directorate invites citizen scientists to develop innovations in recycling material waste on deep space missions, develop aids/devices for navigating on the lunar surface during future Artemis missions, and more. Do you have the “right stuff” to participate in a simulated deep space mission? NASA’s HERA (the Human Exploration Research Analog) is seeking healthy subjects to participate in 45-day simulations to study the physiological and psychological effects of isolation and confinement on humans to help prepare for future missions to the Moon and Mars. Visit the NASA Citizen Science webpage for more opportunities to discover the secrets of the universe, search for life elsewhere, and improve life on Earth and in space. This collage features the winning designs in the 2024 Dream with Us Design Challenge, which asks students to dream of innovations for the future of aviation.NASA Middle and High School Students
      Students can gain valuable experience while making a difference in the future of aeronautics and exploration.
      Rising high school juniors and seniors are eligible to apply for the four-week Gene Lab for High School Students training program sponsored by NASA’s Ames Research Center in Silicon Valley, California. The program focuses on collecting and analyzing complex biological data such as genetic codes, and computational biology. Through the annual TechRise Student Challenge offered by NASA’s Space Technology Mission Directorate, U.S. students in grades 6 to 12 form teams and design an experiment to fly on a suborbital flight platform such as a high-altitude balloon. Interested in aviation? The Dream With Us Design Challenge through NASA’s Aeronautics Research Mission Directorate invites students in grades 6 to 12 to envision new innovations that will improve the safety, sustainability, and accessibility of aviation systems and technology. Through NASA internships, U.S. students ages 16 and up can boost their research experience and contribute to NASA’s work with the guidance of an agency mentor. This collage features the winning designs in the 2024 Dream with Us Design Challenge, which asks students to dream of innovations for the future of aviation.NASA Undergraduate and Graduate Students
      NASA offers a variety of research opportunities for college students preparing to launch their own exciting careers in STEM.
      NASA’s Established Program to Stimulate Competitive Research (EPSCoR) grants competitive awards to enable college and university students within specific U.S. jurisdictions to participate in cutting-edge research projects that address NASA’s challenges and needs. The National Space Grant College and Fellowship Project (Space Grant), is a national network of colleges and universities comprising a total of 52 consortia across the U.S. These consortia fund several research opportunities for students attending member colleges and universities. Look up your state’s Space Grant consortium website to discover available opportunities. NASA internships are available in a wide range of opportunities for undergraduate and graduate students, enabling meaningful contributions to NASA’s missions as well as authentic experience as a part of the agency’s world-class workforce. Through the University Student Research Challenge, students are invited to propose their ideas describing innovative new approaches to tackling one of six major research areas as outlined by NASA’s Aeronautics Research Mission Directorate. Students can take part in valuable studies of the ever-changing Earth system through NASA’s Earth Science Division’s Early Career Research (ECR) program. ECR includes the eight-week Student Airborne Research Program, the Climate Change Research Initiative, and more. College students at Minority Serving Institutions can contribute to the agency’s exploration goals through many opportunities offered by NASA’s Minority University Research and Education Project (MUREP). Educators of grades K-8 take part in a workshop hosted by NASA’s Next Gen STEM.NASA Educators
      NASA provides opportunities for educators to participate in authentic aerospace research, as well as to engage their students in research in the classroom.
      Space Grant offers a variety of opportunities for educators, from curriculum enhancement and faculty development to grants enabling teachers to bring NASA research into the classroom. Look up your state’s Space Grant consortium website to discover available opportunities. NASA welcomes interns with professional teaching experience to help foster the education and curiosity of students who will shape the future workforce. Visit NASA Internships to learn more and find current opportunities. Through NASA’s Climate Change Research Initiative, part of the agency’s Earth Science Division’s Early Career Research Program, high school STEM educators can join a research team led by NASA scientists to focus on a research area related to climate change. There’s More to Explore
      Explore available NASA STEM learning experiences, such as internship roles, student competitions, or engagements with NASA researchers, through NASA’s STEM Gateway platform. Visit NASA’s Learning Resources webpage for the latest news and resources from the agency’s Office of STEM Engagement.
      Keep Exploring Discover More STEM Topics From NASA
      NASA STEM Engagement Funding Opportunities
      For Colleges and Universities
      About STEM Engagement at NASA
      NASA EXPRESS Newsletter Sign-up
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
      Sols 4355-4356: Weekend Success Brings Monday Best
      NASA’s Mars rover Curiosity acquired this image of the contact science target “Black Bear Lake” from about 7 centimeters away (about 3 inches), using its Mars Hand Lens Imager (MAHLI). The MAHLI, located on the turret at the end of the rover’s robotic arm, used an onboard focusing process to merge multiple images of the same target into a composite image, on Nov. 3, 2024 – sol 4353, or Martian day 4,353 of the Mars Science Laboratory Mission – at 21:36:01 UTC. NASA/JPL-Caltech/MSSS Earth planning date: Monday, Nov. 4, 2024
      After a spooky week last week, it’s great to see all our weekend plans succeed as planned! We don’t take success for granted as a rover going on 13 years. With all of the science at our fingertips and all the battery power we could need, the team took right advantage of this two-sol touch-and-go Monday plan. We have a bedrock DRT target for APXS and MAHLI named “Epidote Peak” and a MAHLI-only target of a crushed rock we drove over named “Milly’s Foot Path.”
      APXS data is better when it’s cold, so we’ve planned the DRT brushing and APXS to start our first sol about 11:14 local Gale time. MAHLI images are usually better in the afternoon lighting, so we’ll leave the arm unstowed and spend some remote science time beforehand, about 12:15 local time. ChemCam starts that off with a LIBS raster over a bedrock block with some interesting light and dark layering, named “Albanita Meadows” and seen here in the the upper-right-ish of this Navcam workspace frame. ChemCam will then take a long-distance RMI mosaic of a portion of the upper Gediz Vallis ridge to the north. Mastcam continues the remote science with an Albanita Meadows documentation image, a 21-frame stereo mosaic of some dark-toned upturned blocks about 5 meters away (about 16 feet), a four-frame stereo mosaic of some polygonal fracture patterns about 20 meters away (about 66 feet), and a mega 44-frame stereo mosaic of Wilkerson butte, upper Gediz Vallis ridge, “Fascination Turret,” and “Pinnacle Ridge” in the distance. That’s a total of 138 Mastcam images! With remote sensing complete, the RSM will stow itself about 14:00 local time to make time for MAHLI imaging. 
      Between about 14:15 and 14:30 local time, MAHLI will take approximately 64 images of Epidote Peak and Milly’s Foot Path. Most of the images are being acquired in full shadow, so there is uniform lighting and saturation in the images. We’ll stow the arm at about 14:50 and begin our drive! This time we have an approximately 34-meter drive to the northwest (about 112 feet), bringing us almost all the way to the next dark-toned band in the sulfate unit. But no matter what happens with the drive, we’ll still do some remote science on the second sol including a Mastcam tau observation, a ChemCam LIBS in-the-blind (a.k.a AEGIS: Autonomous Exploration for Gathering Increased Science), and some Navcam movies of the sky and terrain. 
      Written by Natalie Moore, Mission Operations Specialist at Malin Space Science Systems
      Share








      Details
      Last Updated Nov 06, 2024 Related Terms
      Blogs Explore More
      3 min read Sols 4352-4354: Halloween Fright Night on Mars


      Article


      1 day ago
      2 min read Sols 4350-4351: A Whole Team Effort


      Article


      5 days ago
      2 min read Sols 4348-4349: Smoke on the Water


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
  • Check out these Videos

×
×
  • Create New...