Jump to content

Recommended Posts

  • Publishers
Posted

This article is from the 2023 Technical Update.

The NESC Flight Mechanics Technical Discipline Team (TDT) provides support to all NASA Mission Directorates and throughout all mission phases. Highlights from this past year include three critical program support assessments, new discipline-advancing capabilities in simulation tools, and a preview of future efforts by the TDT to capture knowledge and expertise to pass on to the next generation. 

Independent modeling and simulation (M&S) enables new insights into critical subsystem designs and offers opportunities for analyses to reduce risk acceptance for programs. Several ongoing assessments have contributed to improved flight certification processes and risk reduction. The Flight Mechanics TDT sponsored improvements to simulation tools that enabled new solutions to complex problems, and recent NESC Academy recordings captured the latest advancements in the discipline. 

techup2023-pg48-art1-1.png?w=795
Notional risk scoring reduction through independent M&S

techup2023-pg48-art2.png?w=1082
Modeling of crew seat acceleration during entry, decent and landing.

The TDT supported the Commercial Crew Program by independently modeling and simulating commercial providers’ trajectory designs and on-board deorbit, entry, descent, and landing software. This past year, the team assessed the return of additional crew on commercial capsules for contingency scenarios and used independent simulation analyses to confirm this capability poses no significant changes in splashdown conditions, thus ensuring additional options for returning crew safely if the primary return vehicle is disabled. Additionally, the NESC is providing key assessments for manual control using a “paper pilot” based on actual pilot responses. This study enabled manual control as a viable survival scenario if the flight computer fails during deorbit, entry, descent, and landing phases of flight. These efforts contributed to an independent verification and validation of commercial providers’ designs that supported certification of commercial flights to and from the ISS. 

Standing up a new independent M&S effort in support of the Mars Ascent Vehicle, a critical element delivering Martian soil and atmosphere samples for eventual return to Earth, provides value and increases confidence in the design of this key element for the Mars Sample Return Campaign. The Flight Mechanics team is contributing unique methodologies for studying the challenging dynamics of this two-stage solid motor design where the second stage is unguided and spin-stabilized. 

techup2023-pg48-art3.png?w=1780
Frame of Mars ascent vehicle second stage separation dynamics from an M&S animation

Independent M&S of key staging and separation events for the SLS has resulted in affirmation of the SLS trajectory and guidance, navigation and control design. Flight Mechanics TDT members contributed analyses to evaluate the heliocentric disposal of the Interim Cyrogenic Propulsion Stage (ICPS). 

techup2023-pg48-art4.png?w=1829
Monte Carlo modeling of the Artemis 1

This past year, the TDT also completed an assessment that explored the interoperability between common mission analysis tools and enabled trajectory sharing between tools to solve more complex mission design problems (page 31). An NESC Technical Bulletin (page 47) and Innovative Technique (page 65) have been published on this topic. 

NESC Academy recordings on trajectory optimization tools and frameworks, electric aircraft sizing methodologies, system optimization, and aerodynamic decelerator systems were important knowledge capture and transfer initiatives. These recordings are available to help train and educate engineers on the tools and processes NESC teams will use for future independent M&S efforts. 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Image: Spying a spiral through a cosmic lens (Webb telescope image) View the full article
    • By NASA
      NASA, ESA, CSA, STScI Two actively forming stars are responsible for the shimmering hourglass-shaped ejections of gas and dust that gleam in orange, blue, and purple in this representative color image captured by NASA’s James Webb Space Telescope. This star system, called Lynds 483, is named for American astronomer Beverly T. Lynds, who published extensive catalogs of “dark” and “bright” nebulae in the early 1960s.
      The two protostars are at the center of the hourglass shape, in an opaque horizontal disk of cold gas and dust that fits within a single pixel. Much farther out, above and below the flattened disk where dust is thinner, the bright light from the stars shines through the gas and dust, forming large semi-transparent orange cones.
      Learn what the incredibly fine details in this image reveal.
      Image credit: NASA, ESA, CSA, STScI
      View the full article
    • By USH
      EBANI stands for "Unidentified Anomalous Biological Entity," referring to a mysterious class of airborne phenomena that may be biological rather than mechanical in nature. These entities are often described as elongated, flexible, and tubular, moving through the sky in a serpentine or twisting manner. 

      They exhibit advanced flight capabilities, including high-speed travel, precise control, and even self-illumination. Some have been observed rendering themselves invisible, raising questions about their energy sources and possible technological origins. 
      Recent observations have revealed formations of translucent spheres in red, white, and blue, challenging conventional classifications of both biology and aerodynamics. 

      Some of these entities have a massive structure composed of thousands of clustered spheres. These entities appear to function as an aircraft carrier, releasing these smaller spheres into Earth's atmosphere for an unknown purpose. 
      While some researchers propose that EBANIs are natural organisms evolving in Earth's upper atmosphere under unfamiliar physical laws, others speculate they may be advanced artificial (eventually biological) constructs, potentially extraterrestrial probes or surveillance devices, given the presence of large structures expelling numerous smaller spheres. 

      Are they living UFOs, advanced biological organisms that function autonomously within the spheres, without the need for pilots?
        View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Sols 4471-4472: Marching Through the Canyon
      NASA’s Mars rover Curiosity acquired this image using its Mast Camera (Mastcam), a close-up of the rover’s Alpha Particle X-Ray Spectrometer (APXS), an instrument that measures the abundance of chemical elements in rocks and soils on the Martian surface. Located on the turret at the end of Curiosity’s robotic arm, APXS is about the size of a cupcake, and this image shows the handwritten markings on the instrument’s sensor head. Curiosity captured this image on March 23, 2024 — sol 4134, or Martian day 4,134 of the Mars Science Laboratory mission — at 21:59:21 UTC. NASA/JPL-Caltech/MSSS Written by Scott VanBommel, Planetary Scientist at Washington University
      Earth planning date: Monday, March 3, 2025
      Curiosity continued steady progress through the upper sulfate unit and toward its next major science waypoint: the boxwork structures. Our rover is currently driving south through a local canyon between “Texoli” and “Gould Mesa.” This route may expose the same rock layers observed while climbing along the eastern margin of the Gediz Vallis channel, prompting several science activities in today’s plan. With winter still gripping Gale crater and limiting the power available for science, the team carefully balanced a number of priorities.
      The weekend’s drive positioned the rover within reach of light-toned laminated bedrock and gray float rock. We kicked off our two-sol plan by removing dust on a representative bedrock target, “Ramona Trail,” before analyzing with APXS and imaging with MAHLI. ChemCam acquired compositional analyses on a laminated gray float rock, “Josephine Peak,” in addition to long-distance images of Texoli. Mastcam documented key features, capturing images of Josephine Peak, Texoli, “Gobblers Knob,” and “Fort Tejon.” In addition to these science-driven images, Mastcam also acquired two images of APXS before a planned drive of about 21 meters (about 69 feet).
      As Curiosity continues toward the boxwork structures, the intricate patterns we observe will provide valuable clues about the history of Mars. While the Mastcam images acquired today of the APXS sensor head won’t directly contribute to the boxwork study, they capture a more human aspect of the mission. With each “APXS horseshoe” image, such as the one featured in this blog from sol 4134, hand-written markings on the APXS sensor head appear alongside Martian terrain, a reminder that this incredible journey is driven by the human touch of a dedicated team on Earth who designed, built, and continue to operate this remarkable spacecraft.
      Share








      Details
      Last Updated Mar 05, 2025 Related Terms
      Blogs Explore More
      2 min read Sols 4468-4470: A Wintry Mix of Mars Science


      Article


      2 days ago
      2 min read Smooshing for Science: A Flat-Out Success


      Article


      5 days ago
      4 min read Sols 4466-4468: Heading Into the Small Canyon


      Article


      7 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s X-59 lights up the night sky with its unique Mach diamonds, also known as shock diamonds, during maximum afterburner testing at Lockheed Martin Skunk Works in Palmdale, California. The test demonstrated the engine’s ability to generate the thrust required for supersonic flight, advancing NASA’s Quesst mission.Credit: Lockheed Martin/Gary Tice NASA’s X-59 quiet supersonic research aircraft took another successful step toward flight with the conclusion of a series of engine performance tests.
      In preparation for the X-59’s planned first flight this year, NASA and Lockheed Martin successfully completed the aircraft’s engine run tests in January. The engine, a modified F414-GE-100 that powers the aircraft’s flight and integrated subsystems, performed to expectations during three increasingly complicated tests that ran from October through January at contractor Lockheed Martin’s Skunk Works facility in Palmdale, California.
      “We have successfully progressed through our engine ground tests as we planned,” said Raymond Castner, X-59 propulsion lead at NASA’s Glenn Research Center in Cleveland. “We had no major showstoppers. We were getting smooth and steady airflow as predicted from wind tunnel testing. We didn’t have any structural or excessive vibration issues. And parts of the engine and aircraft that needed cooling were getting it.”
      The tests began with seeing how the aircraft’s hydraulics, electrical, and environmental control systems performed when the engine was powered up but idling. The team then performed throttle checks, bringing the aircraft up to full power and firing its afterburner – an engine component that generates additional thrust – to maximum.
      In preparation for the X-59’s planned first flight this year, NASA and Lockheed Martin successfully completed the aircraft’s engine run tests in January. Testing included electrical, hydraulics, and environmental control systems.
      Credit: NASA/Lillianne Hammel  A third test, throttle snaps, involved moving the throttle swiftly back and forth to validate that the engine responds instantly. The engine produces as much as 22,000 pounds of thrust to achieve a desired cruising speed of Mach 1.4 (925 miles per hour) at an altitude of approximately 55,000 feet.
      The X-59’s engine, similar to those aboard the U.S. Navy’s F-18 Super Hornet, is mounted on top of the aircraft to reduce the level of noise reaching the ground. Many features of the X-59, including its 38-foot-long nose, are designed to lower the noise of a sonic boom to that of a mere “thump,” similar to the sound of a car door slamming nearby.
      Next steps before first flight will include evaluating the X-59 for potential electromagnetic interference effects, as well as “aluminum bird” testing, during which data will be fed to the aircraft under both normal and failure conditions. A series of taxi tests and other preparations will also take place before the first flight.
      The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to solve one of the major barriers to commercial supersonic flight over land by making sonic booms quieter.
      Explore More
      3 min read NASA Supports GoAERO University Awardees for Emergency Aircraft Prototyping
      Article 6 hours ago 2 min read Wind Over Its Wing: NASA’s X-66 Model Tests Airflow
      Article 6 days ago 9 min read Combustor Facilities
      Article 1 week ago

      View the full article
  • Check out these Videos

×
×
  • Create New...