Jump to content

Elastocaloric Refrigeration for Spaceflight Applications (ESRA)


Recommended Posts

  • Publishers
Posted

1 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Jun Cui

Iowa State University

ESI23 Cui Quadchart.pdf

Elastocaloric materials heat up when exposed to a mechanical force and cool down, removing the same amount of heat from their environment, when the force is removed.  Professor Cui will use the recently established DFT/machine learning guided metals development methodology to unravel the complex relationships between compositions, crystal structures, phase transformation, and fatigue behavior of the elastocaloric materials. He will develop novel, new elastocaloric materials and use them as the basis of a high-performance refrigeration system for NASA exploration applications.

Back to ESI 2023

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      When Michael Ciancone joined NASA in 1983, he could hardly imagine what his 40-plus-year career would entail. From honoring and preserving spaceflight history to advancing safety standards, he has undoubtedly woven his knowledge and experience into NASA’s history as well as its future.  
      Ciancone currently serves as the Orion Program safety lead, overseeing the Office of Safety and Mission Assurance’s effort to ensure the safety of the Orion crew, vehicle, and associated hardware. In his role, he manages safety reviews of all flight hardware, with a current focus on Artemis II. His everyday success is backed by decades of learning and global collaboration within the areas of human spaceflight safety and history.  
      Michael Ciancone with Space Shuttle Atlantis at the launch gantry at NASA’s Kennedy Space Center in Florida in 2009. Image courtesy of Michael Ciancone  In 1997, Ciancone transferred from NASA’s Glenn Research Center in Cleveland to Johnson Space Center in Houston to serve as the executive officer for the Shuttle/International Space Station Payload Safety Review Panel, as well as group lead for Payload Safety. To better understand the scope and nature of his new role, Ciancone sought opportunities to engage with other safety professionals at conferences and symposia. At the suggestion of his manager, Ciancone instead organized a conference on spaceflight safety for payloads at Johnson, creating a forum for colleagues from the international spaceflight community.  
      These efforts were the catalyst for the formation of the International Association for the Advancement of Spaceflight Safety (IAASS), an organization founded by Ciancone and Skip Larsen of Johnson along with Alex Soons and Tommaso Sgobba of the European Space Agency. The IAASS is committed to furthering international cooperation and scientific advancements in space system safety and is recognized as the pre-eminent international forum for spaceflight and safety professionals. The organization is responsible for hosting an annual conference, conducting specialized safety training, and publishing seminal books on the aspects of spaceflight safety. 
      Throughout his tenure, Ciancone has worked closely with colleagues from around the world and he emphasizes that human spaceflight is a global endeavor made possible through respect and collaboration. “[In human spaceflight] there are different and equally valid approaches for achieving a common goal. Successful partnership requires an understanding and respect for the experiences and history of international partners,” he said.  
      Michael Ciancone (far left) pictured with Spaceflight Safety team members from NASA, the European Space Agency (ESA), and Airbus during a joint NASA/ESA safety review of the European Service Module (ESM) of the Orion Program at the Airbus facility in Bremen, Germany. Image courtesy of Michael Ciancone In addition to his dedication to spaceflight safety, Ciancone is active in the field of spaceflight history. He serves as the chair of the History Committee of the American Astronautical Society and, as a member of the International Academy of Astronautics, he also serves on the History Committee. Working in this community has made Ciancone more keenly aware of dreams of spaceflight as viewed from a historical perspective and guides his daily work at NASA. 
      Michael Ciancone (left) with Giovanni Caprara, science editor for the Corriere della Sera and co-author of “Early Italian Contributions to Astronautics: From the First Visionary to Construction of the first Italian Liquid Propellant Rocket” during the 75th International Astronautical Congress in Milan, Italy. Image courtesy of Michael Ciancone Beyond his technical achievements, Ciancone has also found creative ways to spice up the spaceflight community. While at Glenn Research Center, he co-founded the NASA Hot Pepper Club—a forum for employees who share a passion for cultivating and consuming hot peppers and pepper products. The club served as a unique space for camaraderie and connection, adding flavor to NASA life.  
      Ciancone’s immersion in spaceflight history and spaceflight safety has shaped his unique and valuable perspective. In addition to encouraging others to embrace new challenges and opportunities, Ciancone paraphrases Albert Einstein to advise the Artemis Generation to “learn from the past, live in the moment, and dream of the future.” This mentality has enabled him to combine his interest in spaceflight history with his work on Orion over the past 15 years, laying the groundwork for what he refers to as “future history.”  
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      In-person participants (L-R) – Back row: Jason Lytle, Stuart Lee, Eric Bershad, Ashot Sargsyan, Aaron Everson, Philip Wells, Sergi Vaquer Araujo, Steven Grover, John A. Heit, Mehdi Shishehbor, Laura Bostick; Middle row: Sarah Childress Taoufik, Stephan Moll, Brandon Macias, Kristin Coffey, Ann-Kathrin Vlacil, Dave Francisco; Front row: James Pavela, Doug Ebert, Kathleen McMonigal, Esther Kim, Emma Hwang; Not pictured: Tyson Brunstetter, J. D. Polk
      Online participants: Stephen Alamo, Mark Crowther, Steven Nissen, Mark Rosenberg, Jeffrey Weitz, R. Eugene Zierler, Serena Aunon, Tina Bayuse, Laura Beachy, Becky Brocato, Daniel Buckland, Jackie Charvat, Diana Cruz Topete, Quinn Dufurrena, Robert Haddon, Joanne Kaouk, Kim Lowe, Steve Laurie, Karina Marshall-Goebel, Sara Mason, Shannan Moynihan, James Pattarini, Devan Petersen, Ruth Reitzel, Donna Roberts, Lucia Roccaro, Mike Stenger, Terry Taddeo, Gavin Travers, Mary Van Baalen, Liz WarrenNASA In October 2024, NASA’s Office of the Chief Health and Medical Officer (OCHMO) initiated a working group to review the status and progress of research and clinical activities intended to mitigate the risk of venous thromboembolism (VTE) during spaceflight. The working group took place over two days at NASA’s Johnson Space Center; a second meeting on the topic was held in December 2024 at the European Space Agency (ESA) facility in Cologne, Germany.
      Read More about the Risk of VTE The working group was assembled from internal NASA subject matter experts (SMEs), the NASA OCHMO Standards Team, NASA and ESA stakeholders, and external SMEs, including physicians and medical professionals from leading universities and medical centers in the United States and Canada.

      Background
      Spaceflight Venous Thrombosis (SVT)
      Spaceflight Venous Thrombosis (SVT) refers to a phenomenon experienced during spaceflight in which a thrombus (blood clot) forms in the internal jugular vein (and/or associated vasculature) that may be symptomatic (thrombus accompanied by, but not limited to, visible internal jugular vein swelling, facial edema beyond “nominal” spaceflight adaptation, eyelid edema, and/or headache) or asymptomatic. Obstructive thrombi have been identified in a very small number of crewmembers, as shown in the figure below.

      Note that the figure below is for illustrative purposes only; locations are approximate, and size is not to scale.

      Approximate location of identified thrombi in crewmembers.Source: Modified from Cerebral Sinus Venous Thrombosis – University of Colorado Denver With treatment, crewmembers were able to complete their mission, and anticoagulants were discontinued several days prior to landing to minimize the risk of bleeding in the event of a traumatic injury. Some thromboses completely resolved post landing, and some required additional treatment.
      Pathophysiology of Venous Thromboembolism (VTE)
      The proposed pathogenesis of VTE is referred to as Virchow’s triad and suggests that VTE occurs as the result of:
      Alterations in blood flow (i.e., stasis), Vascular endothelial injury/changes, and/or, Alterations in the constituents of the blood leading to hypercoagulability (i.e., hereditary predisposition or acquired hypercoagulability). Note: pathophysiology are the changes that occur during a disease process; hypercoagulability is the increased tendency to develop blood to clots.
      The Virchow’s triad of risk factors for venous thrombosis.Bouchnita, 2017 Blood stasis, or venous stasis, refers to a condition in which the blood flow in the veins slows down which leads to pooling in the veins. This slowing of the blood may be due to vein valves becoming damaged or weak, immobility, and/or the absence of muscular contractions. Associated symptoms include swelling, skin changes, varicose veins, and slow-healing sores or ulcers. In terrestrial medicine, venous thrombosis is typically caused by damaged or weakened vein valves, which can be due to many factors, including aging, blood clots, varicose veins, obesity, pregnancy, sedentary lifestyle, estrogen use, and hereditary predisposition.

      Spaceflight Considerations
      Altered Venous Blood Flow and Spaceflight Associated Neuro-ocular Syndrome

      In addition to the terrestrial risk factors of VTE, there are physiological changes associated with spaceflight that are hypothesized to potentially play a role in the development of VTE in weightlessness. Specifically, researchers have explored the effects of the microgravity environment and subsequent observed headward fluid shifts that occur, and the potential impact on blood flow. Crewmembers onboard the International Space Station (ISS) experience weightlessness due to the microgravity environment and thus experience a sustained redistribution of bodily fluids from the legs toward the head. The prolonged headward fluid shifts during weightlessness results in facial puffiness, decreased leg volume, increased cardiac stroke volume, and decreased plasma volume.
      Crewmembers have also experienced altered blood flow during spaceflight, including retrograde venous blood flow (RVBF) (the backflow of venous blood towards the brain) or stasis (a stoppage or slowdown in the flow of blood). While the causes of the observed stasis and retrograde blood flow in spaceflight participants is not well understood, the potential clinical significance of the role it may have in the development of thrombus formation warrants further investigation.
      Doppler imaging of a retrograde flow in the left internal jugular vein.Yan & Seow, 2009 Other physiological concerns affected by fluid shifts are being studied to consider if any relation to VTE exists. Chronic weightlessness can cause bodily fluids such as blood and cerebrospinal fluid to move toward the head, which can lead to optic nerve swelling, folds in the retina, flattening of the back of the eye, and swelling in the brain. This collection of eye and brain changes is called “spaceflight associated neuro-ocular syndrome,” or SANS. Some astronauts only experience mild changes in space, while others have clinically significant outcomes. The long-term health outcome from these changes is unknown but actively being investigated. The risk of developing SANS is higher during longer-duration missions and remains a top research priority for scientists ahead of a Mars mission.
      Conclusions and Further Work
      Based on expert opinion and the assessment of the risk factors for thrombosis, an algorithm was developed to provide guidance for in-mission assessment and treatment of thrombus formation in weightlessness. The algorithm is based on early in-flight ultrasound testing to determine the flow characteristic of the left internal jugular vein and associated vasculature.
      NASA Working Group Recommendations
      The working group recommended several areas for further investigation to assess feasibility and potential to mitigate the risk of thrombosis in spaceflight:
      Improved detection capabilities to identify when a thrombus has formed in-flight, Pathophysiology/factors leading to thrombi formation during spaceflight, Countermeasures and treatment
      For more information on the working group meeting and a complete list of references, please see the Risk of Venous Thromboembolism (VTE) During Spaceflight Summary Report.
      Risk of Venous Thromboembolism (VTE) During Spaceflight Summary Report Share
      Details
      Last Updated Mar 14, 2025 EditorKim Lowe Related Terms
      Office of the Chief Health and Medical Officer (OCHMO) Astronauts General Human Health and Performance Humans in Space The Human Body in Space Keep Exploring Discover Related Topics
      OCHMO Independent Assessments
      Independent assessment plays a crucial role in NASA’s long-term success by addressing essential questions requiring rapid response to support further…
      Aerospace Medical Certification Standard
      This NASA Technical Standard provides medical requirements and clinical procedures designed to ensure crew health and safety and occupational longevity…
      Human Spaceflight Standards
      The Human Spaceflight & Aviation Standards Team continually works with programs to provide the best standards and implementation documentation to…
      Human Spaceflight and Aviation Standards
      The Human Spaceflight and Aviation Standards Team continuously works with subject matter experts and with each space flight program to…
      View the full article
    • By NASA
      Center Director Dr. Jimmy Kenyon gives an overview of NASA Glenn Research Center’s areas of expertise and how it supports the agency’s missions and programs. Credit: NASA/Susan Valerian  NASA Glenn Research Center’s Director Dr. Jimmy Kenyon and Chief Counsel Callista Puchmeyer participated in a local symposium that addressed the operational and legal challenges of human spaceflight. The one-day conference was held at the Cleveland State University (CSU) College of Law on Feb.13.  

      Kenyon gave a keynote that provided an overview of NASA Glenn’s areas of expertise and how the center supports the agency’s missions and programs. He also talked about the role of growing commercial partnerships at NASA.  
      Panelists, left to right: Col. (Ret.) Joseph Zeis, senior advisor for Aerospace and Defense, Office of the Governor of Ohio; Callista Puchmeyer, chief counsel, NASA’s Glenn Research Center; and Jon. P. Yormick, international business and trade attorney, Yormick Law, answer questions on operational and legal challenges of human spaceflight at a Cleveland State University College of Law symposium. Credit: NASA/Susan Valerian  Puchmeyer, a graduate of CSU’s College of Law and recent inductee into its Hall of Fame, participated in a panel about Northeast Ohio’s aerospace industry and the legal aspects of commercial partnerships. 
      Additionally, human spaceflight experts from academia, law, and science spoke throughout the day on topics ranging from the health and training of astronauts to the special law of space stations. Romanian astronaut Dumitru-Dorin Prunariu joined remotely to provide a personal perspective. 
      Return to Newsletter Explore More
      2 min read NASA Releases its Spinoff 2025 Publication 
      Article 4 mins ago 1 min read NASA Glenn Welcomes Spring 2025 Interns
      Article 4 mins ago 5 min read NASA’s Chevron Technology Quiets the Skies
      Article 22 hours ago View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Astronaut Serena M. Auñón-Chancellor Examines Her Eyes in SpaceNASA Exposure to altered gravity can cause ocular and brain structural changes to develop during spaceflight; these changes could lead to vision alterations, cognitive effects, or other deleterious health effects. SANS is a syndrome unique to humans that fly in space, and there is no terrestrial disease equivalent. Brain structural changes appear small but seem to indicate that over half of crewmembers experience one or more symptoms of SANS. Determining intracranial pressure during spaceflight could improve our understanding of SANS mechanisms and improve our ability to target countermeasures for determining risk for future missions.
      NASA astronaut Karen Nyberg, Expedition 36 flight engineer, conducts an ocular health exam on herself in the Destiny laboratory of the Earth-orbiting International Space Station. (NASA)NASA Directed Acyclic Graph Files
      + DAG File Information (HSRB Home Page)
      + SANS Risk DAG and Narrative (PDF)
      + SANS Risk DAG Code (TXT)
      Human Research Roadmap
      + Risk of Spaceflight Associated Neuro-ocular Syndrome
      + 2022 April Evidence Report (PDF)
      Human System Risks Share
      Details
      Last Updated Mar 11, 2025 EditorRobert E. LewisLocationJohnson Space Center Related Terms
      Human Health and Performance Human System Risks Explore More
      1 min read Risk of Toxic Substance Exposure
      Article 15 mins ago 1 min read Risk of Urinary Retention
      Article 15 mins ago 1 min read Risk to Crew Health Due to Electrical Shock (Electrical Shock Risk)
      Article 15 mins ago Keep Exploring Discover More Topics From NASA
      Humans In Space
      Missions
      International Space Station
      Solar System
      View the full article
    • By NASA
      A Satellite for Optimal Control and Imaging (SOC-i) CubeSat awaits integration at Firefly’s Payload Processing Facility at Vandenberg Space Force Base, California on Thursday, June 6, 2024. SOC-i, along with several other CubeSats, will launch to space on an Alpha rocket during NASA’s Educational Launch of Nanosatellites (ELaNa) 43 mission as part of the agency’s CubeSat Launch Initiative and Firefly’s Venture-Class Launch Services Demonstration 2 contract.NASA NASA is collaborating with the U.S. Air Force and U.S. Space Force to offer a set of hands-on learning engagements that will help higher education institutions, faculty, and students learn more about what it takes to build small satellites and enhance the potential to be selected for flight opportunities. 
      Teams selected for the University Nanosatellite Program Mission Concept 2025 Summer Series will receive systems engineering training that prepares them for the industrial workforce while developing small satellite expertise at U.S. universities. The program, which runs from May through August 2025, also enhances students’ potential to be selected for flights to space as part of NASA’s CSLI (CubeSat Launch Initiative) and the U.S. Air Force University Nanosatellite Program. 
      “Part of NASA’s mission is to inspire the next generation,” said Liam Cheney, CSLI mission manager at the agency’s Kennedy Space Center in Florida. “The CubeSat Launch Initiative is providing opportunities for students and educators to experiment with technology and send their missions to space.”
      The program allows faculty and students to form teams for the summer program without using university resources, and includes travel funding for kickoff, final event, and any in-person reviews, among other benefits. 
      All U.S colleges and universities are eligible, and teams at minority-serving institutions and Historically Black Colleges and Universities are strongly encouraged to apply for the Mission Concepts 2025 Summer Series in accordance with the criteria in the request for proposal. The solicitation opened on Jan. 6, with a deadline to apply by Monday, Feb. 3. 
      The agency’s collaboration with the U.S. Air Force and U.S. Space Force helps broaden access to space and strengthen the capabilities and knowledge of higher education institutions, faculty, and students. 
      NASA’s CubeSat Launch Initiative provides opportunities for CubeSats built by U.S. educational institutions, and non-profit organizations, including informal educational institutions such as museums and science centers to fly on upcoming launches. Through innovative technology partnerships NASA provides these CubeSat developers a low-cost pathway to conduct scientific investigations and technology demonstrations in space, thus enabling students, teachers, and faculty to obtain hands-on flight hardware design, development, and build experience.
      For more information, visit: Solicitation – UNP

      View the full article
  • Check out these Videos

×
×
  • Create New...