Jump to content

Elastocaloric Refrigeration for Spaceflight Applications (ESRA)


Recommended Posts

  • Publishers
Posted

1 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Jun Cui

Iowa State University

ESI23 Cui Quadchart.pdf

Elastocaloric materials heat up when exposed to a mechanical force and cool down, removing the same amount of heat from their environment, when the force is removed.  Professor Cui will use the recently established DFT/machine learning guided metals development methodology to unravel the complex relationships between compositions, crystal structures, phase transformation, and fatigue behavior of the elastocaloric materials. He will develop novel, new elastocaloric materials and use them as the basis of a high-performance refrigeration system for NASA exploration applications.

Back to ESI 2023

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      On 4 December 2024, the European Space Agency (ESA) and the Indian Space Research Organisation (ISRO) signed an agreement that will see ESA provide ground station support to the missions in ISRO’s Gaganyaan human spaceflight programme.
      View the full article
    • By NASA
      4 min read
      Expanded AI Model with Global Data Enhances Earth Science Applications 
      On June 22, 2013, the Operational Land Imager (OLI) on Landsat 8 captured this false-color image of the East Peak fire burning in southern Colorado near Trinidad. Burned areas appear dark red, while actively burning areas look orange. Dark green areas are forests; light green areas are grasslands. Data from Landsat 8 were used to train the Prithvi artificial intelligence model, which can help detect burn scars. NASA Earth Observatory NASA, IBM, and Forschungszentrum Jülich have released an expanded version of the open-source Prithvi Geospatial artificial intelligence (AI) foundation model to support a broader range of geographical applications. Now, with the inclusion of global data, the foundation model can support tracking changes in land use, monitoring disasters, and predicting crop yields worldwide. 
      The Prithvi Geospatial foundation model, first released in August 2023 by NASA and IBM, is pre-trained on NASA’s Harmonized Landsat and Sentinel-2 (HLS) dataset and learns by filling in masked information. The model is available on Hugging Face, a data science platform where machine learning developers openly build, train, deploy, and share models. Because NASA releases data, products, and research in the open, businesses and commercial entities can take these models and transform them into marketable products and services that generate economic value. 
      “We’re excited about the downstream applications that are made possible with the addition of global HLS data to the Prithvi Geospatial foundation model. We’ve embedded NASA’s scientific expertise directly into these foundation models, enabling them to quickly translate petabytes of data into actionable insights,” said Kevin Murphy, NASA chief science data officer. “It’s like having a powerful assistant that leverages NASA’s knowledge to help make faster, more informed decisions, leading to economic and societal benefits.”
      AI foundation models are pre-trained on large datasets with self-supervised learning techniques, providing flexible base models that can be fine-tuned for domain-specific downstream tasks.
      Crop classification prediction generated by NASA and IBM’s open-source Prithvi Geospatial artificial intelligence model. Focusing on diverse land use and ecosystems, researchers selected HLS satellite images that represented various landscapes while avoiding lower-quality data caused by clouds or gaps. Urban areas were emphasized to ensure better coverage, and strict quality controls were applied to create a large, well-balanced dataset. The final dataset is significantly larger than previous versions, offering improved global representation and reliability for environmental analysis. These methods created a robust and representative dataset, ideal for reliable model training and analysis. 
      The Prithvi Geospatial foundation model has already proven valuable in several applications, including post-disaster flood mapping and detecting burn scars caused by fires.
      One application, the Multi-Temporal Cloud Gap Imputation, leverages the foundation model to reconstruct the gaps in satellite imagery caused by cloud cover, enabling a clearer view of Earth’s surface over time. This approach supports a variety of applications, including environmental monitoring and agricultural planning.  
      Another application, Multi-Temporal Crop Segmentation, uses satellite imagery to classify and map different crop types and land cover across the United States. By analyzing time-sequenced data and layering U.S. Department of Agriculture’s Crop Data, Prithvi Geospatial can accurately identify crop patterns, which in turn could improve agricultural monitoring and resource management on a large scale. 
      The flood mapping dataset can classify flood water and permanent water across diverse biomes and ecosystems, supporting flood management by training models to detect surface water. 
      Wildfire scar mapping combines satellite imagery with wildfire data to capture detailed views of wildfire scars shortly after fires occurred. This approach provides valuable data for training models to map fire-affected areas, aiding in wildfire management and recovery efforts.
      Burn scar mapping generated by NASA and IBM’s open-source Prithvi Geospatial artificial intelligence model. This model has also been tested with additional downstream applications including estimation of gross primary productivity, above ground biomass estimation, landslide detection, and burn intensity estimations. 
      “The updates to this Prithvi Geospatial model have been driven by valuable feedback from users of the initial version,” said Rahul Ramachandran, AI foundation model for science lead and senior data science strategist at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “This enhanced model has also undergone rigorous testing across a broader range of downstream use cases, ensuring improved versatility and performance, resulting in a version of the model that will empower diverse environmental monitoring applications, delivering significant societal benefits.”
      The Prithvi Geospatial Foundation Model was developed as part of an initiative of NASA’s Office of the Chief Science Data Officer to unlock the value of NASA’s vast collection of science data using AI. NASA’s Interagency Implementation and Advanced Concepts Team (IMPACT), based at Marshall, IBM Research, and the Jülich Supercomputing Centre, Forschungszentrum, Jülich, designed the foundation model on the supercomputer Jülich Wizard for European Leadership Science (JUWELS), operated by Jülich Supercomputing Centre. This collaboration was facilitated by IEEE Geoscience and Remote Sensing Society.  
      For more information about NASA’s strategy of developing foundation models for science, visit https://science.nasa.gov/artificial-intelligence-science.
      Share








      Details
      Last Updated Dec 04, 2024 Related Terms
      Earth Science & Research Explore More
      9 min read Towards Autonomous Surface Missions on Ocean Worlds


      Article


      23 hours ago
      5 min read NASA-Led Team Links Comet Water to Earth’s Oceans
      Scientists find that cometary dust affects interpretation of spacecraft measurements, reopening the case for comets…


      Article


      23 hours ago
      1 min read Coming Spring 2025: Planetary Defenders Documentary
      ow would humanity respond if we discovered an asteroid headed for Earth? NASA’s Planetary Defenders…


      Article


      23 hours ago
      Keep Exploring Discover Related Topics
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      Parallels between spaceflight and the aging process may extend to encompass frailty.
      Figure Left: Venn diagram of differentially expressed frailty genes in rodent and human samples shows the common differentially expressed genes between the two species.
      Figure Right: Schematic of the Inspiration4 experiments and samples.
      This study relied on data from the OSDR, including 7 rodent spaceflight datasets, 2 human space analog datasets, astronaut data from the Japan Aerospace Exploration Agency (JAXA) and Inspiration4. Data on sarcopenia were mined from National Center for Biotechnology Information’s Gene Expression Omnibus. Spaceflight accelerates the symptoms of aging in astronaut bodies by inducing genomic instability, mitochondrial dysfunction, and increased inflammation. This is the first study to comprehensively examine biomarkers and pathways associated with spaceflight and terrestrial aging, frailty, and sarcopenia.
      Main Findings:
      Spaceflight induced notable changes in gene expression patterns related to frailty and muscle loss indicative of a frailty-like condition. Exposure to the space environment leads to changes related to inflammation, muscle wasting, and other age-related features observed in both mice and humans. Parallels between spaceflight and the aging process may extend to also encompass frailty. Impact: This work reveals the need for a frailty index to monitor development of frailty-related astronaut health risks during spaceflight. The results provide insights into potential avenues for developing countermeasures to combat frailty-related health risks for both astronauts and aging populations on Earth.
      This study was part of the 44-article Space Omics and Medical Atlas (SOMA) package published in Nature. It demonstrates the effectiveness of open science combined with robust data submission, standards, and curation. The study began within and was organized through the Analysis Working Groups (AWGs) of NASA’s Open Science Data Repository (OSDR).
      View the full article
    • By Space Force
      U.S. Space Forces - Space supports NASA human space flight by planning, integrating, executing, and assessing space operations, providing continuous space situational awareness monitoring for the International Space Station and visiting spacecraft.

      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Expedition 64 Flight Engineer Victor Glover of NASA sips on a water bag. The latest book marks our third effort to review available literature regarding the role of nutrition in astronaut health. In 2009, we reviewed the existing knowledge and history of human nutrition for spaceflight, with a key goal of identifying additional data that would be required before NASA could confidently reduce the risk of an inadequate food system or inadequate nutrition to as low as possible in support of human expeditions to the Moon or Mars. We used a nutrient-by-nutrient approach to address this effort, and we included a brief description of the space food systems during historical space programs.
      In 2014, we published a second volume of the book, which was not so much a second edition, but rather a view of space nutrition from a different perspective. This volume updated research that had been published in the intervening 6 years and addressed space nutrition with a more physiological systems-based approach.
      The current version is an expanded, updated version of that second book, providing both a systems approach overall, but also including details of nutrients and their roles within each system. As such, this book is divided into chapters based on physiological systems (e.g., bone, muscle, ocular); highlighted in each chapter are the nutrients associated with that particular system. We provide updated information on space food
      systems and constraints of the same, and provide dietary intake data from International Space Station (ISS) astronauts.
      We present data from ground-based analog studies, designed to mimic one or more conditions similar to those produced by spaceflight. Head-down tilt bed rest is a common analog of the general (and specifically musculoskeletal) disuse of spaceflight. Nutrition research from Antarctica relies on the associated confinement
      and isolation, in addition to the lack of sunlight exposure during the winter months. Undersea habitats help expand our understanding of nutritional changes in a confined space with a hyperbaric atmosphere. We also review spaceflight research, including data from now “historical” flights on the Space Shuttle, data from the Russian space station Mir, and earlier space programs such as Apollo and Skylab. The ISS, now more than
      20 years old, has provided (and continues to provide) a wealth of nutrition findings from extended-duration spaceflights of 4 to 12 months. We review findings from this platform as well, providing a comprehensive review of what is known regarding the role of human nutrition in keeping astronauts healthy.
      With this latest book, we hope we have accurately captured the current state of the field of space food and nutrition, and that we have provided some guideposts for work that remains to be done to enable safe and successful human exploration beyond low-Earth orbit.
      Human Adaptation to Spaceflight: The Role of Food and Nutrition – 2nd Edition
      Download 2nd Edition PDF
      Human Adaptation to Spaceflight: The Role of Food and Nutrition – 1st Edition
      Download 1st Edition PDF
      Education and Outreach Share
      Details
      Last Updated Oct 23, 2024 EditorRobert E. LewisLocationJohnson Space Center Related Terms
      Human Health and Performance Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...