Jump to content

Metamaterial Particles for Orbital Environment Remediation


Recommended Posts

  • Publishers
Posted

1 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Davide Guzzetti

Auburn University

ECF 2023 Quadchart Guzzetti.pdf

Professor Guzzetti will study and design small metamaterial particles which can be predictably moved by forces that exist on orbit like the Earth’s magnetic field or heat flux. These Programmable Metamaterial Particle Ensembles (PMPEs) could be deployed as dust clouds and used to deorbit small (<1cm), orbital debris.

Back to ECF 2023 Full List

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      u0022From a natural resources perspective, I often say that Wallops has all the aspects of NASA’s Kennedy Space Center (which shares its home with the Merritt Island National Wildlife Refuge) in Florida but in a compressed area,u0022 said Shari Miller, NEPA manager and natural resources manager at Wallops Flight Facility. u0022We protect all these species while launching rockets and unmanned aerial systems (UASs) or drones above them.u0022NASA’s Wallops Flight Facility / Jamie Adkins Name: Shari Miller
      Title: Wallops Flight Facility National Environmental Policy Act (NEPA) Manager and Wallops Natural Resources Manager
      Formal Job Classification: Environmental Engineer
      Organization: Medical and Environmental Management Division, Goddard Space Flight Center (Code 250)
      What do you do at Goddard?
      For half my job, I do environmental planning and review all projects and missions looking to come to Wallops or that Wallops project managers are looking to perform anywhere in the world. For the other half of my job, I manage the natural resources permitting and review at Wallops.
      Why did you become an environmental engineer?
      I have always been an outdoors person and was raised to love nature and the environment. I have a Bachelor of Science in chemistry and biology from Salisbury University and a master’s in environmental science from the University of Maryland. I have worked at Wallops for over 23 years.
      What are some of Wallops’ unique environmental attributes?
      From a natural resources perspective, I often say that Wallops has all the aspects of NASA’s Kennedy Space Center (which shares its home with the Merritt Island National Wildlife Refuge) in Florida but in a compressed area. We have endangered species including nesting shorebirds called the piping plover and red knots, and protected species, including bald eagles and peregrine falcons. Loggerhead sea turtles sometimes nest on our shores. Seals may stop to rest. We protect all these species while launching rockets and unmanned aerial systems (UASs) or drones above them.
      For the other half of my job, I can be analyzing the environmental impacts of a rocket launched from a balloon over Hawaii ranging to that of replacing a bridge or building a new rocket launch pad at Wallops, all in the same day. Environmental impacts may include noise levels; socioeconomic effects in the community; and changes, positive or negative, to air, water, or other natural resources. Environmental planning allows the public to comment on proposed federal projects including infrastructure and mission.
      Shari Miller, National Environmental Policy Act (NEPA) manager and natural resources manager at Wallops Flight Facility, helps balance mission needs while also protecting Wallops’ diverse local ecosystem. u0022We have endangered species including nesting shorebirds called the piping plover and red knots, and protected species, including bald eagles and peregrine falcons. Loggerhead sea turtles sometimes nest on our shores. Seals may stop to rest.u0022NASA’s Wallops Flight Facility / Shari Miller What is the coolest thing you have done at work?
      In 2015, I worked on a NASA mission called the Low Density Supersonic Decelerator (LDSD) project in Hawaii. A sounding rocket launched from a balloon was used to test a decelerator and parachute for landing rovers on Mars. NASA’s Jet Propulsion Lab in Southern California designed the decelerator and parachute. Wallops designed the balloon and sounding rocket system and performed the launch. The Navy’s Pacific Missile Range Facility provided the launch range in Hawaii. Both the balloon and the decelerator systems had the potential to land in a National Marine Monument, a highly protected area. I worked with the Hawaiian governor’s office, the Office of Hawaiian Affairs, the U.S. Fish and Wildlife Service and the National Marine Fisheries Service on obtaining the necessary permits.
      I loved the challenge of working with so many entities. I planned all the permits and analyses to ensure that the mission could proceed.
      Do you like to plan in advance?
      The point of early planning is to “know before you go” to allow time to make any necessary changes. I am a planner, at work and in life. I start planning early. How are you going to know where you are going and get plane tickets unless someone does some advance planning?
      Who inspires you?
      My parents inspire me. My father passed away, but he taught me to appreciate a thunderstorm. My mom is in her mid-seventies and retired, but she never sits still. She is one of the most on-the-go people I know. If she is not walking her dogs in the woods, she is either at a card game, a college class, or on a lunch date with friends. Her energy and love of learning and reading and her excitement to share what she has learned, inspires me. I am a data-driven, scientific person. She gave me my love of nature, science, data, and learning.
      u0022I can be analyzing the environmental impacts of a rocket launched from a balloon over Hawaii ranging to that of replacing a bridge or building a new rocket launch pad at Wallops, all in the same day,u0022 Wallops Flight Facility resources manager Shari Miller describes her job. u0022Environmental impacts may include noise levels; socioeconomic effects in the community; and changes, positive or negative, to air, water, or other natural resources.u0022NASA’s Wallops Flight Facility / Shari Miller As a nature lover and environmentalist, what is your favorite place in the world and why?
      I love hiking with my two dogs in the woods and to our local creeks and lakes.
      I love to travel. I’ve been fortunate to have traveled a lot, including to Japan and Thailand. The top of my traveling wish list is New Zealand.
      How does being in nature ground you?
      I am a high-energy person. Being in nature allows me to slow down and breathe; to listen to the stillness, the wind and birdsong. Just to listen to the quiet. All this grounds and calms me, it is almost meditative. It is also energizing and recharges my battery.
      What is your “six-word memoir”? A six-word memoir describes something in just six words.
      Nature-lover balancing the environment and missions.
      By Elizabeth M. Jarrell
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
      Share
      Details
      Last Updated Feb 10, 2025 Related Terms
      Goddard Space Flight Center People of Goddard People of NASA Wallops Flight Facility Women's History Month Keep Exploring Discover More Topics From NASA
      Goddard Space Flight Center
      Wallops Flight Facility
      Environmental Management Division
      Explore Earth Science
      From its origins, NASA has studied our planet in novel ways, using a fleet of satellites and ambitious airborne and ground-based…
      View the full article
    • By NASA
      NASA White Sands Test Facility
      Las Cruces, New Mexico
      Soil Remediation at the 600 Area Off-Site Pile
      Origins of the 600 Area Off-Site Pile
      The NASA White Sands Test Facility (WSTF) is crucial for supporting space exploration and technology development. Located in New Mexico, it provides a controlled environment for testing and evaluating spacecraft, propulsion systems, and other aerospace technologies. The facility is instrumental in conducting critical tests such as engine firings, thermal and environmental testing, and materials research. Its role in ensuring the safety, reliability, and performance of spacecraft and systems makes it a key asset in NASA’s mission to explore space and advance scientific knowledge. Unfortunately, past practices associated with the execution of its mission adversely impacted soil and groundwater resources. 
      From June 1974 to December 1979, sludge and soil removed from a domestic and industrial wastewater lagoon was stockpiled on Bureau of Land Management land west of the NASA White Sands Test Facility (WSTF) facility boundary, less than a mile from the lagoon. When accumulation of material ceased, the sludge/soil debris pile lay dormant with no boundary identification. In 1993, during a Resource Conservation and Recovery Act field investigation the debris pile was identified and reported to the New Mexico Environment Department (NMED) and designated as Solid Waste Management Unit (SWMU) 16.
      Investigation Summary
      Initial investigations were completed at SWMU 16 in 2015 and 2018 to characterize the stockpiled sludge/soil and native soils beneath the stockpile to a depth of 30 feet. Analysis of soil sample data indicated the contaminants in the pile posed a risk to human health and the environment due to identified concentrations of nitrates, metals, volatile and semi-volatile organics, pesticides, polychlorinated biphenyls, and dioxins and furans. The NMED agreed to the removal and off-site disposal of New Mexico Special Waste in 2021.
      Removal, Disposal, Confirmation Sampling
      Excavation of the stockpile and the upper 6 inches of native soil was completed in January 2024. Excavation of native soils extended approximately 10 ft beyond the extent of the pile. A total of 1,072.7 tons of sludge and soil were disposed at the Corralitos Landfill.  In February 2024, confirmatory soil samples were collected from 38 locations on a 30-foot grid established across SWMU 16, encompassing the location of the removed stockpile and all areas potentially affected by site operations. These samples were submitted for laboratory chemical analyses to determine if NASA had met is remedial objectives and eliminated the exposure risk to human health and the environment.
      Risk Assessment
      The results showed that NASA had succeeded. The site was restored.  Results of soil sample analyses did not identify site contaminants remain at the site, and a risk assessment did not identify elevated risk to receptors or to groundwater beneath the site. NASA concluded that site contaminants have been removed, the risk to human health and the environment are below regulatory targets. NASA recommended a change in site status from “Requiring Corrective Action” to “Corrective Action Complete without Controls”. The report of results is currently under review by the NMED.
      Visit nasa.gov/emd to learn more about NASA’s Environmental Management Division (EMD)!
      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      In-person participants L-R standing: Dave Francisco, Joanne Kaouk, Dr. Richard Moon, Dr. Tony Alleman, Dr. Sean Hardy, Sarah Childress, Kristin Coffey, Dr. Ed Powers, Dr. Doug Ebersole, Dr. Steven Laurie, Dr. Doug Ebert; L-R seated: Dr. Alejandro Garbino, Dr. Robert Sanders, Dr. Kristi Ray, Dr. Mike Gernhardt, Dr. Joseph Dervay, Dr. Matt Makowski). Not pictured: Dr. Caroline Fife In June 2024, the NASA Office of the Chief Health and Medical Officer (OCHMO) Standards Team hosted an independent assessment working group to review the status and progress of research and clinical activities intended to mitigate the risk of decompression sickness (DCS) related to patent foramen ovale (PFO) during spaceflight and associated ground testing and human subject studies.
      Decompression sickness (DCS) is a condition which results from dissolved gases (primarily nitrogen) forming bubbles in the bloodstream and tissues. It is usually experienced in conditions where there are rapid decreases in ambient pressure, such as in scuba divers, high-altitude aviation, or other pressurized environments. The evolved gas bubbles have various physiological effects and can obstruct the blood vessels, trigger inflammation, and damage tissue, resulting in symptoms of DCS. NASA presently classifies DCS into two categories: Type I DCS, which is less severe, typically leads to musculoskeletal symptoms including pain in the joints or muscles, or skin rash. Type II DCS is more severe and commonly results in neurological, inner ear, and cardiopulmonary symptoms. The risk of DCS in spaceflight presents during extravehicular activities (EVAs) in which astronauts perform mission tasks outside the spaceflight vehicle while wearing a pressurized suit at a lower pressure than the cabin pressure. DCS mitigation protocols based on strategies to reduce systemic nitrogen load are implemented through the combination of habitat environmental parameters, EVA suit pressure, and breathing gas procedures (prebreathe protocols) to achieve safe and effective mission operations. The pathophysiology of DCS has still not been fully elucidated since cases occur despite the absence of detected gas bubbles but includes right to left shunting of venous gas emboli (VGE) via several potential mechanisms, one of which is a Patent Foramen Ovale (PFO).
      From: Dr. Schochet & Dr. Lie, Pediatric Pulmonologists
      Reference OCHMO-TB-037 Decompression Sickness (DCS) Risk Mitigation technical brief for additional information.
      A PFO is a shunt between the right atrium and the left atrium of the heart, which is a persisting remnant of a physiological communication present in the fetal heart. Post-natal increases in left atrial pressure usually force the inter-septal valve against the septum secundum and within the first 2 years of life, the septae permanently fuse due to the development of fibrous adhesions. Thus, all humans are born with a PFO and approximately 75% of PFOs fuse following childbirth. For the 25% of the population’s whose PFOs do not fuse, ~6% have what is considered by some to be a large PFO (> 2 mm). PFO diameter can increase with age. The concern with PFOs is that with a right to left shunt between the atria, venous emboli gas may pass from the right atrium (venous) to the left atrium (arterial) (“shunt”), thus by-passing the normal lung filtration of venous emboli which prevent passage to the arterial system. Without filtration, bubbles in the arterial system may lead to a neurological event such as a stroke. Any activity that increases the right atrium/venous pressure over the left atrium/arterial pressure (such as a Valsalva maneuver, abdominal compression) may further enable blood and/or emboli across a PFO/shunt.
      From: Nuffield Department of Clinical Neurosciences
      The purpose of this working group was to review and provide analysis on the status and progress of research and clinical activities intended to mitigate the risk of PFO and DCS issues during spaceflight. Identified cases of DCS during NASA exploration atmosphere ground testing conducted in pressurized chambers led to the prioritization of the given topic for external review. The main goals of the working group included:
      Quantification of any increased risk associated with the presence of a PFO during decompression protocols utilized in ground testing and spaceflight EVAs, as well as unplanned decompressions (e.g., cabin depressurization, EVA suit leak). Describe risks and benefits of PFO screening in astronaut candidates, current crewmembers, and chamber test subjects. What are potential risk reduction measures that could be considered if a person was believed to be at increased risk of DCS due to a PFO? What research and/or technology development is recommended that could help inform and/or mitigate PFO-related DCS risk? The working group took place over two days at NASA’s Johnson Space Center and included NASA subject matter experts and stakeholders, as well as invited external reviewers from areas including cardiology, hypobaric medicine, spaceflight medicine, and military occupational health. During the working group, participants were asked to review past reports and evidence related to PFOs and risk of DCS, materials and information regarding NASA’s current experience and practices, and case studies and subsequent decision-making processes. The working group culminated in an open-forum discussion where recommendations for current and future practices were conferred and subsequently summarized in a final summary report, available on the public NASA OCHMO Standards Team website.
      The following key findings are the main take-aways from the OCHMO independent assessment:
      In an extreme exposure/high-risk scenario, excluding individuals with a PFO and treating PFOs does not necessarily decrease the risk of DCS or create a ‘safe’ environment. It may create incremental differences and slightly reduce overall risk but does not make the risk zero. There are other physiological factors that also contribute to the risk of DCS that may have a larger impact (see 7.0 Other Physiological Factors in the findings section).  Based on the available evidence and the risk of current decompression exposures (based on current NASA protocols and NASA-STD-3001 requirements to limit the risk of DCS), it is not recommended to screen for PFOs in any spaceflight or ground testing participants. The best strategy to reduce the risk of DCS is to create as safe an environment as possible in every scenario, through effective prebreathe protocols, safety, and the capability to rapidly treat DCS should symptoms occur.  Based on opinion, no specific research is required at this time to further characterize PFOs with DCS and altitude exposure, due to the low risk and preference to institute adequate safe protocols and ensuring treatment availability both on the ground and in spaceflight. For engineering protocols conducted on the ground, it should be ensured that the same level of treatment capability (treatment chamber in the immediate vicinity of the testing) is provided as during research protocols. The ability to immediately treat a DCS case is critical in ensuring the safety of the test subjects. The full summary report includes detailed background information, discussion points from the working group, and conclusions and recommendations. The findings from the working group and resulting summary report will help to inform key stakeholders in decision-making processes for future ground testing and spaceflight operations with the main goal of protecting crew health and safety to ensure overall mission success.
      Summary Report About the Author
      Sarah D. Childress

      Share
      Details
      Last Updated Dec 31, 2024 Related Terms
      Office of the Chief Health and Medical Officer (OCHMO) Human Health and Performance Humans in Space International Space Station (ISS) Explore More
      2 min read Station Science Top News: Dec. 20, 2024
      Article 2 weeks ago 4 min read Artemis II Core Stage Vertical Integration Begins at NASA Kennedy
      Article 2 weeks ago 3 min read NASA, Axiom Space Change Assembly Order of Commercial Space Station
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Starfish Space has been awarded SBIR Phase III funding for a mission to inspect defunct satellites to increase opportunities to mitigate space debris. An artist’s concept image shows the company’s Otter spacecraft, which is capable of inspecting and deorbiting defunct spacecraft, in orbit.Starfish Space NASA is advancing an innovative approach to enabling commercial inspection of defunct, or inoperable, satellites in low Earth orbit, a precursor to capturing and repairing or removing the satellites.
      The agency has awarded Starfish Space of Seattle, Washington, a Phase III Small Business Innovation Research (SBIR) contract to complete the Small Spacecraft Propulsion and Inspection Capability (SSPICY) mission. The award follows a Phase III study, which funded four U.S. small businesses including Starfish to develop mission concepts. Starfish Space will receive $15 million over three years to execute the mission.
      The ability to inspect defunct spacecraft and identify opportunities for repair or deorbiting is critical to maintaining a safe orbital environment for spacecraft and humans. Orbital debris mitigation is a key component of NASA’s Space Sustainability Strategy.
      “The SSPICY mission is designed to mature technologies needed for U.S. commercial capabilities for satellite servicing and logistics or disposal,” said Bo Naasz, senior technical lead for in-space servicing, manufacturing, and assembly in NASA’s Space Technology Mission Directorate. “In-space inspection helps us characterize the physical state of a satellite, gather data on what may leave spacecraft stranded, and improve our understanding of fragmentations and collisions, a difficult but critical factor in a sustainable space operating environment.”
      The Starfish-led mission uses the company’s Otter spacecraft, a small satellite about the size of an oven, which is designed to inspect, dock with, and service or deorbit other satellites. Otter’s electric propulsion system will not only help it efficiently travel to multiple satellites, but the SSPICY demonstration also will mature the spacecraft’s ability to perform inspections using electric propulsion, an important enabling technology not typically used for rendezvous and proximity operations.
      During the SSPICY mission, Otter will visit and inspect multiple U.S. owned defunct satellites that have agreed to be visited and inspected – a delicate and challenging task, as satellites move quickly and are kept far apart from each other for safety. Otter will approach within hundreds of meters of each satellite to conduct inspections during mission operations. During the inspection, Otter will gather key information about each of the debris objects including their spin rate, spin axes, and current conditions of the objects’ surface materials.
      The SSPICY mission is the first commercial space debris inspection funded by NASA and supports the agency’s efforts to extend the life of satellites while reducing space debris. Satellites that are no longer in use can break apart or collide with one another, creating debris clouds that pose risk to human spaceflight, science and robotic missions in Earth’s orbit, and missions to other planets in the solar system. Data from inspections like those planned during the SSPICY demonstration will play a critical role in understanding the nature of defunct satellites and advancing solutions for reuse or disposal.
      “We are excited to expand our partnership with NASA, building on our shared commitment to advancing in-space manufacturing and assembly capabilities,” said Trevor Bennett, co-founder of Starfish Space. “It’s an honor for Starfish to lead the first commercial debris inspection mission funded by NASA. We look forward to collaborating on this and future satellite servicing missions to enable a new paradigm for humanity in space.”
      The Otter spacecraft is expected to launch in late 2026 and will begin performing inspections in 2027.
      The SSPICY demonstration is funded and managed by NASA’s Small Spacecraft Technology program based at NASA’s Ames Research Center in California’s Silicon Valley. The award is enabled by NASA’s SBIR program, which is open to U.S. small businesses to develop an innovation or technology. These programs are part of NASA’s Space Technology Mission Directorate.
      Learn more at:
      https://www.nasa.gov/space-technology-mission-directorate
      Share
      Details
      Last Updated Sep 25, 2024 Related Terms
      Ames Research Center Small Business Innovation Research / Small Business Small Satellite Missions Small Spacecraft Technology Program Space Sustainability Space Technology Mission Directorate Explore More
      3 min read NASA’s Record-Breaking Laser Demo Completes Mission
      Article 5 hours ago 4 min read ­­Robotic Moving ‘Crew’ Preps for Work on Moon 
      Article 7 hours ago 4 min read NASA Expands Small Business, Industry Engagement Resources
      Article 2 days ago Keep Exploring Discover Related Topics
      About Ames
      Space Technology Mission Directorate
      Ames Research Center SBIR/STTR Program Office 
      NASA’s Space Sustainability Strategy
      View the full article
    • By Space Force
      DAF senior leaders focused on how the Air Force and Space Force must capitalize and leverage acceptable risk in future planning, adapt to the resourcing and risks present in today’s dynamic environment.

      View the full article
  • Check out these Videos

×
×
  • Create New...