Members Can Post Anonymously On This Site
A journey through ice and fire
-
Similar Topics
-
By USH
While observing the Orion Nebula with his 12-inch Dobsonian telescope, a sky-watcher noticed an unusual flashing object. As stars appeared to drift due to Earth's rotation, this particular object while flashing approximately every 20 seconds clearly travels through deep space.
The observer wonders whether it might be a rotating satellite or not. However, this isn’t the first sighting of cigar-shaped UFOs or other mysterious objects traveling through space near the Orion Nebula, so it is quite possible that it could be an interstellar craft.
Over the years, I have shared several articles, complete with images and videos, documenting similar UFO sightings around the Orion Nebula. You can explore these under the tag: Orion Nebula.
Interestingly, these sightings have all occurred between November and February, suggesting there may be a seasonal pattern to these observations.
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Researchers think meltwater beneath Martian ice could support microbial life.
The white material seen within this Martian gully is believed to be dusty water ice. Scientists believe this kind of ice could be an excellent place to look for microbial life on Mars today. This image, showing part of a region called Dao Vallis, was captured by NASA’s Mars Reconnaissance Orbiter in 2009.NASA/JPL-Caltech/University of Arizona These holes, captured on Alaska’s Matanuska Glacier in 2012, are formed by cryoconite — dust particles that melt into the ice over time, eventually forming small pockets of water below the glacier’s surface. Scientists believe similar pockets of water could form within dusty water ice on Mars.Kimberly Casey CC BY-NC-SA 4.0 While actual evidence for life on Mars has never been found, a new NASA study proposes microbes could find a potential home beneath frozen water on the planet’s surface.
Through computer modeling, the study’s authors have shown that the amount of sunlight that can shine through water ice would be enough for photosynthesis to occur in shallow pools of meltwater below the surface of that ice. Similar pools of water that form within ice on Earth have been found to teem with life, including algae, fungi, and microscopic cyanobacteria, all of which derive energy from photosynthesis.
“If we’re trying to find life anywhere in the universe today, Martian ice exposures are probably one of the most accessible places we should be looking,” said the paper’s lead author, Aditya Khuller of NASA’s Jet Propulsion Laboratory in Southern California.
Mars has two kinds of ice: frozen water and frozen carbon dioxide. For their paper, published in Nature Communications Earth & Environment, Khuller and colleagues looked at water ice, large amounts of which formed from snow mixed with dust that fell on the surface during a series of Martian ice ages in the past million years. That ancient snow has since solidified into ice, still peppered with specks of dust.
Although dust particles may obscure light in deeper layers of the ice, they are key to explaining how subsurface pools of water could form within ice when exposed to the Sun: Dark dust absorbs more sunlight than the surrounding ice, potentially causing the ice to warm up and melt up to a few feet below the surface.
The white edges along these gullies in Mars’ Terra Sirenum are believed to be dusty water ice. Scientists think meltwater could form beneath the surface of this kind of ice, providing a place for possible photosynthesis. This is an enhanced-color image; the blue color would not actually be perceptible to the human eye.NASA/JPL-Caltech/University of Arizona Mars scientists are divided about whether ice can actually melt when exposed to the Martian surface. That’s due to the planet’s thin, dry atmosphere, where water ice is believed to sublimate — turn directly into gas — the way dry ice does on Earth. But the atmospheric effects that make melting difficult on the Martian surface wouldn’t apply below the surface of a dusty snowpack or glacier.
Thriving Microcosms
On Earth, dust within ice can create what are called cryoconite holes — small cavities that form in ice when particles of windblown dust (called cryoconite) land there, absorb sunlight, and melt farther into the ice each summer. Eventually, as these dust particles travel farther from the Sun’s rays, they stop sinking, but they still generate enough warmth to create a pocket of meltwater around them. The pockets can nourish a thriving ecosystem for simple lifeforms..
“This is a common phenomenon on Earth,” said co-author Phil Christensen of Arizona State University in Tempe, referring to ice melting from within. “Dense snow and ice can melt from the inside out, letting in sunlight that warms it like a greenhouse, rather than melting from the top down.”
Christensen has studied ice on Mars for decades. He leads operations for a heat-sensitive camera called THEMIS (Thermal Emission Imaging System) aboard NASA’s 2001 Mars Odyssey orbiter. In past research, Christensen and Gary Clow of the University of Colorado Boulder used modeling to demonstrate how liquid water could form within dusty snowpack on the Red Planet. That work, in turn, provided a foundation for the new paper focused on whether photosynthesis could be possible on Mars.
In 2021, Christensen and Khuller co-authored a paper on the discovery of dusty water ice exposed within gullies on Mars, proposing that many Martian gullies form by erosion caused by the ice melting to form liquid water.
This new paper suggests that dusty ice lets in enough light for photosynthesis to occur as deep as 9 feet (3 meters) below the surface. In this scenario, the upper layers of ice prevent the shallow subsurface pools of water from evaporating while also providing protection from harmful radiation. That’s important, because unlike Earth, Mars lacks a protective magnetic field to shield it from both the Sun and radioactive cosmic ray particles zipping around space.
The study authors say the water ice that would be most likely to form subsurface pools would exist in Mars’ tropics, between 30 degrees and 60 degrees latitude, in both the northern and southern hemispheres.
Khuller next hopes to re-create some of Mars’ dusty ice in a lab to study it up close. Meanwhile, he and other scientists are beginning to map out the most likely spots on Mars to look for shallow meltwater — locations that could be scientific targets for possible human and robotic missions in the future.
News Media Contacts
Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
2024-142
Share
Details
Last Updated Oct 17, 2024 Related Terms
Mars Astrobiology Jet Propulsion Laboratory Explore More
4 min read New Team to Assess NASA’s Mars Sample Return Architecture Proposals
NASA announced Wednesday a new strategy review team will assess potential architecture adjustments for the…
Article 20 hours ago 6 min read Christine Knudson Uses Earthly Experience to Study Martian Geology
Geologist Christine Knudson works with the Curiosity rover to explore Mars — from about 250…
Article 1 day ago 5 min read Snippet of Euclid Mission’s Cosmic Atlas Released by ESA
Article 2 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Jacquelyn Shuman visually assesses a prescribed fire at Ft. Stewart in Georgia, working with partner organizations as part of the Department of Defense Ft. Stewart 2024 Fire Research Campaign. USFS/Linda Chappell Jacquelyn Shuman, FireSense Project Scientist at NASA Ames Research Center, originally wanted to be a veterinarian. By the time she got to college, Shuman had switched interests to biology, which became a job teaching middle and high school science. Teaching pivoted to finance for a year, before Shuman returned to the science world to pursue a PhD.
It was in a forest ecology class taught by her future PhD advisor, Herman “Hank” Shugart, that she first discovered a passion for ecosystems and dynamic vegetation that led her into the world of fire science, and eventually to NASA Ames.
While Shuman’s path into the world of fire science was not a direct one, she views her diverse experiences as the key to finding a fulfilling career. “Do a lot of different things and try a lot of different things, and if one thing isn’t connecting with you, then do something different,” Shuman said.
Diving into the World of Fire
Shuman’s PhD program focused on boreal forest dynamics across Russia, examining how the forest changes in response to climate change and wildfire. During her research, she worked mainly with scientists from Russia, Canada, and the US through the Northern Eurasia Earth Science Partnership Initiative (NEESPI), where Shugart served as the NEESPI Chief Scientist. “The experience of having a highly supportive mentor, being a part of the NEESPI community, and working alongside other inspiring female scientists from across the globe helped me to stay motivated within my own research,” Shuman said.
After completing her PhD, Shuman wanted to become involved in collaborative science with a global impact, which led her to the National Center for Atmospheric Research (NCAR). There, she spent seven years working as a project scientist on the Next Generation Ecosystem Experiment NGEE-Tropics) on a dynamic vegetation model project called FATES (Functionally Assembled Terrestrial Ecosystem Simulator). As part of the FATES team, Shuman used computer modeling to test vegetation structure and function in tropical and boreal forests after wildfires, and was the lead developer for updating the fire portion of the model.
This figure shows fire characteristics from an Earth system model that uses vegetation structure and interactive fire. The FATES model captures the fire intensity associated with burned land and grass growth in the Southern Hemisphere. Shuman et al. 2024 GMD Fire has also played a powerful role in Shuman’s personal life. In 2021, the Marshall Fire destroyed neighborhoods near her hometown of Boulder, Colorado, causing over $513 million of damage and securing its place as the state’s most destructive wildfire. Despite this, Shuman is determined to not live in fear. “Fire is part of our lives, it’s a part of the Earth system, and it’s something we can plan for. We can live more sustainably with fires.” The way to live safely in a fire-inclusive ecosystem, according to Shuman, is to develop ways to accurately track and forecast wildfires and smoke, and to respond to them efficiently: efforts the fire community is continuously working on improving.
The Fire Science Community
Collaboration is a critical element of wildland fire management. Fire science is a field that involves practitioners such as firefighters and land managers, but also researchers such as modelers and forecasters; the most effective efforts, according to Shuman, come when this community works together. “People in fire science might be out in the field and carrying a drip torch and marching along in the hilltops and the grasslands or be behind a computer and analyzing remote sensing data,” Shuman said. “We need both pieces.”
Protecting communities from wildfire impacts is one of the most fulfilling aspects of Shuman’s career, and a goal that unites this community. “Fire research poses tough questions, but the people who are thinking about this are the people who are acting on it,” Shuman said. “They are saying, ‘What can we do? How can we think about this? What information do we need? What are the questions?’ It’s a special community to be a part of.”
Looking to the Future of Fire
Currently at NASA Ames Research Center, Shuman is the Project Scientist for FireSense: a project focused on delivering NASA science and technology to practitioners and operational agencies. Shuman acts as the lead for the project office, identifying and implementing tools and strategies. Shuman still does ecosystem modeling work, including implementing vegetation models that forecast the impact of fire, but also spends time traveling to active fires across the country so she can help partners implement NASA tools and strategies in real time.
FireSense Project Scientist Jacquelyn Shuman stands with Roger Ottmar (United States Forest Service), surveying potential future locations for prescribed burns in Fishlake National Forest. NASA Ames/Milan Loiacono
“Right now, many different communities are all recognizing that we can partner to identify the best path forward,” Shuman said. “We have an opportunity to use everyone’s strengths and unique perspectives. It can be a devastating thing for a community and an ecosystem when a fire happens. Everyone is interested in using all this collective knowledge to do more, together.”
Written by Molly Medin, NASA Ames Research Center
Share
Details
Last Updated Oct 17, 2024 Related Terms
General Earth Science Earth Science Division Explore More
4 min read Navigating Space and Sound: Jesse Bazley Supports Station Integration and Colleagues With Disabilities
Article 18 hours ago 3 min read Sacrifice and Success: NASA Engineer Honors Family Roots
Article 19 hours ago 7 min read What is a Coral Reef?
Article 2 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
SpaceX A SpaceX Falcon Heavy rocket carrying NASA’s Europa Clipper spacecraft lifts off from NASA’s Kennedy Space Center in Florida on Monday, Oct. 14, 2024.
Europa Clipper is the first mission designed to conduct a detailed study of Jupiter’s moon Europa to determine if it currently has habitable conditions. The spacecraft will travel 1.8 billion miles (2.9 billion km) to reach Jupiter in April 2030. It will orbit Jupiter and conduct 49 close flybys of Europa.
Follow Europa Clipper’s journey in NASA’s Eyes on the Solar System app.
Image credit: SpaceX
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A SpaceX Falcon Heavy rocket with the Europa Clipper spacecraft aboard is seen at Launch Complex 39A as preparations continue for the mission, Sunday, Oct. 13, at NASA’s Kennedy Space Center in Florida. NASA Find details about the launch sequences for the orbiter, which is targeting an Oct. 14 liftoff on its mission to search for ingredients of life at Jupiter’s moon Europa.
In less than 24 hours, NASA’s Europa Clipper spacecraft is slated to launch from the agency’s Kennedy Space Center in Florida aboard a Falcon Heavy rocket. Its sights are set on Jupiter’s ice-encased moon Europa, which the spacecraft will fly by 49 times, coming as close as 16 miles (25 kilometers) from the surface as it searches for ingredients of life.
Launch is set for 12:06 p.m. EDT on Monday, Oct. 14, with additional opportunities through Nov 6. Each opportunity is instantaneous, meaning there is only one exact time per day when launch can occur. Plans to launch Europa Clipper on Oct. 10 were delayed due to impacts of Hurricane Milton.
NASA’s Europa Clipper is the first mission dedicated to studying Jupiter’s icy moon Europa, one of the most promising places in our solar system to find an environment suitable for life outside of Earth. With its massive solar arrays extended, Europa Clipper could span a basketball court (100 feet, or 30.5 meters, tip to tip). In fact, it’s the largest spacecraft NASA has ever built for a planetary mission. The journey to Jupiter is a long one — 1.8 billion miles (2.9 billion kilometers) — and rather than taking a straight path there, Europa Clipper will loop around Mars and then Earth, gaining speed as it swings past.
The spacecraft will begin orbiting Jupiter in April 2030, and in 2031 it will start making those 49 science-focused flybys of Europa while looping around the gas giant. The orbit is designed to maximize the science Europa Clipper can conduct and minimize exposure to Jupiter’s notoriously intense radiation.
But, of course, before any of that can happen, the spacecraft has to leave Earth behind. The orbiter’s solar arrays are folded and stowed for launch. Testing is complete on the spacecraft’s various systems and its payload of nine science instruments and a gravity science investigation. Loaded with over 6,060 pounds (2,750 kilograms) of the propellant that will get Europa Clipper to Jupiter, the spacecraft has been encapsulated in the protective nose cone, or payload fairing, atop a SpaceX Falcon Heavy rocket, which is poised for takeoff from historic Launch Complex 39A.
Launch Sequences
The Falcon Heavy has two stages and two side boosters. After the side boosters separate, the core stage will be expended into the Atlantic Ocean. Then the second stage of the rocket, which will help Europa Clipper escape Earth’s gravity, will fire its engine.
Technicians encapsulated NASA’s Europa Clipper spacecraft inside payload fairings on Wednesday, Oct. 2, at NASA’s Kennedy Space Center in Florida. The fairings will protect the spacecraft during launch as it begins its journey to explore Jupiter’s icy moon Europa. NASA/Ben Smegelsky Once the rocket is out of Earth’s atmosphere, about 50 minutes after launch, the payload fairing will separate from its ride, split into two halves, and fall safely back to Earth, where it will be recovered and reused. The spacecraft will then separate from the upper stage about an hour after launch. Stable communication with the spacecraft is expected by about 19 minutes after separation from the rocket, but it could take somewhat longer.
About three hours after launch, Europa Clipper will deploy its pair of massive solar arrays, one at a time, and direct them at the Sun.
Mission controllers will then begin to reconfigure the spacecraft into its planned operating mode. The ensuing three months of initial checkout include a commissioning phase to confirm that all hardware and software is operating as expected.
While Europa Clipper is not a life-detection mission, it will tell us whether Europa is a promising place to pursue an answer to the fundamental question about our solar system and beyond: Are we alone?
Scientists suspect that the ingredients for life — water, chemistry, and energy — could exist at the moon Europa right now. Previous missions have found strong evidence of an ocean beneath the moon’s thick icy crust, potentially with twice as much liquid water as all of Earth’s oceans combined. Europa may be home to organic compounds, which are essential chemical building blocks for life. Europa Clipper will help scientists confirm whether organics are there, and also help them look for evidence of energy sources under the moon’s surface.
This artist’s concept depicts NASA’s Europa Clipper spacecraft in orbit at Jupiter as it passes over the gas giant’s icy moon Europa (lower right). Scheduled to arrive at Jupiter in April 2030, the mission will be the first to specifically target Europa for detailed science investigation. NASA/JPL-Caltech More About Europa Clipper
Europa Clipper’s three main science objectives are to determine the thickness of the moon’s icy shell and its interactions with the ocean below, to investigate its composition, and to characterize its geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet.
Managed by Caltech in Pasadena, California, NASA’s Jet Propulsion Laboratory leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory (APL) for NASA’s Science Mission Directorate in Washington. APL designed the main spacecraft body in collaboration with JPL and NASA’s Goddard Space Flight Center in Greenbelt, Maryland; NASA’s Marshall Space Flight Center in Huntsville, Alabama; and NASA’s Langley Research Center in Hampton, Virginia. The Planetary Missions Program Office at Marshall executes program management of the Europa Clipper mission.
NASA’s Launch Services Program, based at Kennedy, manages the launch service for the Europa Clipper spacecraft, which will launch on a SpaceX Falcon Heavy rocket from Launch Complex 39A at Kennedy.
Find more information about Europa here:
europa.nasa.gov
8 Things to Know About Europa Clipper Europa Clipper Teachable Moment NASA’s Europa Clipper Gets Its Giant Solar Arrays Kids Can Explore Europa With NASA’s Space Place Get the Europa Clipper Press Kit News Media Contacts
Meira Bernstein / Karen Fox
NASA Headquarters, Washington
202-358-1600
meira.b.bernstein@nasa.gov / karen.c.fox@nasa.gov
Gretchen McCartney
Jet Propulsion Laboratory, Pasadena, Calif.
818-287-4115
gretchen.p.mccartney@jpl.nasa.gov
2024-139
Share
Details
Last Updated Oct 13, 2024 Related Terms
Europa Clipper Astrobiology Europa Jet Propulsion Laboratory Jupiter Jupiter Moons Explore More
6 min read Can Life Exist on an Icy Moon? NASA’s Europa Clipper Aims to Find Out
Article 16 hours ago 4 min read First Greenhouse Gas Plumes Detected With NASA-Designed Instrument
Article 3 days ago 5 min read Does Distant Planet Host Volcanic Moon Like Jupiter’s Io?
Article 3 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.