Jump to content

Mentoring the Next Generation of Engineers and Improving Shock Testing Standards 


Recommended Posts

  • Publishers
Posted

The year 2023 was productive for the Loads & Dynamics (L&D) Technical Discipline Team (TDT). New shock and modal analysis techniques were developed and mentoring the next generation of NASA discipline experts continued. Additionally, NESC Technical Bulletin No. 23-3, New Transient Finite Energy Shock Prediction Methodology, was released.

Early Career Community Nurtures Development of NASA’s Future Discipline Leaders

NASA has acknowledged the need for “attracting and advancing a highly skilled, competent, and diverse workforce in order to cultivate an innovative work environment…” as stated in Objective 3.1 of the 2014 NASA Strategic Plan.

A survey conducted in 2014 by Emerge, the early-career professional group at JSC, showed that recent hires believe that “communication and collaboration amongst organizations” is a key area of improvement, while “lack of opportunities for professional growth” is the top reason why they would consider leaving the Agency. This, when coupled with NASA’s aging workforce (the average age as of 2016 was 49), stresses the importance of capturing knowledge to pass along to the next generation of NASA engineers. 

The Structures, Loads and Dynamics, Mechanical Systems, and Materials (SLAMMS) disciplines have also been identified as critical fields for the advancement of NASA’s strategic vision, which emphasizes the importance of developing and retaining engineers in those areas. Consequently, the SLAM(M)S Steering Committee (Materials was not initially included), comprising center SLAMS Division/Branch Chiefs and NASA Technical Fellows, formed the Young Professionals Forum in 2012, which evolved into the current Early Career Forum (ECF) in 2017, and was expanded to provide year-round activities (e.g., monthly meetings, training opportunities) for the Early Career Community (ECC). 

 Over the lifetime of the ECC, the SLAMS Steering Committee was dissolved, and the stewardship of the ECC relied on the Technical Fellows, who empowered ECC leaders to take on the primary responsibility of planning and running the ECC and ECF events. 

Today’s SLAMMS Early Career Community   

Within the past few years, a new SLAMMS Division/Branch Chief collaboration group was formed, called the SLAMMS Leadership Working Group (LWG), and is led by James  Loughlin, GSFC Mechanical Systems Division Chief, with co-lead Elonso Rayos, JSC Structures Engineering Assistant Division Chief. The LWG is a forum focused on capability sustainment, discipline technical challenges, and workforce concerns. For example, disparate Agency technical resource access is discussed, collaboration is coordinated, and critical gaps in expertise are filled using cross-Agency cooperation. 

The current SLAMMS ECE leadership team includes Khadijah Shariff (JSC-Structures), Dr. Matthew Chamberlain (LaRC- Loads & Dynamics), Dr. Jonathan Sauder (JPL-Mechanical Systems), and Cassie Smith (JPL-Mechanical Systems). NASA Technical Fellows supporting SLAMMS are Deneen Taylor (Structures), Dr. Dexter Johnson (Loads & Dynamics), Dr. Michael Dube (Mechanical Systems), and Dr. Bryan McEnerney (Materials).

The SLAMMS Early Career Forum

The ECF is the annual “face-to-face” workshop for the community. The ECF is held at a different NASA center each year and features technical presentations by early career engineers (ECE), splinter sessions with NASA Technical Fellows, mentor presentations, facility tours, networking events, design challenges, and evening social activities to advance the SLAMMS disciplines and develop NASA’s future workforce. The ECF features technical presentations given by the ECEs to their peers, senior engineers, and Technical Fellows.   

The 12th Annual SLAMMS ECF was held at MSFC and virtually. Sixty-six ECEs, Technical Fellows, TDT mentors, and discipline managers from the SLAMMS LWG were in attendance. ECEs from 8 centers made 16 technical presentations and 18 posters, which were ranked by mentors for the top awards. Multiple splinter sessions provided ECEs with opportunities to ask career-related advice from Technical Fellows, project and systems management, and individuals experienced in design, analysis, and testing. In addition, there was a detailed discussion for each of the technical disciplines represented at the forum, and multiple site tours were provided. 

techup2023-pg52-54-art2.png?w=2048
Attendees of the 12th annual SLAMMS EFC at MSFC 2023. 

The Future of the SLAMMS ECC 

The SLAMMS ECC will continue to evolve as discussions with the ECE leadership team and Technical Fellows continue towards mapping its future. SLAMMS is igniting cross-Agency collaboration for future generations. Its current goals include communication and collaboration among organizations, professional growth of early career engineers, knowledge capturing for the next generation of NASA engineers, and developing and retaining engineers in the specific SLAMMS disciplines. It will nurture the technical, professional, and personal development of NASA’s next generation of SLAMMS discipline leaders. 

techup2023-pg52-54-art3.png?w=2048
Awards presented by Dr. Dexter Johnson. Left: “Best Presentation” (Mitchell Haglund-GSFC) Right: “Best Poster” (Tessa Fedotowsky-MSFC).

Updating Guidance on Shock Qualification and Acceptance Test Requirements  

The L&D TDT has completed work that will have a positive impact on shock testing of NASA flight hardware. Pyroshock is the transient response of a structure to loading induced by activation of attached or incorporated pyrotechnic devices. Typical pyrotechnic devices include frangible bolts, separation nuts, and pin pullers that are used to assemble, separate, and reconfigure spaceflight hardware during a mission. Shocks can easily propagate through structure and damage sensitive components. Thus, successful pyroshock testing is considered essential to mission success. At the request of the Gateway Program Chief Engineer, the NASA Chief Engineer initiated an inquiry to reevaluate shock testing approaches for both unit and major assembly flight hardware and requested recommendations for potential revisions to NASA-STD-7003B, Pyroshock Test Criteria, that would clarify the guidance and applicability to new programs. The work delves into topics of shock acceptance and qualification testing for unit and major assemblies, shock test tolerances, shaker shock testing, and the distinction between mechanical shock and pyroshock testing. It also provides recommendations for their inclusion in the next Agency-wide revision of NASA-STD-7003B.  

Current NASA-STD-7003B Requirements 

Unit and major assembly flight hardware acceptance and qualification testing are discussed in NASA-STD-7003B. It requires that all units go through shock qualification testing, with few exceptions. The purpose of a qualification test is to verify the design integrity of the flight hardware. The standard calls for pyroshock qualification testing of nonflight hardware for externally induced environments to be performed with a 3 dB margin added to the maximum predicted environment (MPE), with two shocks per each orthogonal axis. Qualification tests are performed on hardware that will not be flown but is manufactured using the same drawings, materials, tooling, processes, inspection methods, and personnel competency as used for the flight hardware. The flight hardware is not recommended to go through shock test, therefore, it lacks workmanship screening testing. The required random vibration (RV) test is considered to be a partial workmanship screening, covering only up to 2000 Hz. A full workmanship screening test for unique and sensitive hardware that may have modes above 2000 Hz needs to be evaluated on a case-by-case basis by an expert in pyroshock dynamics and approved within a program’s risk management system and/or governing board. 

The major assembly acceptance and qualification testing are not recommended, considering that the MPE and design margin cannot be demonstrated at the system-level tests. The major assembly unmargined testing, however, may achieve three objectives. First, the functional demonstration of shock separation devices—probably the most important part of the major assembly level testing—demonstrates the source electrical and mechanical hardware functions as expected, and the interface separates without any issues. Second, the major assembly testing provides the validation of the unit shock environments.  

Third, the major assembly testing provides transfer functions (TF) that may help to estimate the attenuation—and in some cases structural amplifications—throughout the system with all assemblies in flight configuration. NASA-STD-7003B contains discussions for the first two major assembly test objectives. However, there are no discussions on the third test objective related to the TFs. The TFs provide qualitative assessment of shock propagation paths and attenuations at joints and interfaces. The TFs may be used qualitatively as attenuation is highly dependent on the materials and joint construction and may be different if there are changes in the system configuration.  

Suggestions for Improving NASA-STD-7003B 

The shock tolerance specified in NASA-STD-7003B is ±6 dB from 100 Hz to 3 kHz and +9/-6 dB above 3 kHz. The constant ±6 dB tolerance bandwidths across all frequencies are possible, as many existing shock simulation systems are able to simulate shock signatures that fall within these tolerances without difficulty. These tolerances are based on practical test implementation and shock simulation equipment consideration. The tolerance tightening should be considered at the flight hardware resonant frequencies to avoid over/under testing. However, if detonator or explosive shock simulation systems are used to qualify flight hardware, the shock tolerances above 3 kHz may be kept at +9/-6 dB.  

Measurements from many different pyro/non-pyro separation systems have been shown to have broader shock signatures and do not support the mechanical shock as being applicable to low- and mid-frequency shocks only. The standard discusses this topic and has an example of far field SRS indicating shock energy above 2 kHz. The future revision should clarify the applicability of the mechanical shocks to be broader and not to be limited to 2 kHz and below (see figure below). 

techup2023-pg52-54-art4.png?w=2010
 
An example shock response spectrum (SRS) obtained from a mechanical shock separation system, indicating a broad signature is produced by pyro devices.   
techup2023-pg52-54-art5.png?w=1920
The Gateway Program has benefitted from the updated guidance recommended for NASA-STD-7003B. 

Even though shaker shock testing has been used in the past and is still used by some NASA organizations and contractors, there are multiple technical issues with this type of testing. The shaker-generated shock signatures in the low- and mid-frequency range (typically up to ~2 kHz) provide severe shock environments that may lead to structural failures. Most shakers are also not able to generate SRS above ~2 kHz, therefore, shaker shock test is deficient in meeting the shock requirement up to 10 kHz frequency. NASA-STD-7003B does not recommend the shaker method of shock testing due to the above limitations. This should be emphasized more in the standard. The shaker shock simulation test may be used if it is able to generate time histories that resemble signatures generated by space separation devices, and SRS levels meet the entire frequency range requirements. 

For the next NASA-STD-7003B revision, recommendations are being made to include acceptance RV testing for partial workmanship screening testing, add the TFs to be used as qualitative information in assessing the attenuation in the structural shock paths, change the shock tolerance to ±6 dB across all frequencies, and consider mechanical shocks to be broader and not limited to low- and mid-frequency SRSs. 

In summary, the updated guidance provides clarification to the question/uncertainty of the applicability of historical guidance to current programs, while ensuring proper applicability to future programs. This work directly benefitted the Gateway Program, and could potentially benefit the Human Lander System (HLS). 

References: 

  1. Kolaini, A.R., Kinney, T., and Johnson, D.: Guidance on Shock Qualification and Acceptance Test Requirements. SCLV, June 27-29, 2023, EL Segundo, CA. Available from: https://ntrs.nasa.gov/citations/20230009008  
  1. NASA-STD-7003B, “Pyroshock Test Criteria,” June 11, 2020. 

techup2023-pg52-54-art6.png?w=985
HLS could benefit from the updated guidance recommended for NASA-STD-7003B. Credit: Blue Origin 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      From left to right, NASA Marshall engineers Carlos Diaz and John Luke Bili, U.S. Naval Research Laboratory mechanical engineer contractor Eloise Stump, and Marshall engineers Tomasz Liz, David Banks, and Elise Doan observe StarBurst in the cleanroom environment before it’s unboxed from its shipping container. The cleanroom environment at Marshall is designed to minimize contamination and protect the observatory’s sensitive instruments. Image Credit: NASA /Daniel Kocevski   StarBurst, a wide-field gamma ray observatory, arrived at NASA’s Marshall Space Flight Center in Huntsville, Alabama, March 4 for environmental testing and final instrument integration. The instrument is designed to detect the initial emission of short gamma-ray bursts, a key electromagnetic indicator of neutron star mergers.
      “Gamma-ray bursts are among the most powerful explosions in the universe, and they serve as cosmic beacons that help us understand extreme physics, including black hole formation and the behavior of matter under extreme conditions,” said Dr. Daniel Kocevski, principal investigator of the StarBurst mission at NASA Marshall.
      According to Kocevski, neutron star mergers are particularly exciting because they produce gamma-ray bursts and gravitational waves, meaning scientists can study these events using two different signals – light and ripples in space time.
      Starburst Principal Investigator Dr. Daniel Kocevski, left, and Integration and Test Engineer Elise Doan, right, pose with the StarBurst instrument after it was unboxed in the cleanroom environment at NASA Marshall. The Naval Research Lab transferred the instrument to NASA in early March.Image Credit: NASA/Davy Haynes The merging of neutron stars forges heavy elements such as gold and platinum, revealing the origins of some of Earth’s building blocks.
      “By studying these gamma-ray bursts and the neutron star mergers that produce them, we gain insights into fundamental physics, the origins of elements, and even the expansion of the universe,” Kocevski said. “Neutron star mergers and gamma-ray bursts are nature’s laboratories for testing our understanding of the cosmos.”
      StarBurst will undergo flight vibration and thermal vacuum testing at Marshall in the Sunspot Thermal Vacuum Testing Facility. These tests ensure it can survive the rigors of launch and harsh environment of space.
      Final instrument integration will happen in the Stray Light Facility, which is a specialized environment to help identify and reduce unwanted light in certain areas of the optical systems.
      The StarBurst Multimessenger Pioneer is a wide-field gamma-ray observatory designed to detect the initial emission of short gamma-ray bursts, important electromagnetic indicators of neutron star mergers. With an effective area over five times that of the Fermi Gamma-ray Burst Monitor and complete visibility of the unobscured sky, StarBurst will conduct sensitive observations. NASA/Daniel Kocevski StarBurst is a collaborative effort led by NASA’s Marshall Space Flight Center, with partnerships with the U.S. Naval Research Laboratory, the University of Alabama Huntsville, the Universities Space Research Association, and the UTIAS Space Flight Laboratory. StarBurst was selected for development as part of the NASA Astrophysics Pioneers program, which supports lower-cost, smaller hardware missions to conduct compelling astrophysics science.
      To learn more about StarBurst visit:
      https://science.nasa.gov/mission/starburst/
      Media Contact:
      Lane Figueroa
      Marshall Space Flight Center
      Huntsville, Alabama
      256.544.0034
      lane.e.figueroa@nasa.gov
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A NASA F/A-18 research aircraft flies above California near NASA’s Armstrong Flight Research Center in Edwards, California, testing a commercial precision landing technology for future space missions. The Psionic Space Navigation Doppler Lidar (PSNDL) system is installed in a pod located under the right wing of the aircraft.NASA Nestled in a pod under an F/A-18 Hornet aircraft wing, flying above California, and traveling up to the speed of sound, NASA put a commercial sensor technology to the test. The flight tests demonstrated the sensor accuracy and navigation precision in challenging conditions, helping prepare the technology to land robots and astronauts on the Moon and Mars. 
      The Psionic Space Navigation Doppler Lidar (PSNDL) system is rooted in NASA technology that Psionic, Inc. of Hampton, Virginia, licensed and further developed. They miniaturized the NASA technology, added further functionality, and incorporated component redundancies that make it more rugged for spaceflight. The PSNDL navigation system also includes cameras and an inertial measurement unit to make it a complete navigation system capable of accurately determining a vehicle’s position and velocity for precision landing and other spaceflight applications. 
      NASA engineers and technicians install the Psionic Space Navigation Doppler Lidar (PSNDL) system into a testing pod on a NASA F/A-18 research aircraft ahead of February 2025 flight tests at NASA’s Armstrong Flight Research Center in Edwards, California.NASA The aircraft departed from NASA’s Armstrong Flight Research Center in Edwards, California, and conducted a variety of flight paths over several days in February 2025. It flew a large figure-8 loop and conducted several highly dynamic maneuvers over Death Valley, California, to collect navigation data at various altitudes, velocities, and orientations relevant for lunar and Mars entry and descent. Refurbished for these tests, the NASA F/A-18 pod can support critical data collection for other technologies and users at a low cost. 
      Doppler Lidar sensors provide a highly accurate measurement of speed by measuring the frequency shift between laser light emitted from the sensor reflected from the ground. Lidar are extremely useful in sunlight-challenged areas that may have long shadows and stark contrasts, such as the lunar South Pole. Pairing PSNDL with cameras adds the ability to visually compare pictures with surface reconnaissance maps of rocky terrain and navigate to landing at interesting locations on Mars. All the data is fed into a computer to make quick, real-time decisions to enable precise touchdowns at safe locations. 
      Psionic Space Navigation Doppler Lidar (PSNDL) system installed in a testing pod on a NASA F/A-18 research aircraft ahead of February 2025 flight tests at NASA’s Armstrong Flight Research Center in Edwards, California.NASA Since licensing NDL in 2016, Psionic has received funding and development support from NASA’s Space Technology Mission Directorate through its Small Business Innovative Research program and Tipping Point initiative. The company has also tested PSNDL prototypes on suborbital vehicles via the Flight Opportunities program. In 2024, onboard a commercial lunar lander, NASA successfully demonstrated the predecessor NDL system developed by the agency’s Langley Research Center in Hampton, Virginia. 
      Explore More
      4 min read NASA Starling and SpaceX Starlink Improve Space Traffic Coordination
      Article 10 mins ago 6 min read How NASA’s Perseverance Is Helping Prepare Astronauts for Mars
      Article 36 mins ago 2 min read NASA Cloud Software Helps Companies Find their Place in Space 
      Article 20 hours ago Facebook logo @NASATechnology @NASA_Technology Share
      Details
      Last Updated Mar 26, 2025 EditorLoura Hall Related Terms
      Armstrong Flight Research Center Game Changing Development Program Space Communications Technology Space Technology Mission Directorate Technology Technology for Living in Space Technology for Space Travel View the full article
    • By NASA
      Thomas Ozoroski, a researcher at NASA’s Glenn Research Center in Cleveland, takes icing accretion measurements in October 2024 as part of transonic truss-braced wing concept research. Researchers at NASA Glenn conducted another test campaign in March 2025.Credit: NASA/Jordan Cochran In the future, aircraft with long, thin wings supported by aerodynamic braces could help airlines save on fuel costs. But those same wings could be susceptible to ice buildup. NASA researchers are currently working to determine if such an issue exists, and how it could be addressed.
      In the historic Icing Research Tunnel at NASA’s Glenn Research Center in Cleveland, scientists and engineers are testing a concept for a transonic truss-braced wing. Their goal: to collect important data to inform the design of these potential efficient aircraft of the future.
      This artist’s concept shows the transonic truss-braced wing concept. NASA’s Advanced Air Transport Technology project is exploring the design, which involves a longer, thinner wing structure with struts to enhance aerodynamic efficiency and reduce fuel consumption.Credit: NASA A transonic truss-braced wing generates less drag in flight compared to today’s aircraft wings, requiring an aircraft to burn less fuel. This revolutionary design could make the wing more prone to ice buildup, so it must undergo a series of rigorous tests to predict its safety and performance. The data the research team has collected so far suggests large sections of the frontmost part of the wing (also known as the leading edge) will require an ice protection system, similar to those found on some commercial aircraft.
      NASA Glenn can simulate icing conditions in its Icing Research Tunnel to identify potential challenges for new aircraft designs. These tests provide important information about how ice builds up on wings and can help identify the most critical icing conditions for safety. All commercial aircraft must be approved by the Federal Aviation Administration to operate in all kinds of weather.
      Because of the thinness of transonic truss-braced wing design, ice tends to build up during cold conditions, as seen during a test in October 2024. Researchers at NASA’s Glenn Research Center in Cleveland conducted another test campaign in March 2025, collecting important data to ensure safety. Credit: NASA/Jordan Cochran This research is part of NASA’s work to mature transonic truss-braced technology by looking at issues including safety and how future aircraft could be integrated into U.S. aviation infrastructure. Boeing is also working with NASA to build, test, and fly the X-66, a full-sized demonstrator aircraft with transonic truss-braced wings. Because the experimental aircraft will not be flown in icy conditions, tests in the Icing Research Tunnel are providing answers to questions about ice buildup.
      This work advances NASA’s role in developing ultra-efficient airliner technologies that are economically, operationally, and environmentally sustainable. For about two decades, NASA has invested in research aimed at advancing transonic truss-braced wing technology to the point where private sector aeronautics companies can integrate it into commercial aircraft configurations. NASA invests in this research through initiatives including its Advanced Air Transport Technology project, which investigates specific performance aspects of transonic truss-braced wing concepts, such as icing. The Advanced Air Transport Technology project is part of NASA’s Advanced Air Vehicles Program.
      Explore More
      3 min read Finalists Selected in NASA Aeronautics Agriculture-Themed Competition 
      Article 2 weeks ago 5 min read NASA’s Chevron Technology Quiets the Skies
      Article 2 weeks ago 3 min read NASA Selects Three University Teams to Participate in Flight Research 
      Article 2 weeks ago View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Located off the coast of Ecuador, Paramount seamount is among the kinds of ocean floor features that certain ocean-observing satellites like SWOT can detect by how their gravitational pull affects the sea surface.NOAA Okeanos Explorer Program More accurate maps based on data from the SWOT mission can improve underwater navigation and result in greater knowledge of how heat and life move around the world’s ocean.
      There are better maps of the Moon’s surface than of the bottom of Earth’s ocean. Researchers have been working for decades to change that. As part of the ongoing effort, a NASA-supported team recently published one of the most detailed maps yet of the ocean floor, using data from the SWOT (Surface Water and Ocean Topography) satellite, a collaboration between NASA and the French space agency CNES (Centre National d’Études Spatiales).
      Ships outfitted with sonar instruments can make direct, incredibly detailed measurements of the ocean floor. But to date, only about 25% of it has been surveyed in this way. To produce a global picture of the seafloor, researchers have relied on satellite data.
      This animation shows seafloor features derived from SWOT data on regions off Mexico, South America, and the Antarctic Peninsula. Purple denotes regions that are lower relative to higher areas like seamounts, depicted in green. Eötvös is the unit of measure for the gravity-based data used to create these maps.
      NASA’s Scientific Visualization Studio Why Seafloor Maps Matter
      More accurate maps of the ocean floor are crucial for a range of seafaring activities, including navigation and laying underwater communications cables. “Seafloor mapping is key in both established and emerging economic opportunities, including rare-mineral seabed mining, optimizing shipping routes, hazard detection, and seabed warfare operations,” said Nadya Vinogradova Shiffer, head of physical oceanography programs at NASA Headquarters in Washington.
      Accurate seafloor maps are also important for an improved understanding of deep-sea currents and tides, which affect life in the abyss, as well as geologic processes like plate tectonics. Underwater mountains called seamounts and other ocean floor features like their smaller cousins, abyssal hills, influence the movement of heat and nutrients in the deep sea and can attract life. The effects of these physical features can even be felt at the surface by the influence they exert on ecosystems that human communities depend on.
      This map of seafloor features like abyssal hills in the Indian Ocean is based on sea surface height data from the SWOT satellite. Purple denotes regions that are lower relative to higher areas like abyssal hills, depicted in green. Eötvös is the unit of measure for the gravity-based data used to create these maps.NASA Earth Observatory This global map of seafloor features is based on ocean height data from the SWOT satellite. Purple denotes regions that are lower compared to higher features such as seamounts and abyssal hills, depicted in green. Eötvös is the unit of measure for the gravity-based data used to create these maps.NASA Earth Observatory This map of ocean floor features like seamounts southwest of Acapulco, Mexico, is based on sea surface height data from SWOT. Purple denotes regions that are lower relative to higher areas like seamounts, indicated with green. Eötvös is the unit of measure for the gravity-based data used to create these maps.NASA Earth Observatory Mapping the seafloor isn’t the SWOT mission’s primary purpose. Launched in December 2022, the satellite measures the height of water on nearly all of Earth’s surface, including the ocean, lakes, reservoirs, and rivers. Researchers can use these differences in height to create a kind of topographic map of the surface of fresh- and seawater. This data can then be used for tasks such as assessing changes in sea ice or tracking how floods progress down a river.
      “The SWOT satellite was a huge jump in our ability to map the seafloor,” said David Sandwell, a geophysicist at Scripps Institution of Oceanography in La Jolla, California. He’s used satellite data to chart the bottom of the ocean since the 1990s and was one of the researchers responsible for the SWOT-based seafloor map, which was published in the journal Science in December 2024.
      How It Works
      The study authors relied the fact that because geologic features like seamounts and abyssal hills have more mass than their surroundings, they exert a slightly stronger gravitational pull that creates small, measurable bumps in the sea surface above them. These subtle gravity signatures help researchers predict the kind of seafloor feature that produced them.
      Through repeated observations — SWOT covers about 90% of the globe every 21 days — the satellite is sensitive enough to pick up these minute differences, with centimeter-level accuracy, in sea surface height caused by the features below. Sandwell and his colleagues used a year’s worth of SWOT data to focus on seamounts, abyssal hills, and underwater continental margins, where continental crust meets oceanic crust.
      Previous ocean-observing satellites have detected massive versions of these bottom features, such as seamounts over roughly 3,300 feet (1 kilometer) tall. The SWOT satellite can pick up seamounts less than half that height, potentially increasing the number of known seamounts from 44,000 to 100,000. These underwater mountains stick up into the water, influencing deep sea currents. This can concentrate nutrients along their slopes, attracting organisms and creating oases on what would otherwise be barren patches of seafloor.
      Looking Into the Abyss
      The improved view from SWOT also gives researchers more insight into the geologic history of the planet.
      “Abyssal hills are the most abundant landform on Earth, covering about 70% of the ocean floor,” said Yao Yu, an oceanographer at Scripps Institution of Oceanography and lead author on the paper. “These hills are only a few kilometers wide, which makes them hard to observe from space. We were surprised that SWOT could see them so well.”
      Abyssal hills form in parallel bands, like the ridges on a washboard, where tectonic plates spread apart. The orientation and extent of the bands can reveal how tectonic plates have moved over time. Abyssal hills also interact with tides and deep ocean currents in ways that researchers don’t fully understand yet.
      The researchers have extracted nearly all the information on seafloor features they expected to find in the SWOT measurements. Now they’re focusing on refining their picture of the ocean floor by calculating the depth of the features they see. The work complements an effort by the international scientific community to map the entire seafloor using ship-based sonar by 2030. “We won’t get the full ship-based mapping done by then,” said Sandwell. “But SWOT will help us fill it in, getting us close to achieving the 2030 objective.”
      More About SWOT
      The SWOT satellite was jointly developed by NASA and CNES, with contributions from the Canadian Space Agency (CSA) and the UK Space Agency. NASA’s Jet Propulsion Laboratory, managed for the agency by Caltech in Pasadena, California, leads the U.S. component of the project. For the flight system payload, NASA provided the Ka-band radar interferometer (KaRIn) instrument, a GPS science receiver, a laser retroreflector, a two-beam microwave radiometer, and NASA instrument operations. The Doppler Orbitography and Radioposition Integrated by Satellite system, the dual frequency Poseidon altimeter (developed by Thales Alenia Space), the KaRIn radio-frequency subsystem (together with Thales Alenia Space and with support from the UK Space Agency), the satellite platform, and ground operations were provided by CNES. The KaRIn high-power transmitter assembly was provided by CSA.
      To learn more about SWOT, visit:
      https://swot.jpl.nasa.gov
      News Media Contacts
      Jane J. Lee / Andrew Wang
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-0307 / 626-379-6874
      jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
      2025-040
      Share
      Details
      Last Updated Mar 19, 2025 Related Terms
      SWOT (Surface Water and Ocean Topography) Earth Jet Propulsion Laboratory Oceans Explore More
      6 min read ESA Previews Euclid Mission’s Deep View of ‘Dark Universe’
      Article 9 hours ago 5 min read Atomic Layer Processing Coating Techniques Enable Missions to See Further into the Ultraviolet
      Astrophysics observations at ultraviolet (UV) wavelengths often probe the most dynamic aspects of the universe.…
      Article 1 day ago 3 min read Students Dive Into Robotics at Competition Supported by NASA JPL
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Although NASA’s Lucy spacecraft’s upcoming encounter with the asteroid Donaldjohanson is primarily a mission rehearsal for later asteroid encounters, a new paper suggests that this small, main belt asteroid may have some surprises of its own. New modeling indicates that Donaldjohanson may have been formed about 150 million years ago when a larger parent asteroid broke apart; its orbit and spin properties have undergone significant evolution since.
      This artist’s concept compares the approximate size of Lucy’s next asteroid target, Donaldjohanson, to the smallest main belt asteroids previously visited by spacecraft — Dinkinesh, visited by Lucy in November 2023, and Steins — as well as two recently explored near-Earth asteroids, Bennu and Ryugu. Credits: SwRI/ESA/OSIRIS/NASA/Goddard/Johns Hopkins APL/NOIRLab/University of Arizona/JAXA/University of Tokyo & Collaborators When the Lucy spacecraft flies by this approximately three-mile-wide space rock on April 20, 2025, the data collected could provide independent insights on such processes based on its shape, surface geology and cratering history.
      “Based on ground-based observations, Donaldjohanson appears to be a peculiar object,” said Simone Marchi, deputy principal investigator for Lucy of Southwest Research Institute in Boulder, Colorado and lead author of the research published in The Planetary Science Journal. “Understanding the formation of Donaldjohanson could help explain its peculiarities.”
      “Data indicates that it could be quite elongated and a slow rotator, possibly due to thermal torques that have slowed its spin over time,” added David Vokrouhlický, a professor at the Charles University, Prague, and co-author of the research.
      Lucy’s target is a common type of asteroid, composed of silicate rocks and perhaps containing clays and organic matter. The new paper indicates that Donaldjohanson is a likely member of the Erigone collisional asteroid family, a group of asteroids on similar orbits that was created when a larger parent asteroid broke apart. The family originated in the inner main belt not very far from the source regions of the near-Earth asteroids Bennu and Ryugu, recently visited respectively by NASA’s OSIRIS-REx and JAXA’s (Japan Aerospace Exploration Agency’s) Hayabusa2 missions.
      “We can hardly wait for the flyby because, as of now, Donaldjohanson’s characteristics appear very distinct from Bennu and Ryugu. Yet, we may uncover unexpected connections,” added Marchi.
      “It’s exciting to put together what we’ve been able to glean about this asteroid,” said Keith Noll, Lucy project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “But Earth-based observing and theoretical models can only take us so far – to validate these models and get to the next level of detail we need close-up data. Lucy’s upcoming flyby will give us that.”
      Donaldjohanson is named for the paleontologist who discovered Lucy, the fossilized skeleton of an early hominin found in Ethiopia in 1974, which is how the Lucy mission got its name. Just as the Lucy fossil provided unique insights into the origin of humanity, the Lucy mission promises to revolutionize our knowledge of the origin of humanity’s home world. Donaldjohanson is the only named asteroid so far to be visited while its namesake is still living.
      “Lucy is an ambitious NASA mission, with plans to visit 11 asteroids in its 12-year mission to tour the Trojan asteroids that are located in two swarms leading and trailing Jupiter,” said SwRI’s Dr. Hal Levison, mission principal investigator at the Boulder, Colorado branch of Southwest Research Institute in San Antonio, Texas. “Encounters with main belt asteroids not only provide a close-up view of those bodies but also allow us to perform engineering tests of the spacecraft’s innovative navigation system before the main event to study the Trojans. These relics are effectively fossils of the planet formation process, holding vital clues to deciphering the history of our solar system.”
      Lucy’s principal investigator is based out of the Boulder, Colorado, branch of Southwest Research Institute, headquartered in San Antonio. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provides overall mission management, systems engineering, and safety and mission assurance. Lockheed Martin Space in Littleton, Colorado, built the spacecraft. Lucy is the 13th mission in NASA’s Discovery Program. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Discovery Program for the agency’s Science Mission Directorate in Washington.
      By Deb Schmid and Katherine Kretke, Southwest Research Institute
      Media Contact:
      Karen Fox / Molly Wasser
      Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov

      Nancy N. Jones
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Mar 17, 2025 EditorMadison OlsonContactNancy N. Jonesnancy.n.jones@nasa.govLocationGoddard Space Flight Center Related Terms
      Goddard Space Flight Center Lucy Missions Planetary Science Planetary Science Division Explore More
      3 min read NASA’s Lucy Spacecraft Takes Its 1st Images of Asteroid Donaldjohanson
      Article 3 weeks ago 3 min read NASA’s Lucy Asteroid Target Gets a Name
      Article 2 years ago 4 min read NASA Lucy Images Reveal Asteroid Dinkinesh to be Surprisingly Complex
      Article 10 months ago View the full article
  • Check out these Videos

×
×
  • Create New...