Members Can Post Anonymously On This Site
Mentoring the Next Generation of Engineers and Improving Shock Testing Standards
-
Similar Topics
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Gateway’s HALO module at Northrop Grumman’s facility in Gilbert, Arizona, on April 4, 2025, shortly after its arrival from Thales Alenia Space in Turin, Italy. NASA/Josh Valcarcel NASA continues to mark progress on plans to work with commercial and international partners as part of the Gateway program. The primary structure of HALO (Habitation and Logistics Outpost) arrived at Northrop Grumman’s facility in Gilbert, Arizona, where it will undergo final outfitting and verification testing.
HALO will provide Artemis astronauts with space to live, work, and conduct scientific research. The habitation module will be equipped with essential systems including command and control, data handling, energy storage, power distribution, and thermal regulation.
Following HALO’s arrival on April 1 from Thales Alenia Space in Turin, Italy, where it was assembled, NASA and Northrop Grumman hosted an April 24 event to acknowledge the milestone, and the module’s significance to lunar exploration. The event opened with remarks by representatives from Northrop Grumman and NASA, including NASA’s Acting Associate Administrator for Exploration Systems Development Lori Glaze, Gateway Program Manager Jon Olansen, and NASA astronaut Randy Bresnik. Event attendees, including Senior Advisor to the NASA Administrator Todd Ericson, elected officials, and local industry and academic leaders, viewed HALO and virtual reality demonstrations during a tour of the facilities.
Dr. Lori Glaze, acting associate administrator for NASA’s Exploration Systems Development Mission Directorate, and Dr. Jon B. Olansen, Gateway Program manager, on stage during an April 24, 2025, event at Northrop Grumman’s facility in Gilbert, Arizona, commemorating HALO’s arrival in the United States. Northrop Grumman While the module is in Arizona, HALO engineers and technicians will install propellant lines for fluid transfer and electrical lines for power and data transfer. Radiators will be attached for the thermal control system, as well as racks to house life support hardware, power equipment, flight computers, and avionics systems. Several mechanisms will be mounted to enable docking of the Orion spacecraft, lunar landers, and visiting spacecraft.
Launching on top of HALO is the ESA (European Space Agency)-provided Lunar Link system which will enable communication between crewed and robotic systems on the Moon and to mission control on Earth. Once these systems are installed, the components will be tested as an integrated spacecraft and subjected to thermal vacuum, acoustics, vibration, and shock testing to ensure the spacecraft is ready to perform in the harsh conditions of deep space.
In tandem with HALO’s outfitting at Northrop Grumman, the Power and Propulsion Element – a powerful solar electric propulsion system – is being assembled at Maxar Space Systems in Palo Alto, California. Solar electric propulsion uses energy collected from solar panels converted to electricity to create xenon ions, then accelerates them to more than 50,000 miles per hour to create thrust that propels the spacecraft.
The element’s central cylinder, which resembles a large barrel, is being attached to the propulsion tanks, and avionics shelves are being installed. The first of three 12-kilowatt thrusters has been delivered to NASA’s Glenn Research Center in Cleveland for acceptance testing before delivery to Maxar and integration with the Power and Propulsion Element later this year.
Learn More About Gateway Facebook logo @NASAGateway @NASA_Gateway Instagram logo @nasaartemis Linkedin logo @NASA Share
Details
Last Updated Apr 25, 2025 ContactLaura RochonLocationJohnson Space Center Related Terms
Artemis Artemis 4 Earth's Moon Exploration Systems Development Mission Directorate Gateway Space Station General Humans in Space Explore More
2 min read NASA Welcomes Gateway Lunar Space Station’s HALO Module to US
From Italy to Arizona: Gateway’s first habitation module takes a major step on its path…
Article 3 weeks ago 2 min read NASA Prepares Gateway Lunar Space Station for Journey to Moon
Assembly is underway for Gateway's Power and Propulsion Element, the module that will power the…
Article 2 months ago 2 min read Advanced Modeling Enhances Gateway’s Lunar Dust Defense
Ahead of more frequent and intense contact with dust during Artemis missions, NASA is developing…
Article 3 months ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s Curiosity rover appears as a dark speck in this contrast-enhanced view captured on Feb. 28, 2025, by the HiRISE camera aboard NASA’s Mars Reconnaissance Orbiter. Trailing Curiosity are the rover’s tracks, which can linger on the Martian surface for months before being erased by the wind. NASA/JPL-Caltech/University of Arizona The image marks what may be the first time one of the agency’s Mars orbiters has captured the rover driving.
NASA’s Curiosity Mars rover has never been camera shy, having been seen in selfies and images taken from space. But on Feb. 28 — the 4,466th Martian day, or sol, of the mission — Curiosity was captured in what is believed to be the first orbital image of the rover mid-drive across the Red Planet.
Taken by the HiRISE (High-Resolution Imaging Science Experiment) camera aboard NASA’s Mars Reconnaissance Orbiter, the image shows Curiosity as a dark speck at the front of a long trail of rover tracks. Likely to last for months before being erased by wind, the tracks span about 1,050 feet (320 meters). They represent roughly 11 drives starting on Feb. 2 as Curiosity trucked along at a top speed of 0.1 mph (0.16 kph) from Gediz Vallis channel on the journey to its next science stop: a region with potential boxwork formations, possibly made by groundwater billions of years ago.
How quickly the rover reaches the area depends on a number of factors, including how its software navigates the surface and how challenging the terrain is to climb. Engineers at NASA’s Jet Propulsion Laboratory in Southern California, which leads Curiosity’s mission, work with scientists to plan each day’s trek.
“By comparing the time HiRISE took the image to the rover’s commands for the day, we can see it was nearly done with a 69-foot drive,” said Doug Ellison, Curiosity’s planning team chief at JPL.
Designed to ensure the best spatial resolution, HiRISE takes an image with the majority of the scene in black and white and a strip of color down the middle. While the camera has captured Curiosity in color before, this time the rover happened to fall within the black-and-white part of the image.
In the new image, Curiosity’s tracks lead to the base of a steep slope. The rover has since ascended that slope since then, and it is expected to reach its new science location within a month or so.
More About Curiosity and MRO
NASA’s Curiosity Mars rover was built at JPL, which is managed for the agency by Caltech in Pasadena, California. JPL manages both the Curiosity and Mars Reconnaissance Orbiter missions on behalf of NASA’s Science Mission Directorate in Washington as part of the agency’s Mars Exploration Program portfolio. The University of Arizona, in Tucson, operates HiRISE, which was built by BAE Systems in Boulder, Colorado.
For more about the missions, visit:
science.nasa.gov/mission/msl-curiosity
science.nasa.gov/mission/mars-reconnaissance-orbiter
News Media Contacts
Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
2025-059
Share
Details
Last Updated Apr 24, 2025 Related Terms
Mars Science Laboratory (MSL) Curiosity (Rover) Mars Mars Reconnaissance Orbiter (MRO) Explore More
5 min read Eye on Infinity: NASA Celebrates Hubble’s 35th Year in Orbit
In celebration of the Hubble Space Telescope’s 35 years in Earth orbit, NASA is releasing…
Article 1 day ago 3 min read NASA’s Curiosity Rover May Have Solved Mars’ Missing Carbonate Mystery
Article 7 days ago 6 min read NASA’s Perseverance Mars Rover Studies Trove of Rocks on Crater Rim
Article 2 weeks ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Syncom Space Services employees Kenneth Shipman, left, and Jesse Yarbrough perform final tubing install in early March to prepare the interstage simulator gas system on the Thad Cochran Test Stand at NASA’s Stennis Space Center for leak checks. Leak checks were performed prior to activation of the gas system this month. The activation marks a milestone in preparation for future Green Run testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand.NASA/Danny Nowlin Syncom Space Services employees Branson Cuevas, left, Kenneth Shipman, and Jesse Yarbrough install final tubing in early March before activation of the interstage simulator gas systems on the Thad Cochran Test Stand at NASA’s Stennis Space Center. The activation marks a milestone in preparation for future Green Run testing of NASA’s exploration upper stage (EUS) in the B-2 position of the stand.NASA/Danny Nowlin Crews at NASA’s Stennis Space Center recently completed activation of interstage gas systems needed for testing a new SLS (Space Launch System) rocket stage to fly on future Artemis missions to the Moon and beyond.
The activation marks a milestone in preparation for future Green Run testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand. For Green Run, teams will activate and test all systems to ensure the stage is ready to fly. Green Run will culminate with a hot fire of the stage’s four RL10 engines, just as during an actual mission.
The interstage simulator component will function like the SLS interstage section that protects the upper stage during Artemis launches. The interstage simulator will do the same during Green Run testing of the stage at NASA Stennis.
The interstage simulator gas system will provide helium, nitrogen, and hydrogen to the four RL10 engines for all wet dress and hot fire exercises and tests.
During the activation process, NASA Stennis crews simulated the engines and flowed gases to mirror various conditions and collect data on pressures and temperatures. NASA Stennis teams conducted 80 different flow cases, calculating such items as flow rates, system pressure drop, and fill/vent times. The calculated parameters then were compared to models and analytics to certify the gas system meets performance requirements.
NASA engineers Chad Tournillon, left, and Robert Smith verify the functionality of the control system in early March for activation of the interstage simulator gas systems on the Thad Cochran Test Stand at NASA’s Stennis Space Center. The activation marks a milestone in preparation for future Green Run testing of NASA’s exploration upper stage (EUS) in the B-2 position of the stand.NASA/Danny Nowlin Members of the engineering and operations team review data as it is collected in early March during activation of the interstage simulator gas systems on the Thad Cochran Test Stand at NASA’s Stennis Space Center. Pictured are NASA’s Mark Robinson, Robert Simmers, Jack Conley, and Nick Nugent. Activation of the gas systems marks a milestone in preparation for future Green Run testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand.NASA/Danny Nowlin NASA engineers Pablo Gomez, left, and B.T. Wigley collect data in early March during activation of the interstage simulator gas systems on the Thad Cochran Test Stand at NASA’s Stennis Space Center. The activation marks a milestone in preparation for future Green Run testing of NASA’s exploration upper stage (EUS) in the B-2 position of the NASA Stennis stand.NASA/Danny Nowlin Syncom Space Services employees Brandon Fleming, Robert Sheaffer, and Logan Upton review paperwork in early March prior to activation of the interstage simulator gas systems on the Thad Cochran Test Stand at NASA’s Stennis Space Center. The activation marks a milestone in preparation for future Green Run testing of NASA’s exploration upper stage (EUS) in the B-2 position of the stand.NASA/Danny Nowlin Syncom Space Services engineering tech Brandon Fleming tightens a pressure transducer on the Thad Cochran Test Stand at NASA’s Stennis Space Center in early March. Various transducers were used to provide data during subsequent activation of the interstage simulator gas systems at the stand. The activation marks a milestone in preparation for future Green Run testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand.NASA/Danny Nowlin Crews now will work to activate the umbilical gases and liquid oxygen systems. The NASA Stennis team will then conduct water system activation, where it will flow the flame deflector, aspirator, diffuser cooling circuits, purge rings and water-cooled fairing.
Afterward, the team will deploy the FireX system to check for total coverage, expected to be completed in the summer.
Before the exploration upper stage, built by Boeing at NASA’s Michoud Assembly Facility in New Orleans, arrives at NASA Stennis, crews will perform a final 24-hour check, or stress test, across all test complex facilities to demonstrate readiness for the test series.
Explore More
3 min read Lagniappe for April 2025
Article 3 weeks ago 4 min read Lagniappe for March 2025
Article 2 months ago 6 min read NASA Stennis Flashback: Learning About Rocket Engine Exhaust for Safe Space Travel
Article 2 months ago View the full article
-
By European Space Agency
A new wave of ocean scientists has embarked on an extraordinary six-week voyage aboard a majestic tall ship that set sail today from Norway bound for southern France. But this is no ordinary journey.
Thanks to this ESA Advanced Ocean Training Course, these upcoming researchers will be taking a deep dive into ocean science, empowering them with skills to harness satellite data for research, innovation and sustainable development – and preparing them to become tomorrow’s leaders and ambassadors for ocean science.
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA test pilot Nils Larson inspects the agency’s F-15D research aircraft at NASA’s Armstrong Flight Research Center in Edwards, California, ahead of a calibration flight for a newly installed near-field shock-sensing probe. Mounted on the F-15D, the probe is designed to measure shock waves generated by the X-59 quiet supersonic aircraft during flight. The data will help researchers better understand how shock waves behave in close proximity to the aircraft, supporting NASA’s Quesst mission to enable quiet supersonic flight over land.NASA/Steve Freeman NASA test pilot Nils Larson inspects the agency’s F-15D research aircraft at NASA’s Armstrong Flight Research Center in Edwards, California, ahead of a calibration flight for a newly installed near-field shock-sensing probe. Mounted on the F-15D, the probe is designed to measure shock waves generated by the X-59 quiet supersonic aircraft during flight. The data will help researchers better understand how shock waves behave in close proximity to the aircraft, supporting NASA’s Quesst mission to enable quiet supersonic flight over land.NASA/Steve Freeman NASA’s F-15D research aircraft conducts a test flight near Edwards, California, with a newly installed near-field shock-sensing probe. Identical to a previously flown version that was intended as the backup, this new probe will capture shock wave data near the X-59 as it flies faster than the speed of sound, supporting NASA’s Quesst mission.NASA/Jim Ross NASA’s F-15D research aircraft conducts a test flight near Edwards, California, with a newly installed near-field shock-sensing probe. Identical to a previously flown version that was intended as the backup, this new probe will capture shock wave data near the X-59 as it flies faster than the speed of sound, supporting NASA’s Quesst mission.NASA/Jim Ross When you’re testing a cutting-edge NASA aircraft, you need specialized tools to conduct tests and capture data –but if those tools need maintenance, you need to wait until they’re fixed. Unless you have a backup. That’s why NASA recently calibrated a new shock-sensing probe to capture shock wave data when the agency’s X-59 quiet supersonic research aircraft begins its test flights.
When an aircraft flies faster than the speed of sound, it produces shock waves that travel through the air, creating loud sonic booms. The X-59 will divert those shock waves, producing just a quiet supersonic thump. Over the past few weeks, NASA completed calibration flights on a new near-field shock-sensing probe, a cone-shaped device that will capture data on the shock waves that the X-59 will generate.
This shock-sensing probe is mounted to an F-15D research aircraft that will fly very close behind the X-59 to collect the data NASA needs. The new unit will serve as NASA’s primary near-field probe, with an identical model NASA developed last year acting as a backup mounted to an additional F-15B.
The two units mean the X-59 team has a ready alternative if the primary probe needs maintenance or repairs. For flight tests like the X-59’s – where data gathering is crucial and operations revolve around tight timelines, weather conditions, and other variables – backups for critical equipment help to ensure continuity, maintain schedule, and preserve efficiency of operations.
“If something happens to the probe, like a sensor failing, it’s not a quick fix,” said Mike Frederick, principal investigator for the probe at NASA’s Armstrong Flight Research Center in Edwards, California. “The other factor is the aircraft itself. If one needs maintenance, we don’t want to delay X-59 flights.”
To calibrate the new probe, the team measured the shock waves of a NASA F/A-18 research aircraft. Preliminary results indicated that the probe successfully captured pressure changes associated with shock waves, consistent with the team’s expectations. Frederick and his team are now reviewing the data to confirm that it aligns with ground mathematical models and meets the precision standards required for X-59 flights.
Researchers at NASA Armstrong are preparing for additional flights with both the primary and backup probes on their F-15s. Each aircraft will fly supersonic and gather shock wave data from the other. The team is working to validate both the primary and backup probes to confirm full redundancy – in other words, making sure that they have a reliable backup ready to go.
Share
Details
Last Updated Apr 17, 2025 EditorDede DiniusContactNicolas Cholulanicolas.h.cholula@nasa.gov Related Terms
Aeronautics Aeronautics Research Mission Directorate Armstrong Flight Research Center Commercial Supersonic Technology Low Boom Flight Demonstrator Quesst (X-59) Supersonic Flight Explore More
3 min read NASA Studies Wind Effects and Aircraft Tracking with Joby Aircraft
Article 20 hours ago 3 min read Testing in the Clouds: NASA Flies to Improve Satellite Data
Article 2 days ago 3 min read Going Home: NASA Retires S-3B Viking to POW/MIA Museum
Article 2 days ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.