Jump to content

Shuttle, Family Inspire NASA’s Cryogenic Technology Manager


NASA

Recommended Posts

  • Publishers

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

By Daniel Boyette

Jeremy Kenny squinted his eyes as he looked toward the brilliant light. Then came the deafening sound waves that vibrated his body. This was the moment he’d dreamed about since childhood.

It was Nov. 16, 2009, at NASA’s Kennedy Space Center in Florida, and Kenny and his wife were watching space shuttle Atlantis embark on a mission to the International Space Station. Kenny, who was less than two years into his NASA career, had the opportunity to see the liftoff from Launch Pad 39A as part of receiving the Space Flight Awareness Award for supporting the Space Shuttle Program’s solid rocket booster flight program.

“That was the first launch I ever witnessed in person,” said Kenny, whose inspiration for working at NASA came from watching televised shuttle launches as a youth. “It was amazing and made me appreciate how such a powerful system could be designed and flown so successfully.”

A man stands in in the middle of two poster boards on stands
Jeremy Kenny, manager of NASA’s Cryogenic Fluid Management Portfolio Project, holds a model spacecraft for the proposed large cryogenic demonstration mission. The mission aims to demonstrate liquid hydrogen management, including near-zero propellant boil off and highly efficient propellant transfer, needed to achieve long-duration transit to/from Mars and spacecraft loitering during on-surface campaigns.
Credit: NASA/Danielle Burleson

With the final shuttle mission two years later, NASA set its sights on designing and building its future Artemis rocket: SLS (Space Launch System). Kenny was selected to lead the SLS Modal Acoustic Test program, which helped engineers understand how loud the rocket would be during liftoff. He later joined another key Artemis effort, the Human Landing System program, as a technical manager, overseeing the development of lander systems that will transport astronauts to the Moon’s surface.

“Artemis is an inspiring campaign for future human spaceflight exploration,” Kenny said. “I worked with SLS, Orion, and Exploration Ground Systems, and it was very fulfilling to see all the pieces come together for the successful Artemis I launch.”

In January, Kenny was named manager of NASA’s Cryogenic Fluid Management (CFM) Portfolio project, where he oversees a cross-agency team based at NASA’s Marshall Space Flight Center in Huntsville, Alabama, and Glenn Research Center in Cleveland. The CFM portfolio includes innovative technologies to store, transfer, and measure ultra-cold fluids – such as liquid hydrogen, liquid oxygen, and liquid methane. These cryogens are the most common propellants in space exploration, making CFM integral to NASA’s future exploration and science efforts.

“We must mature CFM technologies to support future flight mission architectures,” said Kenny. “The strong partnership between Marshall and Glenn in CFM maturation continues to produce excellent results, enabling in-space cryogenic systems vital to NASA’s Moon to Mars vision.”

Kenny’s choice of profession comes as little surprise, given his family background. He had a grandfather and an uncle who worked with the U.S. Army Corps of Engineers in the family’s hometown of Vicksburg, Mississippi. From them, Kenny learned how math and physics could be implemented in real-world applications. He earned three degrees in mechanical engineering: a bachelor’s from Mississippi State University in Starkville, a master’s from Georgia Tech in Atlanta, and a doctorate from the University of Alabama in Huntsville.

“My grandfather showed me various engineering software programs he worked on to simulate ground terrains for military transportation systems,” Kenny said. “My uncle worked on engineering developments for various military systems; he was a key influence for me to pursue graduate degrees in mechanical engineering.”

When Kenny’s not working to evolve technology for NASA’s future deep space exploration missions, he’s spending time with his wife and their two daughters, who are involved in choir and dance.

“Watching them practice and perform inspires me,” Kenny said with a smile. “My biggest challenge is balancing my professional work, which I love, and spending time with my family, who I love. With work comes many exciting opportunities, and solving hard problems is fun. But that excitement should not detract from keeping your personal relationships healthy. One day, I’ll retire and spend all my free time with family.”

The CFM Portfolio Project’s work is under NASA’s Technology Demonstration Missions Program, part of NASA’s Space Technology Mission Directorate, which oversees a broad portfolio of technology development and demonstration projects across NASA centers and American industry partners.

Ramon J. Osorio
Marshall Space Flight Center, Huntsville, Alabama
256-544-0034
ramon.j.osorio@nasa.gov

Keep Exploring

Discover More Topics From NASA

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      The third Copernicus Sentinel-2 satellite launched today aboard the final Vega rocket from Europe’s Spaceport in French Guiana. Sentinel-2C will continue providing high-resolution data that is essential to Copernicus – Europe’s world leading Earth observation programme.
      Sentinel-2C launched into orbit on 5 September at 03:50 CEST (4 September 22:50 local time) and separated from the Vega rocket at approximately 04:48 CEST.
      View the full article
    • By NASA
      On Aug. 30, 1984, space shuttle Discovery lifted off on the STS-41D mission, joining NASA’s fleet as the third space qualified orbiter. The newest shuttle incorporated newer technologies making it significantly lighter than its two predecessors. Discovery lofted the heaviest payload up to that time in shuttle history. The six-person crew included five NASA astronauts and the first commercial payload specialist. During the six-day mission, the crew deployed a then-record three commercial satellites, tested an experimental solar array, and ran a commercial biotechnology experiment. The astronauts recorded many of the activities using a large format film camera, the scenes later incorporated into a motion picture for public engagement. The mission marked the first of Discovery’s 39 trips to space, the most of any orbiter.

      Left: Space shuttle Discovery rolls out of Rockwell’s Palmdale, California, facility. Middle: Discovery atop the Shuttle Carrier Aircraft during the cross-country ferry flight. Right: Discovery arrives at NASA’s Kennedy Space Center in Florida.
      Space shuttle Discovery, the third space-qualified orbiter in NASA’s fleet and named after several historical ships of exploration, incorporated manufacturing lessons learned from the first orbiters. In addition, through the use of more advanced materials, the new vehicle weighed nearly 8,000 pounds less than its sister ship Columbia and 700 pounds less than Challenger. Discovery rolled out of Rockwell International’s plant in Palmdale, California, on Oct. 16, 1983. Five of the six crew members assigned to its first flight attended the ceremony. Workers trucked Discovery overland from Palmdale to NASA’s Dryden, now Armstrong, Flight Research Center at Edwards Air Force Base (AFB), where they mounted it atop a Shuttle Carrier Aircraft (SCA), a modified Boeing 747, for the transcontinental ferry flight to NASA’s Kennedy Space Center (KSC) in Florida. Discovery arrived at KSC on Nov. 9 following a two-day stopover at Vandenberg Air Force, now Space Force Base, in California.

      Left: STS-41D crew patch. Middle: Official photograph of the STS-41D crew of R. Michael “Mike” Mullane, front row left, Steven A. Hawley, Henry “Hank” W. Hartsfield, and Michael L. Coats; Charles D. Walker, back row left, and Judith A. Resnik. Right: Payloads installed in Discovery’s payload bay for the STS-41D mission include OAST-1, top, SBS-4, Telstar 3C, and Leasat-2.
      To fly Discovery’s first flight, originally designated STS-12 and later renamed STS-41D, in February 1983 NASA assigned Commander Henry W. Hartsfield, a veteran of STS-4, and first-time flyers Pilot Michael L. Coats, and Mission Specialists R. Michael Mullane, Steven A. Hawley, and Judith A. Resnik, all from the 1978 class of astronauts and making their first spaceflights. In May 1983, NASA announced the addition of Charles D. Walker, an employee of the McDonnell Douglas Corporation, to the crew, flying as the first commercial payload specialist. He would operate the company’s Continuous Flow Electrophoresis System (CFES) experiment. The mission’s primary payloads included the Leasat-1 (formerly known as Syncom IV-1) commercial communications satellite and OAST-1, three experiments from NASA’s Office of Aeronautics and Space Technology, including the Solar Array Experiment, a 105-foot long lightweight deployable and retractable solar array. Following the June 1984 launch abort, NASA canceled the STS-41F mission, combining its payloads with STS-41D’s, resulting in three communications satellites – SBS-4 for Small Business Systems, Telstar 3C for AT&T, and Leasat 2 (Syncom IV-2) for the U.S. Navy – launching on the flight. The combined cargo weighed 41,184 pounds, the heaviest of the shuttle program up to that time. A large format IMAX® camera, making its second trip into space aboard the shuttle, flew in the middeck to film scenes inside the orbiter and out the windows.

      Left: First rollout of Discovery from the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. Right: The June 26 launch abort.
      The day after its arrival at KSC, workers towed Discovery to the Orbiter Processing Facility (OPF) to begin preparing it for its first space flight. They towed it to the Vehicle Assembly Building (VAB) on May 12, 1984, for mating with its External Tank (ET) and Solid Rocket Boosters (SRBs). The completed stack rolled out to Launch Pad 39A a week later. On June 2, engineers successfully completed an 18-second Flight Readiness Firing of Discovery’s main engines. Post test inspections revealed a debonding of a thermal shield in main engine number 1’s combustion chamber, requiring its replacement at the pad. The work pushed the planned launch date back three days to June 25. The failure of the shuttle’s backup General Purpose Computer (GPC) delayed the launch by one day. The June 26 launch attempt ended just four seconds before liftoff, after two of the main engines had already ignited. The GPC detected that the third engine had not started and shut all three down. It marked the first time a human spaceflight launch experienced an abort after the start of its engines since Gemini VI in October 1965. The abort necessitated a rollback to the VAB on July 14 where workers demated Discovery from the ET and SRBs. Engineers replaced the faulty engine, and Discovery rolled back out to the launch pad on Aug. 9 for another launch attempt. The six-person crew participated in the Terminal Countdown Demonstration Test, essentially a dress rehearsal for the actual countdown to launch, on Aug. 15. A software issue delayed the first launch attempt on Aug. 29 by one day.

      Left: The STS-41D crew pose at Launch Pad 39A at NASA’s Kennedy Space Center in Florida following the Terminal Countdown Demonstration Test. Right: Liftoff of Discovery on the STS-41D mission.
      Finally, on Aug. 30, 1984, Discovery roared off its launch pad on a pillar of flame and within 8 and a half minutes entered orbit around the Earth. The crew got down to work and on the first day Mullane and Hawley deployed the SBS-4 satellite. On the second day in space, they deployed Leasat, the first satellite designed specifically to be launched from the shuttle. On the third day, they deployed the Telstar satellite, completing the satellite delivery objectives of the mission. Resnik deployed the OAST-1 solar array to 70% of its length to conduct dynamic tests on the structure. On the fourth day, she deployed the solar array to its full length and successfully retracted it, completing all objectives for that experiment.

      The deployment of the SBS-4, left, Leasat-2, and Telstar 3C satellites during STS-41D.
      Walker remained busy with the CFES, operating the unit for about 100 hours, and although the experiment experienced two unexpected shutdowns, he processed about 85% of the planned samples. Hartsfield and Coats exposed two magazines and six rolls of IMAX® film, recording OAST-1 and satellite deployments as well as in-cabin crew activities. Clips from the mission appear in the 1985 IMAX® film “The Dream is Alive.” On the mission’s fifth day, concern arose over the formation of ice on the orbiter’s waste dump nozzle. The next day, Hartsfield used the shuttle’s robotic arm to dislodge the large chunk of ice.

      Left: Payload Specialist Charles D. Walker in front of the Continuous Flow Experiment System. Middle: Henry “Hank” W. Hartsfield loading film into the IMAX® camera. Right: The OAST-1 Solar Array Experiment extended from Discovery’s payload bay.
      On Sep. 5, the astronauts closed Discovery’s payload bay doors in preparation for reentry. They fired the shuttle’s Orbital Maneuvering System engines to slow their velocity and begin their descent back to Earth. Hartsfield guided Discovery to a smooth landing at Edwards AFB in California, completing a flight of 6 days and 56 minutes. The crew had traveled 2.5 million miles and orbited the Earth 97 times.

      Left: The STS-41D crew pose in Discovery’s middeck. Right: Space shuttle Discovery makes a perfect landing at Edwards Air Force Base in California to end the STS-41D mission. 
      By Sept. 10, workers had returned Discovery to KSC to prepare it for its next mission, STS-51A, in November 1984. During its lifetime, Discovery flew a fleet leading 39 missions, making its final trip to space in February 2011. It flew both return to flight missions, STS-26 in 1988 and STS-114 in 2005. It launched the Hubble Space Telescope in 1990 and flew two of the missions to service the facility. Discovery flew two mission to Mir, docking once. It completed the first docking to the International Space Station in 1999 and flew a total of 13 assembly and resupply missions to the orbiting lab. By its last mission, Discovery had traveled 149 million miles, completed 5,830 orbits of the Earth, and spent a cumulative 365 days in space in the span of 27 years. The public can view Discovery on display at the National Air and Space Museum’s Stephen F. Udvar-Hazy Center in Chantilly, Virginia.
      Read recollections of the STS-41D mission by Hartsfield, Coats, Mullane, Hawley, and Walker in their oral histories with the JSC History Office. Enjoy the crew’s narration of a video about the STS-41D mission.
      Explore More
      6 min read 235 Years Ago: Herschel Discovers Saturn’s Moon Enceladus
      Article 5 days ago 11 min read 15 Years Ago: STS-128 Delivers Cargo to Enable Six-Person Space Station Crew
      Article 6 days ago 10 min read 40 Years Ago: President Reagan Announces Teacher in Space Project
      Article 1 week ago View the full article
    • By NASA
      “Some people [may say], ‘You have too many cooks in the kitchen,’ but I think there’s a line. It’s good to have a lot of input because people bring many different perspectives that you would never even consider if you just pushed an idea forward with one person. This is especially true in the area we work in with digital [communications], which is changing so frequently; you constantly have to innovate, so including diverse voices and thoughts is important.
      “I’m an older sister, and I don’t know if some of that [leadership style] comes from when we were kids, always making sure that I involved her and ensuring people could understand what she wanted or needed. And maybe that translated into who I am, making sure people have voices and are heard [at NASA]…I’ve achieved a lot that I didn’t even know I wanted to accomplish because I couldn’t have imagined this career progression for myself. 
      “But now that I’m here, I would like to achieve more in terms of what NASA looks like internally, especially after getting involved with the NASA Science IDEA working group and diversity efforts. I would love to one, help people outside of NASA realize that they could work here and two, push people internally to the forefront so that they can be considered for higher-level things and progress.”
      – Emily Furfaro, Digital Manager, Science Mission Directorate, NASA Headquarters
      Image Credit: NASA/Keegan Barber
      Interviewer: NASA/Tahira Allen
      Check out some of our other Faces of NASA. 
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Engineer Adam Gannon works on the development of Cognitive Engine-1 in the Cognitive Communications Lab at NASA’s Glenn Research Center.Credit: NASA  Automated technology developed in Cleveland has launched to space aboard the Technology Education Satellite 11 mission. The flight test aims to confirm the precision and accuracy of this new technology developed at NASA’s Glenn Research Center. 
      The Cognitive Communications Project was founded by NASA in 2016 to develop autonomous space communications systems for the agency. Autonomous systems use technology that can react to its environment to implement updates during a mission, without needing any human interaction.  
      The project first collaborated with the Technology Education Satellite (TES) program at NASA’s Ames Research Center in California’s Silicon Valley back in 2022 to launch the TES-13 CubeSat, which sent the first neuromorphic processor to space. A neuromorphic processor is a piece of technology built to act in ways that replicate how the human brain functions. Through TES-13, the cognitive team was able to test their advanced technology in space successfully for the first time.  
      Researchers at NASA’s Ames Research Center in California’s Silicon Valley assemble the Technology Education Satellite-11 CubeSat inside of a laboratory.Credit: NASA  After the success of TES-13, the team compiled each of their unique capabilities into one end-to-end system, called Cognitive Engine 1, or CE-1. CE-1 is a space and ground software system that automates normal aspects of spacecraft communications, like service scheduling and planning reliable priority-based data transfers.  
      Cognitive technology launched to space for the second time on July 3 on TES-11 aboard Firefly Aerospace’s Noise of Summer mission. TES-11 was one of eight small satellites launched during the mission. It was created as a part of the Technology Education Satellite program at NASA Ames, which organizes collaborative projects and missions that pair college and university students with NASA researchers to evaluate how new technologies work on small satellites, known as CubeSats.  
      Image of various CubeSats deployed in space from the International Space Station. Credit: NASA  TES-11 is testing the components of CE-1 that allow satellites to independently schedule time with ground stations and download data without human interaction. Results from the TES-11 mission will be used by the Cognitive Communications team to finalize their CE-1 design, to ensure that the technology is ready to be adopted by future NASA missions.  
      The Cognitive Communications Project is funded by the Space Communications and Navigation program at NASA Headquarters in Washington and managed out of NASA’s Glenn Research Center in Cleveland.  
      Return to Newsletter Explore More
      1 min read Cleveland High School Students Land STEM Career Exploration Experience 
      Article 5 mins ago 1 min read NASA Lands at National Cherry Festival 
      Article 5 mins ago 1 min read Local Creators Learn About NASA’s Iconic Logo 
      Article 5 mins ago View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      As chief of test operations at NASA’s Stennis Space Center, Maury Vander has been involved in some long-duration propulsion hot fires – but he still struggles to describe a pair of 34-minute space shuttle main engine tests conducted onsite in August 1988.
      “When you stop and think about it, …” Vander begins, then pauses. “In 34 minutes, I can leave work and drive home to Slidell (15-20 miles west in Louisiana) and be relaxing in my recliner in that amount of time.”
      Vander’s struggle is understandable when one considers the numbers. On Aug. 3 and Aug. 15, operators at the Thad Cochran Test Stand (B-1) at NASA Stennis near Bay St. Louis, Mississippi, fired a space shuttle main engine for a total of 2,017 seconds each day, more than four times as long as the engine fired (500 seconds) during a typical space shuttle launch.
      In terms of propulsion firings, nothing else comes close. The next-longest duration appears to have occurred in 2001, when a Progress M1-5 engine was fired for about 22 minutes to help deorbit the Russian space station Mir.
      Vander still wonders at the south Mississippi feat. “The ability to juggle the type of challenges seen over the course of 30-plus minutes is amazing,” he said. “And you are not talking about 21st century technology either. You are talking about rather simplistic stuff not far removed from the 1960s, so there was an art to operating that type of equipment. But, they pulled it off.”
      NASA Stennis may have been the only place such a firing could have been conducted.
      It had the needed test facility. The Thad Cochran (B-1) stand featured a larger liquid oxygen tank to support the test and was equipped with a diffuser that allowed operators to throttle the engine to lower power levels, thus conserving fuel. The stand also had a larger dock area for additional propellant barges needed for test support.
      Each 34-minute test required about 600,000 gallons of liquid hydrogen and 230,000 gallons of liquid oxygen. Careful coordination ensured proper propellant flow from barges. “We still had old pumps for the barges, as opposed to the new ones that have variable drives to help control flow,” Vander noted. “The pumps back then were basically on/off pumps. If they were running, they were pretty much running wide open. That posed a challenge for controlling flow. It was a real art to orchestrate everything for such a long period of time.”
      In addition, the NASA Stennis High Pressure Gas Facility had to ensure proper volume and flow of gases to support the tests. Teams at the High Pressure Water Facility had to manage uninterrupted flow from the 66-million gallon reservoir to the test stand. “All of these were challenges they had to think their way through and logistically make happen,” Vander said.
      The test team had to maintain constant vigilance of such operations. “You are always monitoring, trying to figure out what could go wrong,” Vander said. “At any given moment, you may have to react and deal with a problem. To think of those people sitting in front of computer screens, gauges, and such, watching and making sure their responsibilities were covered for 30-plus minutes, is just amazing.”
      The teams were driven by a compelling factor. The nation was just recovering from the Challenger tragedy of 1986. Space shuttle Discovery would launch NASA’s return to flight in late September. Space shuttle Atlantis was scheduled to launch later in the year, but there was an issue with the fuel preburner injector on one of the engines. To resolve the matter, operators needed to record 8,000 seconds of hot fire on the injector. They decided to compile the time as efficiently as possible.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Engineers at NASA’s Stennis Space Center conduct one of two 2,017-second tests of a space shuttle main engine on the Thad Cochran Test Stand (B-1) in August 1988. The tests still stand as the longest duration propulsion hot fires at the center and perhaps anywhere. The tests – almost 34 minutes each – were more than four times longer than space shuttle main engines fired during an actual launch.NASA/Stennis By the conclusion of the Aug. 15 test, just 340 more seconds of testing was needed to resolve the injector issue. As it did throughout the shuttle program, NASA Stennis teams delivered on propulsion test needs, resolving the issue to clear Atlantis for launch in early December.
      From 1975 to 2009, the center tested every space shuttle main flight engine and all engine upgrades, and also helped troubleshoot various performance issues. NASA Stennis now tests the RS-25 engines produced by Aerojet Rocketdyne, an L3Harris Technologies company, to support launches of NASA’s SLS (Space Launch System) rocket on Artemis missions to the Moon and beyond.
      “The people were proud of the work they did, yet humble,” Vander said, looking back at the record of the shuttle era. “You had to pull some of the stuff they did out of them when you were talking with them. Once they opened up, though, there were all kind of lessons there that we are still building on today.”
      For information about NASA’s Stennis Space Center, visit:
      Stennis Space Center – NASA
      Share
      Details
      Last Updated Aug 05, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Explore More
      4 min read Stennis Flashback: NASA Test Series Leads to Bold Space Shuttle Flight
      It may have been small, but the white puff of smoke exiting the B-2 Test…
      Article 1 year ago 4 min read NASA Achieves Milestone for Engines to Power Future Artemis Missions
      Article 4 months ago 5 min read NASA Spinoffs Feature NASA Stennis Developed Technologies
      Article 6 months ago Keep Exploring Discover More Topics From NASA Stennis
      About NASA Stennis
      NASA’s Stennis Space Center History
      Stennis News
      Visit NASA Stennis
      View the full article
  • Check out these Videos

×
×
  • Create New...