Members Can Post Anonymously On This Site
Advancing Human Spaceflight Safety
-
Similar Topics
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The Airspace Operations and Safety Program (AOSP) enables safe, sustainable, and efficient aviation transportation operations to benefit the flying public and ensure the global competitiveness of the U.S. aviation industry. We are transforming the future of aviation into a digital, federated, and service-oriented architecture that fosters the growth of safe airspace for all users.
By partnering with FAA, academia, safety experts, operators, manufacturers, municipalities, and other government agencies, we facilitate the integration of new aviation technologies, ensure airspace access for new entrants, and champion the success of increasingly autonomous operations. At AOSP, safety is at the heart of everything we do. We stand firm in our unwavering commitment to the safe integration of these vehicles.
AOSP Approach:
Efficient, Sustainable Aviation Operations Seamless Integration of Heterogeneous and Emergent Aviation Prognostic In-Time Aviation Safety Management System of Future Operations System Level Autonomy for Aviation Operations, Vehicle Command and Control Systems, and Safety Meet the diversity, density, and complexity challenges of future aviation AOSP Projects
Advanced Capabilities for Emergency Response Operations Project
Air Mobility Pathfinders
Air Traffic Management—Exploration (ATM-X)
System-Wide Safety (SWS)
Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
2 min read Media Invited to Speak to NASA Ames Experts – Celebrating 85 Years
Article 2 hours ago 3 min read NASA Sees Progress on Starlab Commercial Space Station Development
Article 24 hours ago 4 min read Helium Conservation by Diffusion Limited Purging of Liquid Hydrogen Tanks
Article 5 days ago Keep Exploring Discover More Topics From NASA
Missions
Humans In Space
Solar System Exploration
Solar System Overview Our solar system has one star, eight planets, five officially named dwarf planets, hundreds of moons, thousands…
Explore NASA’s History
Share
Details
Last Updated Dec 17, 2024 EditorLillian GipsonContactJim Bankejim.banke@nasa.gov Related Terms
General View the full article
-
By NASA
Caption: An artist’s concept of the International Space Station orbiting Earth. In the distance is the Moon, and a red star representing Mars.Credit: NASA As part of the agency’s efforts to enable broader use of space, NASA has released its final goals and objectives for low Earth orbit, defining the long-term approach toward advancing microgravity science, technology, and exploration for the benefit of all. Developed with input from a wide range of stakeholders, NASA’s Low Earth Orbit Microgravity Strategy will guide the agency toward the next generation of continuous human presence in orbit, enable greater economic growth, and maintain international partnerships.
“As we near the retirement of the International Space Station in 2030, these objectives are a pivotal next step in solidifying U.S. leadership in space,” said NASA Deputy Administrator Pam Melroy. “Our consultation with industry, academia, and international partners has helped refine a visionary roadmap for our future in low Earth orbit, which will be enabled by a continuous human presence. Together, we are ensuring that the benefits of exploring space continue to grow – advancing science, innovation, and opportunities for all, while preparing for humanity’s next giant leap of exploring the Moon, Mars and beyond.”
In early 2024, NASA initiated a planning process that included drafting an initial set of goals and objectives for the low Earth orbit microgravity environment and seeking feedback from its workforce, government partners, industry, academia, international space agencies, and the public. The agency reviewed more than 1,800 comments and hosted two workshops, resulting in essential adjustments to the goals and objectives to better align with its partners. The final framework includes 13 goals and 44 objectives across seven key areas: commercial low Earth orbit infrastructure, operations, science, research and technology development for exploration, international cooperation, workforce development and science, technology, engineering, and mathematics (STEM) engagement, and public engagement.
The agency’s efforts in low Earth orbit are integral to its broader ambitions for deep space exploration. The microgravity environment in low Earth orbit provides a cost-effective, easily accessible proving ground for technologies and research necessary for human missions to explore the solar system. With most of the journey to Moon and Mars occurring in microgravity, the objectives give the opportunity to continue vital human research, test future exploration systems, and retain the critical skills needed to operate in the microgravity environment.
“These finalized objectives represent a clear path forward as NASA transitions from the International Space Station to a new era of commercial space stations,” said Robyn Gatens, director of the International Space Station and acting director of commercial spaceflight. “Low Earth orbit will remain a hub for scientific discovery, technological advancement, and international cooperation, while making strategic investments in a commercial space ecosystem that benefits not just NASA, but the entire space community.”
The low Earth orbit microgravity goals and objectives, combined with significant stakeholder engagement, drive NASA’s need to maintain an unbroken, continuous heartbeat of humans in the commercial low Earth orbit destinations era. NASA requires long-duration flights to mitigate risk for future trips to the Red Planet. To ensure reliable access to and use of low Earth orbit, a diversity of providers operating on a regular cadence is essential. The objectives will also guide the development of requirements for future commercial space stations that will support NASA’s missions, while reducing risk for human missions to Mars, preserving operational skills, advancing critical scientific research, and sustaining engagement with international and commercial partners.
“Collaboration and consultation remain a cornerstone of our low Earth orbit strategy,” said John Keefe, director of cross-agency strategy integration at NASA. “The objectives we’ve established will help NASA craft a work plan that ensures NASA is positioned to meet current and future needs and prioritizes the development of critical capabilities for low Earth orbit.”
The low Earth orbit microgravity goals and objectives are available online at:
https://go.nasa.gov/3DsMtNI
-end-
Amber Jacobson
Headquarters, Washington
202-358-1600
amber.c.jacobson@nasa.gov
Share
Details
Last Updated Dec 16, 2024 LocationNASA Headquarters Related Terms
Pamela A. Melroy View the full article
-
By NASA
This article is from the 2024 Technical Update.
Multiple human spaceflight programs are underway at NASA including Orion, Space Launch System, Gateway, Human Landing System, and EVA and Lunar Surface Mobility programs. Achieving success in these programs requires NASA to collaborate with a variety of commercial partners, including both new spaceflight companies and robotic spaceflight companies pursuing crewed spaceflight for the first time. It is not always clear to these organizations how to show their systems are safe for human spaceflight. This is particularly true for avionics systems, which are responsible for performing some of a crewed spacecraft’s most critical functions. NASA recently published guidance describing how to show the design of an avionic system meets safety requirements for crewed missions.
Background
The avionics in a crewed spacecraft perform many safety critical functions, including controlling the position and attitude of the spacecraft, activating onboard abort systems, and firing pyrotechnics. The incorrect operation of any of these functions can be catastrophic, causing loss of the crew. NASA’s human rating requirements describe the need for “additional rigor and scrutiny” when designing safety-critical systems beyond that done
for uncrewed spacecraft [2]. Unfortunately, it is not always clear how to interpret this guidance and show an avionics architecture is sufficiently safe. To address this problem, NASA recently published NASA/TM−20240009366 [1]. It outlines best practices for designing safety-critical avionics, as well as describes key artifacts or evidence NASA needs to assess the safety of an avionics architecture.
Failure Hypothesis
One of the most important steps to designing an avionics architecture for crewed spacecraft is specification of the failure hypothesis (FH). In short, the FH summarizes any assumptions the designers make about the type, number, and persistence of component failures (e.g., of onboard computers, network switches). It divides the space of all possible failures into two parts – failures the system is designed to tolerate and failures it is not.
One key part of the FH is a description of failure modes the system can tolerate – i.e., the behavior exhibited by a failed component. Failure modes are categorized using a failure model. A typical failure model for avionics splits failures into two broad categories:
Value failures, where data produced by a component is missing (i.e., an omissive failure) or incorrect (i.e., a transmissive failure). Timing failures, where data is produced by a component at the wrong time.
Timing failures can be further divided into many sub-categories, including:
Inadvertent activation, where data is produced by a component without the necessary preconditions. Out-of-order failures, where data is produced by a component in an incorrect sequence. Marginal timing failures, where data is produced by a component slightly too early or late.
In addition to occurring when data is produced by a component, these failure modes can also occur when data enters a component. (e.g., a faulty component can corrupt a message it receives). Moreover, all failure modes can manifest in one of two ways:
Symmetrically, where all observers see the same faulty behavior. Asymmetrically, where some observers see different faulty behavior.
Importantly, NASA’s human-rating process requires that each of these failure modes be mitigated if it can result in catastrophic effects [2]. Any exceptions must be explicitly documented and strongly justified. In addition to specifying the failure modes a system can tolerate, the FH must specify any limiting assumptions about the relative arrival times of permanent failures and radiation-induced upsets/ errors or the ability for ground operator to intervene to safe the system or take recovery actions. For more information on specifying a FH and other artifacts needed to evaluate the safety of an avionics architecture for human spaceflight, see the full report [1].
View the full article
-
By European Space Agency
On 4 December 2024, the European Space Agency (ESA) and the Indian Space Research Organisation (ISRO) signed an agreement that will see ESA provide ground station support to the missions in ISRO’s Gaganyaan human spaceflight programme.
View the full article
-
By NASA
NASA has awarded Bastion Technologies Inc., of Houston, the Center Occupational Safety, Health, Medical, System Safety and Mission Assurance Contract (COSMC) at the agency’s Ames Research Center in California’s Silicon Valley.
The COSMC contract is a hybrid cost-plus-fixed-fee and firm-fixed-price contract, with an indefinite-delivery/indefinite-quantity component and maximum potential value of $53 million. The contract phase-in begins Thursday, Jan. 2, 2025, followed by a one-year base period that begins Feb. 14, 2025, and options to extend performance through Aug. 13, 2030.
Under this contract, the company will provide support for occupational safety, industrial hygiene, health physics, safety and health training, emergency response, safety culture, medical, wellness, fitness, and employee assistance. The contractor also will provide subject matter expertise in several areas including system safety, software safety and assurance, quality assurance, pressure system safety, procurement quality assurance, and range safety. Work will primarily be performed at NASA Ames and NASA’s Armstrong Flight Research Center in Edwards, California, as needed.
For information about NASA and agency programs, visit:
https://www.nasa.gov
-end-
Tiernan Doyle
NASA Headquarters, Washington
202-358-1600
tiernan.p.doyle@nasa.gov
Rachel Hoover
Ames Research Center, Silicon Valley, Calif.
650-604-4789
rachel.hoover@nasa.gov
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.