Jump to content

Recommended Posts

  • Publishers
Posted

As NASA continues to pursue new human missions to low Earth orbit, lunar orbit, the lunar surface, and on to Mars, the NESC continues to provide a robust technical resource to address critical challenges.

The NESC Environmental Control and Life Support Systems (ECLSS), Crew Systems, and Extravehicular Activity (EVA) discipline is led by the NASA Technical Fellow for ECLS, Dr. Morgan Abney, ECLSS & Crew Systems Deputy Dave Williams, Extravehicular & Human Surface Mobility Deputy Danielle Morris, and EVA Deputy Colin Campbell. In 2023, this team led assessments and provided support to the Commercial Crew Program, ISS, Orion Multi-Purpose Crew Vehicle, Extravehicular and Human Mobility Program, Gateway International Habitat, and Moon-to-Mars Program. Three of the most notable activities in 2023 are briefly described below.

Mitigation for Water in the Helmet During EVA

During EVA22 in 2013, water was observed in the helmet and assumed to be the result of a “burp” from the drink bag. No further investigation was pursued because water had been observed to some degree (water on visor, wet hair, etc.) on eight previous occasions. The result was a nearly catastrophic event during EVA23, where astronaut Luca Parmitano experienced dangerous quantities of water in his helmet. Both EVA23 and EVA35 in 2016 contributed to identification of drowning as a key risk, which resulted in several water mitigation approaches. Based on these approaches, the program determined the risk level to be acceptable for nominal EVA. However, in March 2022, a crewmember returning from EVA80 noticed water accumulated on the visor of his helmet obstructing ~30-50% of his field of view. Due to the increasing complexity of EVA objectives on EVA80 and forward, the ISS Program identified loss or reduction of visibility as a greater risk than previously recognized and sought to identify methods to prevent even small quantities of liquid water from forming in the helmet during EVA. The NESC was asked to provide support to the activity through modeling of the helmet and two-phase (water and oxygen) flow behavior in microgravity, through model validation testing, and through testing of mitigation hardware identified by the larger team. The model predictions provided a map (Figure 1) of anticipated liquid water formations based on the contact angle between the face or head and the helmet surface. Based on the ISS helmet with no water mitigations, the model predicted that large blobs would most likely form bridges between the helmet and face and that rupture of those bridges would result in the majority of liquid transferring to the face. To mitigate this risk, the ISS EVA80 team devised a solution to add absorbent materials in the path of the oxygen and water entering the helmet. Following EVA23, the helmet absorption pad (HAP) was added for bulk water collection. The improved mitigation strategy based on EVA80 included a HAP extender (HAP-E) and a helmet absorption band (HAB) (Figure 2). The NESC provided modeling of the mitigation hardware and validation testing of the HAB configuration using flow conditions anticipated in ISS operation (Figure 3). The testing provided ground validation of the HAB performance. The HAB and HAP-E have both been implemented in flight.

techup2023-pg58-61-art1.png?w=2048
Figure 1. Map of predicted water formations within a helmet as a function of face/head and helmet contact angles. Dashed rectangle indicates the expected domain of the ISS helmet with no water mitigations. 
techup2023-pg58-61-art2.png?w=2048
Figure 2. Water mitigation strategy for the ISS helmet: a) sketch of HAP, HAP-E, and HAB, b) side view of early prototype, c) bottom view of early prototype. 
techup2023-pg58-61-art3.png?w=1386
Figure 3. HAB ground validation testing under trickle water flow conditions.

Evaluation of Terrestrial Portable Fire Extinguishers for Microgravity Applications 

The tragic fire of Apollo 1 has, of necessity, instilled in NASA an enduring respect for the risk of fire in spacecraft. As such, robust fire detection and response systems have been a cornerstone of NASA-designed vehicles. Portable fire extinguishers (PFE) are a fundamental fire response capability of spacecraft and both carbon dioxide and water-based PFEs have been used by NASA historically. However, terrestrial-based PFEs, particularly those using new halon-based suppressants, may provide improved capability beyond the NASA state-of-the-art. In 2023, the NESC sought to evaluate the effectiveness of commercial-off-the-shelf (COTS) PFEs in microgravity. The team developed an analytical model to predict the discharge rate of three terrestrial COTS PFEs containing CO2, HFC-227ea, and Novec 1230. The model considered the internal geometry of the PFEs, the material properties of the suppressants and their corresponding PFE tanks, and the effects of microgravity and in-flight perturbations. The results predicted that for PFE tanks containing dip tubes, like those for HFC-227ea and Novec 1230 where nitrogen gas is used as a pressurant, microgravity plays a significant role in the discharge performance due to two-phase flow. Figure 4 shows the various equilibrium configurations based on gravity and perturbations. As a comparison, the analysis predicts >80% discharge of the HFC-227ea in the COTS PFE within ~30 seconds with the remainder discharging over ~0.5-1 hours when discharged in a terrestrial fire (Figure 4A), while only 60-80% discharges in 30 seconds with the remainder discharging over 1-2 hours in microgravity (Figure 4C). 

techup2023-pg58-61-art4.png?w=1406
Figure 4. Equilibrium two-phase configurations of nitrogen (white)-pressurized liquid suppressant (blue). A) PFE held nominally with nozzle up in 1-g with no perturbations, B) PFE held inverted in 1-g or in 0-g where liquid preferentially accumulates away from the dip tube entrance with no perturbations, C) PFE in 0-g at the statistically most probable state with no perturbations, D) PFE in 0-g where nitrogen preferentially accumulates at ends of the PFE with no perturbations, E) PFE in any level gravity with significant perturbations (shaken up), and F) statistically most probable state in 0-g following complete discharge.

Based on this analysis, the use of terrestrially designed PFEs containing gaseous pressurant over a liquid suppressant will likely result in decreased initial discharge of the suppressant and significantly longer total discharge times in microgravity as compared to terrestrial discharge performance. Testing is ongoing to validate the models using a custom-designed PFE test stand (Figures 5 and 6) that enables multi-configuration testing of COTS PFEs. 

techup2023-pg58-61-art5.png?w=1368
Figure 5. (left) PFE test stand for model validation. Design prevents directional load effects to enable accurate mass measurement during PFE discharge. Figure 6. (right) Insulated PFE housing and remote discharge control allows for accurate, real-time thermal measurements during validation testing.

Standardized Abrasion, Cut, and Thermal Testing for Spacesuit Gloves and Materials  

State-of-the-art spacesuit gloves have been optimized for the challenges of ISS. Artemis missions call for high-frequency EVAs at the lunar south pole, where temperatures in the permanently shadowed region (PSR) will expose crew gloves to temperatures lower than ever previously experienced and where frequent and repeated exposure to regolith dust and rocks will present significantly increased risk for abrasion and cuts. With the development of new spacesuits by commercial partners, inexpensive and repeatable test methods are needed to characterize, evaluate, and compare gloves and glove materials for their thermal performance at PSR temperatures and for their resistance to lunar regolith abrasion and cuts. To address these needs, the NESC is leading a team to develop standardized test methods in coordination with ASTM International Committee F47 on Commercial Spaceflight.  

Three standardized methods are currently in development. The first method seeks to standardize lunar dust abrasion testing of glove (and suit) materials based on adapted “tumble testing” first proposed at NASA in 1990. The NASA-designed tumbler (Figure 7) enables testing of six samples per run and compares pre- and post-tumbled tensile strength of materials to compare abrasion resistance. The method is highly controlled using a commercially available tumble medium and lunar regolith simulant.  

Because material properties change with temperature, the second method seeks to develop a standardized approach to evaluate the cut resistance of glove materials at relevant cryogenic temperatures. The method is an adaptation of ASTM F2992 Standard Test Method for Measuring Cut Resistance of Materials Used in Protective Clothing with Tomodynamometer (TDM-100) Test Equipment. In order to allow for cut evaluation at cryogenic temperatures, the TDM-100 cut fixture was modified to include channels for liquid nitrogen flow (Figure 8A), thereby cooling the test material to 77 K. 

techup2023-pg58-61-art6.png?w=1366
Figure 7. Hardware used in the tumble test method. Tumbler apparatus (left). Tumbler with panel removed to show lunar regolith simulant and commercially available tumbler media (top right). Tumbler panel showing lunar regolith simulant (bottom right).

The third method seeks to evaluate the thermal performance of gloves down to PSR requirement temperature of 48 K. Historical thermal testing of gloves was conducted with human-in-the-loop (HITL) testing for both radiative and conductive cooling. Conductive cooling was accomplished by having the test subject grab thermally controlled “grasp objects” and maintain contact until their skin temperature reached 283 K (50 ºF) or until they felt sufficient discomfort to end the test themselves. While HITL testing is critical for final certification of gloves, iterative design and development testing would benefit from a faster, less expensive test. To meet this need, the NESC is developing a glove thermal test that uses a custom manikin hand designed by Thermetrics, LLC (Figure 8B). 

techup2023-pg58-61-art7-1.png?w=1374
Figure 8. A) Mandrel used in cut testing as designed for ambient testing (left) and cryogenic testing (right). Flow channels allow for liquid nitrogen flow to cool the material sample to cryogenic temperatures. B) Prototype of Thermetrics, LLC custom manikin hand for spacesuit glove thermal testing.

The manikin hand is outfitted with temperature and heat flux sensors to monitor heat transfer to the hand. The hand is placed within a spacesuit glove and thermally controlled with internal water flow to simulate human heat generation. The Cryogenic Ice Transfer, Acquisition, Development, and Excavation Laboratory (CITADEL) chamber at JPL is then used to test the glove thermal performance at a range of temperatures from 200 K down to 48 K. Thermal performance is evaluated to mimic historical HITL testing under both radiative and conductive cooling. Conductive cooling is accomplished through a temperature-controlled touch object and is evaluated using two touch pressures. All three methods will be incorporated as ASTM F47 standard test procedures following NASA and ASTM committee review and approvals (targeting 2024).  

techup2023-pg58-61-art8.png?w=2048
ASA astronaut and Expedition 68 Flight Engineer Nicole Mann is pictured in her Extravehicular Mobility Unit (EMU) during an EVA. The NESC has recently contributed to astronaut safety investigations of water accumulating in EMU helmets during EVAs, and developing EMU gloves for use in the harsh conditions of the lunar south pole.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      The European Space Agency (ESA) and AAC Clyde Space, a New Space company specialising in small satellite technologies, have jointly signed a contract for the first phase of satellite constellation project INFLECION. The initiative will transform Maritime Domain Awareness – the understanding of activities at sea – by enhancing safety, efficiency, compliance, and environmental sustainability in maritime operations.
      View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A still image of a video that shows a plastic rod and cotton-fiberglass fabric being burned during a ground test of the Lunar-g Combustion Investigation (LUCI) experiment.Credit: Voyager Technologies An experiment studying how solid materials catch fire and burn in the Moon’s gravity was launched on Blue Origin’s New Shepard suborbital flight this month. 
      Developed by NASA’s Glenn Research Center in Cleveland together with Voyager Technologies, the Lunar-g Combustion Investigation (LUCI) will help researchers determine if conditions on the Moon – with reduced gravity – might be a more hazardous environment for fire safety. 
      The video shows a plastic rod and cotton-fiberglass fabric being burned during a ground test of the Lunar-g Combustion Investigation (LUCI) experiment. Scientists will compare the ground test video to the video recorded on the Blue Origin flight. 
      Credit: Voyager Technologies On this flight, LUCI tested flammability of cotton-fiberglass fabric and plastic rods, and once launched, the payload capsule rotated at a speed to simulate lunar gravity. NASA Glenn researchers will analyze data post-flight.
      A plastic rod and cotton-fiberglass fabric that were burned during testing for the Lunar-g Combustion Investigation. New, unburned samples were lit on fire during the flight. Credit: Voyager Technologies  LUCI’s findings will help NASA and its partners design safe spacecraft and spacesuits for future Moon and Mars missions. 
      For more information on LUCI and the mission, visit. 
      Return to Newsletter View the full article
    • By NASA
      Credit: NASA The Aerospace Safety Advisory Panel (ASAP), an advisory committee that reports to NASA and Congress, issued its 2024 annual report Thursday examining the agency’s safety performance, accomplishments, and challenges during the past year.
      The report highlights 2024 activities and observations on NASA’s work, including:
      strategic vision and agency governance Moon to Mars management future of U.S. presence in low Earth orbit health and medical risks in human space exploration “Over the past year, NASA has continued to make meaningful progress toward meeting the intent of the broad-ranging recommendations the panel has made over the last several years,” said retired U.S. Air Force Lt. Gen. Susan J. Helms, chair of ASAP. “We believe that the agency’s careful attention to vision, strategy, governance, and program management is vital to the safe execution of NASA’s complex and critical national mission.”
      This year’s report reflects the panel’s continued focus on NASA’s strategies for risk management and safety culture in an environment of growing space commercialization. Specifically, the panel cites its 2021 recommendations for NASA on preparing for future challenges in a changing landscape, including the need to evaluate NASA’s approach to safety and technical risk and to evolve its role, responsibilities, and relationships with private sector and international partners.
      Overall, the panel finds NASA is continuing to make progress with respect to the agency’s strategic vision, approach to governance, and integrated program management. The NASA 2040 new agencywide initiative is working to operationalize the agency’s vision and strategic objectives across headquarters and centers. With the establishment of NASA’s Moon to Mars Program Office in 2023, it finds NASA has implemented safety and risk management as a key focus for NASA’s Artemis campaign.
      The 2024 report provides details on the concrete actions the agency should take to fulfill its previous recommendations and spotlights its recommendations for the agency moving ahead. It addresses safety assessments for Moon to Mars and current International Space Station operations, as well as risk-related issues surrounding NASA’s planned transition to commercial low Earth orbit destinations.
      It covers relevant areas of human health and medicine in space and the impact of budget constraints and uncertainty on safety.
      The annual report is based on the panel’s 2024 fact-finding and quarterly public meetings; direct observations of NASA operations and decision-making; discussions with NASA management, employees, and contractors; and the panel members’ experiences.
      Congress established the panel in 1968 to provide advice and make recommendations to the NASA administrator on safety matters after the 1967 Apollo 1 fire claimed the lives of three American astronauts.
      To learn more about the ASAP, and view annual reports, visit:
      https://www.nasa.gov/asap
      -end-
      Jennifer Dooren / Elizabeth Shaw
      Headquarters, Washington
      202-358-1600
      jennifer.m.dooren@nasa.gov / elizabeth.a.shaw@nasa.gov
      Share
      Details
      Last Updated Feb 06, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Aerospace Safety Advisory Panel View the full article
    • By NASA
      NASA has selected David Korth as deputy for Johnson Space Center’s Safety and Mission Assurance directorate. Korth previously served as deputy manager of the International Space Station Avionics and Software Office at Johnson Space Center prior to serving as acting deputy for Safety and Mission Assurance.
       
      I’m excited to embark on my new role as deputy for Johnson’s Safety and Mission Assurance directorate,” Korth said. “Safety has been a priority for me throughout my NASA career. It is at the forefront of every decision I make.”
       
      Korth brings more than 34 years’ experience to NASA human space flight programs. Prior to supporting the space station Avionics and Software Office, Mr. Korth served as deputy manager of the program’s Systems Engineering and Integration Office where he also led the agency Commercial Destination program’s procurement culminating in the selection of Axiom Space.
       
      Mr. Korth began his NASA career as an engineer in the space station program’s operations planning group where he helped develop initial operational concepts and planning system requirements for the orbiting laboratory. He converted to civil servant in 1998 and was among the first three individuals to achieve front room certification as a space station ‘OPS PLAN’ front room operator. Korth also served as the lead operations planner for Expedition 1 – the first space station crewed expedition, was awarded two NASA fellowships, served as the operations division technical assistant in the Mission Operations Directorate, and was selected as a flight director in May 2007and served as lead space station flight director for Expeditions 21, 22, and 37, lead flight director for Japanese cargo ship mission HTV3, and lead flight director for US EVAs 22, 23,and 27.

      “David did an excellent job supporting Johnson’s many programs and institutional safety needs while serving as acting deputy manager,” said Willie Lyles, director of the Safety and Mission Assurance directorate. “He successfully weighed in on several critical risk-based decisions with the technical authority community. David’s program and flight operations experience is unique and is an asset to this role.” 
       
      Throughout his career, Korth has been recognized for outstanding technical achievements and leadership, receiving a Rotary National Award for Space Achievement, a Silver Snoopy award, two Superior Achievement awards, two NASA Outstanding Leadership medals, and a NASA Exceptional Achievement medal.
       
      “David is an outstanding leader and engineer who truly understands NASA’s safety environment and protocols,” said Vanessa Wyche, director of NASA’s Johnson Space Center. “His leadership will ensure the center continues its ‘safety first’ ideology. I am extremely pleased to announce his selection for this position.”
       
      Mr. Korth earned his bachelor’s degree in aerospace engineering from Texas A&M University, and a master’s degree in statistics from the University of Houston-Clear Lake.
      View the full article
    • By NASA
      3 Min Read NASA Scientists Find New Human-Caused Shifts in Global Water Cycle
      Cracked mud and salt on the valley floor in Death Valley National Park in California can become a reflective pool after rains. (File photo) Credits: NPS/Kurt Moses In a recently published paper, NASA scientists use nearly 20 years of observations to show that the global water cycle is shifting in unprecedented ways. The majority of those shifts are driven by activities such as agriculture and could have impacts on ecosystems and water management, especially in certain regions.
      “We established with data assimilation that human intervention in the global water cycle is more significant than we thought,” said Sujay Kumar, a research scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and a co-author of the paper published in the Proceedings of the National Academy of Sciences.
      The shifts have implications for people all over the world. Water management practices, such as designing infrastructure for floods or developing drought indicators for early warning systems, are often based on assumptions that the water cycle fluctuates only within a certain range, said Wanshu Nie, a research scientist at NASA Goddard and lead author of the paper.
      “This may no longer hold true for some regions,” Nie said. “We hope that this research will serve as a guide map for improving how we assess water resources variability and plan for sustainable resource management, especially in areas where these changes are most significant.”
      One example of the human impacts on the water cycle is in North China, which is experiencing an ongoing drought. But vegetation in many areas continues to thrive, partially because producers continue to irrigate their land by pumping more water from groundwater storage, Kumar said. Such interrelated human interventions often lead to complex effects on other water cycle variables, such as evapotranspiration and runoff.
      Nie and her colleagues focused on three different kinds of shifts or changes in the cycle: first, a trend, such as a decrease in water in a groundwater reservoir; second, a shift in seasonality, like the typical growing season starting earlier in the year, or an earlier snowmelt; and third a change in extreme events, like “100-year floods” happening more frequently.
      The scientists gathered remote sensing data from 2003 to 2020 from several different NASA satellite sources: the Global Precipitation Measurement mission satellite for precipitation data, a soil moisture dataset from the European Space Agency’s Climate Change Initiative, and the Gravity Recovery and Climate Experiment satellites for terrestrial water storage data. They also used products from the Moderate Resolution Imaging Spectroradiometer satellite instrument to provide information on vegetation health.
      “This paper combines several years of our team’s effort in developing capabilities on satellite data analysis, allowing us to precisely simulate continental water fluxes and storages across the planet,” said Augusto Getirana, a research scientist at NASA Goddard and a co-author of the paper.
      The study results suggest that Earth system models used to simulate the future global water cycle should evolve to integrate the ongoing effects of human activities. With more data and improved models, producers and water resource managers could understand and effectively plan for what the “new normal” of their local water situation looks like, Nie said.
      By Erica McNamee
      NASA’s Goddard Space Flight Center, Greenbelt, Maryland
      Share
      Details
      Last Updated Jan 16, 2025 EditorKate D. RamsayerContactKate D. Ramsayerkate.d.ramsayer@nasa.gov Related Terms
      Earth Global Precipitation Measurement (GPM) Goddard Space Flight Center Moderate Resolution Imaging Spectroradiometer (MODIS) Water & Energy Cycle Explore More
      4 min read NASA’s Global Precipitation Measurement Mission: 10 years, 10 stories
      From peering into hurricanes to tracking El Niño-related floods and droughts to aiding in disaster…
      Article 11 months ago 4 min read NASA Satellites Find Snow Didn’t Offset Southwest US Groundwater Loss
      Article 7 months ago 4 min read NASA Satellites Reveal Abrupt Drop in Global Freshwater Levels
      Earth’s total amount of freshwater dropped abruptly starting in May 2014 and has remained low…
      Article 2 months ago View the full article
  • Check out these Videos

×
×
  • Create New...