Jump to content

Student-Built Robots Clash at Competition Supported by NASA-JPL


Recommended Posts

  • Publishers
Posted

Hand-crafted robots, constructed over the past two months by 44 high school teams, duked it out at the FIRST Robotics Los Angeles regional competition.

Student-made contraptions of a metal and a little magic battled each other in front of cheering and dancing high schoolers at the annual Los Angeles regional FIRST Robotics Competition over the weekend, an event supported by NASA’s Jet Propulsion Laboratory. Of the 44 participating teams, five triumphed, earning the chance to compete this April at the FIRST international championship tournament in Houston.

The raucous event at the Da Vinci Schools campus in El Segundo saw six 125-pound robots racing around the playing field during each 2 ½-minute match as pounding music filled the room and a live announcer narrated the action. Working in alliances of three teams on each side, the robots jockeyed for position and banged into each other, using a variety of mechanical devices to retrieve large, foam rings from the floor and launch them into two target chutes. In the final seconds of each round, the bots could earn extra points by hoisting themselves off the ground to dangle from a metal chain.

“The energy in the room was amazing this year,” said Kim Lievense, the manager of JPL’s Public Services Office, who coordinates some 100 volunteers for the event every year. “These teams and their bots really left it all on the field, and it was so great to be there to see it yet again.”

The 24th year for this L.A.-area competition, the event is one of many under the umbrella of the nonprofit FIRST (For Inspiration and Recognition of Science and Technology), which pairs students with STEM professionals. The competitions give students hands-on experience with engineering and problem-solving, team-building, fundraising, and other business skills.

Teams receive the rules of the game – titled “Crescendo” this year and themed around arts and entertainment – in January. Using FIRST’s technical specifications, students have just weeks to design, build, and test their robots, devoting hours after school and on weekends to the project.

“There were a lot of really impressive robots, and students, this year. The engineering, the manufacturing, the programming in the software these kids are writing – it’s quite complex,” said Julie Townsend, one of three event judges from JPL. She has been volunteering with FIRST for nearly 20 years as a judge and coach and is JPL’s point of contact for the NASA Robotics Alliance Project, which supports NASA “house” youth robotics teams across the country.

“Without these programs like FIRST, high school students don’t have the opportunity to do this kind of engineering,” Townsend added. “It’s hard, but they eventually get to experience the joy of a functioning system that you designed. You failed 16 times and then you get to see it work flawlessly.”

In the end, the winning alliance joined together a team from Hawaii with two Southern California teams: Team 368 (“Team Kika Mana”) of McKinley High School in Honolulu, Team 9408 (“Warbots”) of Warren High in Downey, and Team 980 (“ThunderBots”) of Burbank and Burroughs high schools in Burbank, which is a NASA house team supported by JPL.

Two other L.A.-area teams won awards that mean they’ll get to compete in Houston as well: Team 687 (“The Nerd Herd”) of California Academy of Math and Science in Carson, and Team 3473 (“Team Sprocket”) of Diamond Bar High.

For more information about the FIRST Los Angeles regional, visit:

https://cafirst.org/frc/losangeles/

News Media Contact

Melissa Pamer
Jet Propulsion Laboratory, Pasadena, Calif.
626-314-4928
melissa.pamer@jpl.nasa.gov

2024-028

Share

Details

Last Updated
Mar 18, 2024

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Members belonging to one of three teams from Oakwood School aim their devices — armed with chocolate-coated-peanut candies — at a target during JPL’s annual Invention Challenge on Dec. 6.NASA/JPL-Caltech Teams competed with homemade devices to try to launch 50 peanut candies in 60 seconds into a target container.NASA/JPL-Caltech More points were awarded for successfully landing the candy into the highest, smallest level of the triangular Plexiglas target — not an easy task.NASA/JPL-Caltech Treats went flying through the air by the dozens at the annual Invention Challenge at NASA’s Jet Propulsion Laboratory.
      The 25th Invention Challenge at NASA’s Jet Propulsion Laboratory in Southern California, which welcomed more than 200 students to compete using home-built devices, was pretty sweet this year. Literally.
      That’s because the challenge at the Friday, Dec. 6, competition was to construct an automated machine that would launch, within 60 seconds, 50 chocolate-coated-peanut candies over a barrier and into a triangular Plexiglas container 16 feet (5 meters) away. The mood was tense as teachers, parents, and JPL employees watched the “Peanut Candy Toss Contest” from the sidelines, some of them eating the ammunition.
      Students on 21 teams from Los Angeles and Orange county middle and high schools turned to catapults, slingshots, flywheels, springs, and massive rubber bands. There was lots of PVC piping. A giant device shaped like a blue bunny shot candy out of its nose with the help of an air compressor, while other entries relied on leaf blowers and vacuums.
      A team from Santa Monica High School won the 2024 Invention Challenge at JPL on Dec. 6 with a device was based on a crossbow.NASA/JPL-Caltech Some were more successful than others. Ultimately, it was an old-school design that won first place for a team from Santa Monica High School: a modified crossbow.
      “I tried to come up with something that was historically tried and true,” said Steele Winterer, a senior on the team who produced the initial design. Like his teammates, Steele is in the school’s engineering program and helped build the device during class. He described the process as “nerve-wracking,” “messy,” and “disorganized,” but everyone found their role as the design was refined.
      Second and third place went to teams from Oakwood School in North Hollywood, which both took a firing-line approach, using four parallel wooden devices, with one student per device firing after each other in quick succession.
      Two regional Invention Challenges held at Costa Mesa High School and Augustus Hawkins High School in South L.A. last month had winnowed the field to the 21 teams invited to the final event at JPL. At the finals, three JPL-sponsored teams from out-of-state schools and two teams that included adult engineers faced off in a parallel competition. In this second competition group, retired JPL engineer Alan DeVault took first place, followed by Boston Charter School of Science coming in second, and Centaurus High School from Colorado in third.
      Competing with a wooden device at the 2024 Invention Challenge, retired JPL engineer and longtime participant Alan DeVault won first place among JPL-sponsored teams, which included professionals and out-of-state students. Challenge organizer Paul MacNeal kneels at right.NASA/JPL-Caltech Held since 1998 (with a two-year break during the COVID-19 pandemic), the contest was designed by JPL mechanical engineer Paul MacNeal to inspire students to discover a love for building things and solving problems. Student teams spend months designing, constructing, and testing their devices to try to win the new challenge that MacNeal comes up with each year.
      “When student teams come to the finals, they are engaged just as engineers are engaged in the work we do here at JPL,” MacNeal said. “It’s engineering for the joy of it. It’s problem-solving but it’s also team building. And it’s unique because the rules change every year. The student teams get to see JPL engineering teams compete side by side. I started this contest to show students that engineering is fun!”
      The event is supported by dozens of volunteers from JPL, which is managed by Caltech in Pasadena for NASA.
      News Media Contact
      Melissa Pamer
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-314-4928
      melissa.pamer@jpl.nasa.gov
      2024-166
      Share
      Details
      Last Updated Dec 06, 2024 Related Terms
      Jet Propulsion Laboratory Explore More
      5 min read NASA JPL Unveils the Dr. Edward Stone Exploration Trail
      Article 5 hours ago 4 min read NASA’s C-20A Studies Extreme Weather Events
      Article 2 days ago 5 min read NASA’s Europa Clipper: Millions of Miles Down, Instruments Deploying
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA Lewis Research Center’s DC-9 commences one of its microgravity-producing parabolas in the fall of 1994. It was the center’s largest aircraft since the B-29 Superfortress in the 1940s.Credit: NASA/Quentin Schwinn
      A bell rings and a strobe light flashes as a pilot pulls the nose of the DC-9 aircraft up sharply. The blood quickly drains from researchers’ heads as they are pulled to the cabin floor by a force twice that of normal gravity. Once the acceleration slows to the desired level, and the NASA aircraft crests over its arc, the flight test director declares, “We’re over the top!”
      The pressure drops as the aircraft plummets forward in freefall. For the next 20 to 25 seconds, everybody and everything not tied down begins to float. The researchers quickly tend to their experiments before the bell rings again as the pilot brings the aircraft back to level flight and normal Earth gravity.
      By flying in a series of up-and-down parabolas, aircraft can simulate weightlessness. Flights like this in the DC-9, conducted by NASA’s Lewis Research Center (today, NASA Glenn) in the 1990s, provided scientists with a unique way to study the behavior of fluids, combustion, and materials in a microgravity environment.

      Researchers conduct experiments in simulated weightlessness during a flight aboard the DC-9. The aircraft sometimes flew up to 40 parabolas in a single mission.Credit: NASA/Quentin Schwinn Beginnings
      In the 1960s, NASA Lewis used a North American AJ-2 to fly parabolas to study the behavior of liquid propellants in low-gravity conditions. The center subsequently expanded its microgravity research to include combustion and materials testing.
      So, when the introduction of the space shuttle in the early 1980s led to an increase in microgravity research, NASA Lewis was poised to be a leader in the agency’s microgravity science efforts. To help scientists test experiments on Earth before they flew for extended durations on the shuttle, Lewis engineers modified a Learjet aircraft to fly microgravity test flights with a single strapped-down experiment and researcher.
      The DC-9 flight crew in May 1996. Each flight required two pilots, a flight engineer, and test directors. The flight crews participated in pre- and post-flight mission briefings and contributed to program planning, cost analysis, and the writing of technical reports.Credit: NASA/Quentin Schwinn Bigger And Better
      In 1990, NASA officials decided that Lewis needed a larger aircraft to accommodate more experiments, including free-floating tests. Officials determined the McDonnell Douglas DC-9 would be the most economical option and decided to assume responsibility for a DC-9 being leased by the U.S. Department of Energy.
      In the fall of 1993, 50 potential users of the aircraft visited the center to discuss the modifications that would be necessary to perform their research. In October 1994, the DC-9 arrived at Lewis in its normal passenger configuration. Over the next three months, Lewis technicians removed nearly all the seats; bolstered the floor and ceiling; and installed new power, communications, and guidance systems. A 6.5-by-11-foot cargo door was also installed to allow for the transfer of large equipment.
      The DC-9 was the final element making NASA Lewis the nation’s premier microgravity institution. The center’s Space Experiments Division had been recently expanded, the 2.2-Second Drop Tower and the Zero Gravity Facility had been upgraded, and the Space Experiments Laboratory had recently been constructed to centralize microgravity activities.
      NASA Lewis researchers aboard the DC-9 train the STS-83 astronauts on experiments for the Microgravity Science Laboratory (MSL-1).Credit: NASA/Quentin Schwinn Conducting the Flights
      Lewis researchers partnered with industry and universities to design and test experiments that could fly on the space shuttle or the future space station. The DC-9 could accommodate up to eight experiments and 20 research personnel on each flight.
      The experiments involved space acceleration measurements, capillary pump loops, bubble behavior, thin film liquid rupture, materials flammability, and flame spread. It was a highly interactive experience, with researchers accompanying their tests to gain additional information through direct observation. The researchers were often so focused on their work that they hardly noticed the levitation of their bodies.
      The DC-9 flew every other week to allow time for installation of experiments and aircraft maintenance. The flights, which were based out of Cleveland Hopkins International Airport, were flown in restricted air space over northern Michigan. The aircraft sometimes flew up to 40 parabolas in a single mission.
      Seth Lichter, professor at Northwestern University, conducts a thin film rupture experiment aboard the DC-9 in April 1997.Credit: NASA/Quentin Schwinn A Lasting Legacy
      When the aircraft’s lease expired in the late 1990s, NASA returned the DC-9 to its owner. From May 18, 1995, to July 11, 1997, the Lewis microgravity flight team had used the DC-9 to fly over 400 hours, perform 70-plus trajectories, and conduct 73 research projects, helping scientists conduct hands-on microgravity research on Earth as well as test and prepare experiments designed to fly in space. The aircraft served as a unique and important tool, overall contributing to the body of knowledge around microgravity science and the center’s expertise in this research area.
      NASA Glenn’s microgravity work continues. The center has supported experiments on the International Space Station that could improve crew health as well as spacecraft fire safety, propulsion, and propellants. Glenn is also home to two microgravity drop towers, including the Zero Gravity Research Facility, NASA’s premier ground-based microgravity research lab.
      Additional Resources:
      Learn more about why NASA researchers simulate microgravity Take a virtual tour of NASA Glenn’s Zero Gravity Research Facility Discover more about Glenn’s expertise in space technology Explore More
      6 min read Art Meets Exploration: Cosmic Connections in Galveston
      Article 1 day ago 3 min read Emerging Engineering Leader Basil Baldauff Emphasizes Osage Values
      Article 1 day ago 6 min read NASA’s Commercial Partners Make Progress on Low Earth Orbit Projects
      Article 2 days ago View the full article
    • By Space Force
      SSC’s annual Fight Tonight competition was launched three years ago, seeking to empower solutions in alignment with the critical Space Force mission of ensuring a secure space domain for all.

      View the full article
    • By Space Force
      Seven teams made the final round in this year’s annual Fight Tonight competition and presented their concepts to U.S. Space Force and U.S. Space Command leaders Oct. 7.
      View the full article
    • By NASA
      The National Aeronautics and Space Administration (NASA) Ames Research Center (ARC) on behalf of the Space Technology Mission Directorate’s (STMD) Small Spacecraft Technology (SST) Program and is hereby soliciting information from potential sources for inputs on industry, academia, or government adopted battery passivation techniques. As part of a continual process improvement effort and potential requirement revisions, the NASA Small Spacecraft community, Office of Safety and Mission Assurance, and Orbital Debris Program Office are seeking inputs from industry on battery passivation techniques that are used by industry to satisfy the Orbital Debris Mitigation Standard Practices (ODMSP) requirements 2-2. Limiting the risk to other space systems from accidental explosions and associated orbital debris after completion of mission operations: All on-board sources of stored energy of a spacecraft or upper stage should be depleted or safed when they are no longer required for mission operations or post mission disposal. Depletion should occur as soon as such an operation does not pose an unacceptable risk to the payload. Propellant depletion burns and compressed gas releases should be designed to minimize the probability of subsequent accidental collision and to minimize the impact of a subsequent accidental explosion.
      Background
      NASA has well-established procedures for passivating power sources on large, highly redundant spacecraft to mitigate debris generation at end-of-life. However, the rise of capable small spacecraft utilizing single-string and Commercial Off-The-Shelf (COTS) components presents challenges. Directly applying passivation strategies designed for redundant systems to these less complex spacecraft can introduce risks and may not be cost-effective for these missions.
      Recognizing that the commercial sector has emerged as a leader in Low Earth Orbit (LEO) small satellite operations, NASA seeks to engage with industry, academia, and government spacecraft operators to gain insights into current battery passivation techniques. Understanding industry-adopted practices, their underlying rationale, and performance data will inform NASA’s ongoing efforts to develop safe and sustainable end-of-life procedures for future missions.
      NASA invites government, academic, or industry stakeholders, including small satellite operators, manufacturers, and component suppliers, to share information on battery passivation strategies employed in their spacecraft.
      Click here for more information.
      View the full article
  • Check out these Videos

×
×
  • Create New...