Jump to content

Eclipse Photographers Will Help Study Sun During Its Disappearing Act


NASA

Recommended Posts

  • Publishers

5 min read

Eclipse Photographers Will Help Study Sun During Its Disappearing Act

As the Sun temporarily disappears from midday skies over North America on April 8, 2024, hundreds of volunteers will capture photos of the total solar eclipse to help us better understand the Sun and its relationship with Earth.

These photographers will be participating in three NASA-funded citizen science projects to study the Sun’s ghostly outer atmosphere – the corona – during totality, when the Moon completely covers the bright disk of the Sun and the corona is revealed.

Against a black background is a total solar eclipse. In the middle is a black circle – the Moon. Surrounding it are white streams of wispy light, streaming out into the sky.
The Sun’s outer atmosphere, or corona, appears like a feathery white halo around the dark disk of the Moon during a total solar eclipse, as seen in this photo taken from Madras, Oregon, on Aug. 21, 2017.
NASA/Aubrey Gemignani

The corona is the birthplace of the solar wind – a constant stream of particles and material flowing from the Sun that impacts Earth and other planets. The best time to see the full range of dynamics in the corona is during a total solar eclipse.

However, in any one location along April’s eclipse path, totality will last less than four and a half minutes – not long enough to watch the corona change. By staging observers all along the eclipse path, though, these NASA projects hope to essentially extend totality for over 90 minutes – the time it takes for the Moon’s shadow to cross from Mexico to Canada. Afterward, the projects will combine their images into “movies” revealing activity in the corona that would otherwise be hard to see.

Eclipse Megamovie

Eclipse Megamovie is a NASA-funded citizen science project that engages photographers across the United States to capture images of the Sun’s outermost atmosphere – the corona – during the total solar eclipse on April 8, 2024. Volunteers will use DSLR cameras on mounts that will track the Sun’s position in the sky to record changes in the Sun’s corona during the eclipse.
NASA/Lacey Young

Led by Laura Peticolas of Sonoma State University in California, the Eclipse Megamovie project is asking photographers to capture the corona using their own DSLR cameras on mounts that will track the Sun’s position in the sky during the eclipse.

The project has already selected and sent tracking mounts to over 70 individuals who will be stationed along the eclipse path in the U.S. and Mexico. Over 80 additional photographers who have their own DSLR cameras and tracking mounts and who plan to be in the Moon’s shadow on April 8 have also joined the project. Others are welcome to participate if they sign up by March 18.

“Citizen scientists are the perfect volunteers for this type of research,” Peticolas said. “They’re coming with their own cameras. They’re coming with the expertise on how to use those cameras. They’re coming with enthusiasm. And with this group of amazing volunteers, we’re going to get a dataset that is literally impossible to get in any other way.”

The project is also seeking volunteers with experience in databases, Python coding, and machine learning to help process the images and reveal hard-to-spot changes in the corona.

DEB Initiative

The Dynamic Eclipse Broadcast (DEB) Initiative, led by Bob Baer and Matt Penn of Southern Illinois University in Carbondale, organizes volunteers as they capture images of the corona during the 2024 eclipse. Using identical instruments at more than 70 different locations across North America, participants document the moment-by-moment appearance of the corona throughout the eclipse.
NASA/Beth Anthony

The Dynamic Eclipse Broadcast (DEB) Initiative, led by Bob Baer and Matt Penn of Southern Illinois University in Carbondale, has recruited 82 volunteer teams to image the eclipse from Mexico, the U.S., and Canada.

All teams, which range in size from a few people to as many as 30, have been selected and have received identical astrophotography equipment provided by the project. Many of them will be in the path of totality to capture views of the corona, but some will be outside the path, imaging the Sun itself.

“We’re looking at the evolution of the solar corona along the entire path,” Baer said. “And we’re also looking outside of the path of totality at the solar disk to connect the changes we see in the solar corona back to the surface of the Sun.”

During the eclipse, DEB teams will upload images of the partial phases every minute to the project’s image server, while some teams will also stream live video. During totality, teams in the path will collect images more rapidly, each contributing a single detailed image of the corona.

CATE 2024

Led by Amir Caspi of the Southwest Research Institute in Colorado, the Citizen Continental-America Telescopic Eclipse (CATE) 2024 project will place 35 teams in the eclipse path from Texas to Maine to capture the corona in polarized light.
NASA/Joy Ng

Led by Amir Caspi of the Southwest Research Institute in Colorado, the Citizen Continental-America Telescopic Eclipse (CATE) 2024 project will place 35 teams in the eclipse path from Texas to Maine to capture the corona in polarized light.

Light travels in waves, but those waves can be oriented in different directions, or polarization angles. Caspi explains that light we see from the corona is sunlight that gets bounced around by the corona before it reaches our eyes. “That bouncing process makes the light polarized and it makes it go in a particular direction,” he said. “By measuring that you can understand what’s going on in the corona.”

All of the CATE 2024 teams have been selected and have received identical telescopes, mounts, and cameras. Teams are currently practicing and receiving feedback in preparation for the eclipse.

To learn more about these projects or to sign up to participate, visit the websites below.
NASA Funds 3 Citizen Science Projects to Study 2024 U.S. Solar Eclipse
Eclipse Megamovie
DEB Initiative
CATE 2024

by Vanessa Thomas
NASA’s Goddard Space Flight Center, Greenbelt, Md.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      A 3D simulation showing the evolution of turbulent flows in the upper layers of the Sun. The more saturated and bright reds represent the most vigorous upward or downward twisting motions. Clear areas represent areas where there is only relatively slow up-flows, with very little twisting.NASA/Irina Kitiashvili and Timothy A. Sandstrom NASA supercomputers are shedding light on what causes some of the Sun’s most complex behaviors. Using data from the suite of active Sun-watching spacecraft currently observing the star at the heart of our solar system, researchers can explore solar dynamics like never before. 
      The animation shows the strength of the turbulent motions of the Sun’s inner layers as materials twist into its atmosphere, resembling a roiling pot of boiling water or a flurry of schooling fish sending material bubbling up to the surface or diving it further down below. 
      “Our simulations use what we call a realistic approach, which means we include as much as we know to-date about solar plasma to reproduce different phenomena observed with NASA space missions,” said Irina Kitiashvili, a scientist at NASA’s Ames Research Center in California’s Silicon Valley who helped lead the study. 
      Using modern computational capabilities, the team was able, for the first time to reproduce the fine structures of the subsurface layer observed with NASA’s Solar Dynamics Observatory.
      “Right now, we don’t have the computational capabilities to create realistic global models of the entire Sun due to the complexity,” said Kitiashvili. “Therefore, we create models of smaller areas or layers, which can show us structures of the solar surface and atmosphere – like shock waves or tornado-like features measuring only a few miles in size; that’s much finer detail than any one spacecraft can resolve.”
      Scientists seek to better understand the Sun and what phenomena drive the patterns of its activity. The connection and interactions between the Sun and Earth drive the seasons, ocean currents, weather, climate, radiation belts, auroras and many other phenomena. Space weather predictions are critical for exploration of space, supporting the spacecraft and astronauts of NASA’s Artemis campaign. Surveying this space environment is a vital part of understanding and mitigating astronaut exposure to space radiation and keeping our spacecraft and instruments safe.
      This has been a big year for our special star, studded with events like the annular eclipse, a total eclipse, and the Sun reaching its solar maximum period. In December 2024, NASA’s Parker Solar Probe mission – which is helping researchers to understand space weather right at the source – will make its closest-ever approach to the Sun and beat its own record of being the closest human-made object to reach the Sun. 
      The Sun keeps surprising us. We are looking forward to seeing what kind of exciting events will be organized by the Sun."
      Irina Kitiashvili
      NASA Scientist
      “The Sun keeps surprising us,” said Kitiashvili. “We are looking forward to seeing what kind of exciting events will be organized by the Sun.”
      These simulations were run on the Pleaides supercomputer at the NASA Advanced Supercomputing facility at NASA Ames over several weeks of runtime, generating terabytes of data. 
      NASA is showcasing 29 of the agency’s computational achievements at SC24, the international supercomputing conference, Nov. 17-22, 2023, in Atlanta, Georgia. For more technical information, visit: ​
      https://www.nas.nasa.gov/sc24
      For news media: Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.
      Share
      Details
      Last Updated Nov 21, 2024 Related Terms
      General Ames Research Center Heliophysics Solar Dynamics Observatory (SDO) Sunspots The Sun Explore More
      2 min read Weld-ASSIST: Weldability Assessment for In-Space Conditions using a Digital Twin
      Article 5 hours ago 5 min read NASA’s Chandra, Hubble Tune Into ‘Flame-Throwing’ Guitar Nebula
      Article 23 hours ago 4 min read Protected: 2024 Blue Marble Awards
      Article 24 hours ago Keep Exploring Discover More Topics From NASA
      Parker Solar Probe
      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
      Solar Storms and Flares
      Solar storms and flares are eruptions from the Sun that can affect us here on Earth.
      Solar System
      Track the Solar Cycle with Sunspots
      Participate in sunspot-counting activities using NASA telescopes or your own.
      View the full article
    • By NASA
      5 min read
      5 Surprising NASA Heliophysics Discoveries Not Related to the Sun
      With NASA’s fleet of heliophysics spacecraft, scientists monitor our Sun and investigate its influences throughout the solar system. However, the fleet’s constant watch and often-unique perspectives sometimes create opportunities to make discoveries that no one expected, helping us to solve mysteries about of the solar system and beyond.
      Here are five examples of breakthroughs made by NASA heliophysics missions in other fields of science.
      This graphic shows missions in NASA’s Heliophysics Division fleet as of July 2024. NASA Thousands and Thousands of Comets
      The SOHO mission — short for Solar and Heliospheric Observatory, which is a joint mission between ESA (European Space Agency) and NASA — has a coronagraph that blocks out the Sun in order to see the Sun’s faint outer atmosphere, or corona. 
      It turns out SOHO’s coronagraph also makes it easy to spot sungrazing comets, those that pass so close to the Sun that other observatories can’t see them against the brightness of our star.
      Before SOHO was launched in December 1995, fewer than 20 sungrazing comets were known. Since then, SOHO has discovered more than 5,000. 
      The vast number of comets discovered using SOHO has allowed scientists to learn more about sungrazing comets and identify comet families, descended from ancestor comets that broke up long ago.

      Learn More

      Two sungrazing comets fly close to the Sun in these images captured by ESA/NASA’s SOHO (Solar and Heliospheric Observatory). They were the 3,999th and 4,000th comets discovered in SOHO images. ESA/NASA/SOHO/Karl Battams Dimming of a Supergiant
      In late 2019, the supergiant star Betelgeuse began dimming unexpectedly. Telescopes all over the world — ​​​​and around it — tracked these changes until a few months later when Betelgeuse appeared too close to the Sun to observe. That’s when NASA’s STEREO (Sun-watching Solar Terrestrial Relations Observatory (STEREO) came to the rescue. 
      For several weeks in the middle of 2020, STEREO was the only observatory able to see Betelgeuse. At the time, the STEREO-A spacecraft was trailing behind Earth, at a vantage point where Betelgeuse was still far enough away from the Sun to be seen. This allowed astronomers to keep tabs on the star while it was out of view from Earth.  
      STEREO’s observations revealed another unexpected dimming between June and August of 2020, when ground-based telescopes couldn’t view the star.
      Astronomers later concluded that these dimming episodes were caused by an ejection of mass from Betelgeuse — like a coronal mass ejection from our Sun but with about 400 times more mass — which obscured part of the star’s bright surface.

      Learn More

      The background image shows the star Betelgeuse as seen by the Heliospheric Imager aboard NASA’s STEREO (Solar Terrestrial Relations Observatory) spacecraft. The inset figure shows measurements of Betelgeuse’s brightness taken by different observatories from late 2018 to late 2020. STEREO’s observations, marked in red, revealed an unexpected dimming in mid-2020 when Betelgeuse appeared too close to the Sun for other observatories to view it. NASA/STEREO/HI (background); Dupree et al. (inset) The Glowing Surface of Venus
      NASA’s Parker Solar Probe studies the Sun’s corona up close — by flying through it. To dive into the Sun’s outer atmosphere, the spacecraft has flown past Venus several times, using the planet’s gravity to fling itself closer and closer to the Sun.
      On July 11, 2020, during Parker’s third Venus flyby, scientists used Parker’s wide-field imager, called WISPR, to try to measure the speed of the clouds that obscure Venus’ surface. Surprisingly, WISPR not only observed the clouds, it also saw through them to the surface below.
      The images from that flyby and the next (in 2021) revealed a faint glow from Venus’ hot surface in near-infrared light and long wavelengths of red (visible) light that maps distinctive features like mountainous regions, plains, and plateaus.
      Scientists aimed WISPR at Venus again on Nov. 6, 2024, during Parker’s seventh flyby, observing a different part of the planet than previous flybys. With these images, they’re hoping to learn more about Venus’ surface geology, mineralogy, and evolution.

      Learn More

      As Parker Solar Probe flew by Venus on its fourth flyby, it captured these images, strung into a video, showing bright and dark features on the nightside surface of the planet. NASA/APL/NRL The Brightest Gamma-Ray Burst
      You’ve heard of the GOAT. But have you heard of the BOAT?
      It stands for the “brightest of all time”, a gamma-ray burst discovered on Oct. 9, 2022.  
      A gamma-ray burst is a brief but intense eruption of gamma rays in space, lasting from seconds to hours.
      This one, named GRB 221009A, glowed brilliantly for about 10 minutes in the constellation Sagitta before slowly fading.
      The burst was detected by dozens of spacecraft, including NASA’s Wind, which studies the perpetual flow of particles from the Sun, called the solar wind, just before it reaches Earth.
      Wind and NASA’s Fermi Gamma-Ray Space Telescope measured the brightness of GRB 221009A, showing that it was 70 times brighter than any other gamma-ray burst ever recorded by humans — solidifying its status as the BOAT.

      Learn More

      Astronomers think GRB 221009A represents the birth of a new black hole formed within the heart of a collapsing star. In this artist’s concept, the black hole drives powerful jets of particles traveling near the speed of light. The jets emit X-rays and gamma rays as they stream into space. NASA/Swift/Cruz deWilde A Volcano Blasts Its Way to Space
      NASA’s ICON (Ionospheric Connection Explorer) launched in 2019 to study how Earth’s weather interacts with weather from space. When the underwater Hunga Tonga-Hunga Ha‘apai volcano erupted on Jan. 15, 2022, ICON helped show that the volcano produced more than ash and tsunami waves — its effects reached the edge of space.
      In the hours after the eruption, ICON detected hurricane-speed winds in the ionosphere — Earth’s electrified upper atmospheric layer at the edge of space. ICON clocked the wind speeds at up to 450 miles per hour, making them the strongest winds the mission had ever measured below 120 miles altitude.
      The ESA Swarm mission revealed that these extreme winds altered an electric current in the ionosphere called the equatorial electrojet. After the eruption, the equatorial electrojet surged to five times its normal peak power and dramatically flipped direction.
      Scientists were surprised that a volcano could affect the electrojet so severely — something they’d only seen during a strong geomagnetic storm caused by an eruption from the Sun.

      Learn More

      The Hunga Tonga-Hunga Ha’apai eruption on Jan. 15, 2022, caused many effects, some illustrated here, that were felt around the world and even into space. Some of those effects, like extreme winds and unusual electric currents were picked up by NASA’s ICON (Ionospheric Connection Explorer) mission and ESA’s (the European Space Agency) Swarm. Illustration is not to scale.  NASA’s Goddard Space Flight Center/Mary Pat Hrybyk-Keith By Vanessa Thomas
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Nov 20, 2024 Related Terms
      Comets Fermi Gamma-Ray Space Telescope Gamma-Ray Bursts Goddard Space Flight Center Heliophysics Heliophysics Division ICON (Ionospheric Connection Explorer) Parker Solar Probe (PSP) SOHO (Solar and Heliospheric Observatory) Stars STEREO (Solar TErrestrial RElations Observatory) The Sun The Sun & Solar Physics Uncategorized Venus Volcanoes Wind Mission Explore More
      5 min read NASA’s Swift Reaches 20th Anniversary in Improved Pointing Mode


      Article


      3 hours ago
      4 min read NASA Satellites Reveal Abrupt Drop in Global Freshwater Levels
      Earth’s total amount of freshwater dropped abruptly starting in May 2014 and has remained low…


      Article


      5 days ago
      4 min read NASA’s Swift Studies Gas-Churning Monster Black Holes


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By European Space Agency
      Zoom into Solar Orbiter's four new Sun images, assembled from high-resolution observations by the spacecraft's PHI and EUI instruments made on 22 March 2023. The PHI images are the highest-resolution full views of the Sun's visible surface to date, including maps of the Sun's messy magnetic field and movement on the surface. These can be compared to the new EUI image, which reveals the Sun's glowing outer atmosphere, or corona.
      View the full article
    • By European Space Agency
      Video: 00:04:31 The double-satellite Proba-3 is the most ambitious member yet of ESA’s Proba family of experimental missions. Two spacecraft will fly together as one, maintaining precise formation down to a single millimetre. One will block out the fiery disc of the Sun for the other, to enable prolonged observations of the Sun’s surrounding atmosphere, or ‘corona’, the source of the solar wind and space weather. Usually, the corona can only be glimpsed for a few minutes during terrestrial total solar eclipses. Proba-3 aims to reproduce such eclipses for up to six hours at a time, in a highly elliptical orbit taking it more than 60 000 km from Earth. The two spacecraft are being launched together by India’s PSLV-XL launcher from the Satish Dhawan Space Centre. Follow the mission’s deployment and commissioning, up to its first glimpse of the corona, in this overview video.
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Designers at NASA’s Scientific Visualization Studio work alongside researchers and scientists to create high-quality, engaging animations and visualizations of data. This animation shows global carbon dioxide emissions forming and circling the planet.Credit: NASA's Scientific Visualization Studio Captivating images and videos can bring data to life. NASA’s Scientific Visualization Studio (SVS) produces visualizations, animations, and images to help scientists tell stories of their research and make science more approachable and engaging.
      Using the Discover supercomputer at the Center for Climate Simulation at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, visualizers use datasets generated by supercomputer models to create highly detailed, accurate, and stunning visualizations with Hollywood filmmaking tools like 3D modeling and animation.
      Using supercomputing models, SVS visualizers created this data-driven animation of carbon dioxide emissions moving around the planet. The visualization is driven by massive climate data sets and highly detailed emissions maps created by NASA researchers and external partners. The resulting visualization shows the impact of power plants, fires, and cities, and how their emissions are spread across the planet by weather patterns and airflow.
      “Both policymakers and scientists try to account for where carbon comes from and how that impacts the planet,” said NASA Goddard climate scientist Lesley Ott, whose research was used to generate the final visualization. “You see here how everything is interconnected by the different weather patterns.”
      By combining visual storytelling with supercomputing power, the SVS team continues their work to captivate and connect with audiences while educating them on NASA’s scientific research and efforts.
      The NASA Center for Climate Simulation is part of the NASA High-End Computing Program, which also includes the NASA Advanced Supercomputing Facility at Ames Research Center in California’s Silicon Valley.
      NASA is showcasing 29 of the agency’s computational achievements at SC24, the international supercomputing conference, Nov. 18-22, 2024, in Atlanta. For more technical information, visit: ​ 
      https://www.nas.nasa.gov/sc24
      For news media: 
      Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom. 
      About the Author
      Tara Friesen

      Share
      Details
      Last Updated Nov 18, 2024 Related Terms
      Ames Research Center Earth Science Division General Goddard Space Flight Center Explore More
      4 min read NASA Program Aids Pediatric Patients Facing Medical Treatments
      Article 1 hour ago 7 min read Six Ways Supercomputing Advances Our Understanding of the Universe
      Article 3 days ago 4 min read
      Article 3 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...