Members Can Post Anonymously On This Site
Icing Cloud Characterization Engineer Emily Timko
-
Similar Topics
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The Double Asteroid Redirection Test required extreme precision in mission planning to achieve its mission of impacting an asteroid. The founders of Continuum Space worked on astrodynamics relating to this mission, which they used to inform their product.NASA Planning space missions is a very involved process, ensuring orbits are lined up and spacecraft have enough fuel is imperative to the long-term survival of orbital assets. Continuum Space Systems Inc. of Pasadena, California, produces a cloud-based platform that gives mission planners everything they need to certify that their space resources can accomplish their goals.
Continuum’s story begins at NASA’s Jet Propulsion Laboratory in Southern California. Loic Chappaz, the company’s co-founder, started at JPL as an intern working on astrodynamics related to NASA’s Double Asteroid Redirection Test. There he met Leon Alkalai, a JPL technical fellow who spent his 30-year career at the center planning deep space missions. After Alkalai retired from NASA, he founded Mandala Space Ventures, a startup that explored several avenues of commercial space development. Chappaz soon became Mandala’s first employee, but to plan their future, Mandala’s leadership began thinking about the act of planning itself.
Because the staff had decades of combined experience at JPL, they knew the center had the building blocks for the software they needed. After licensing several pieces of software from JPL, the company began building planning systems that were highly adaptable to any space mission they could come up with. Mandala eventually evolved into a venture firm that incubated space-related startups. However, because Mandala had invested considerably in developing mission-planning tools, further development could be performed by a new company, and Continuum was fully spun off from Mandala in 2021.
Continuum’s platform includes several features for mission planners, such as plotting orbital maneuvers and risk management evaluations. Some of these are built upon software licensed from the Jet Propulsion Laboratory.Continuum Space Systems Inc. Continuum’s tools are designed to take a space mission from concept to completion. There are three different components to their “mission in a box” — design, build and test, and mission operations. The base of these tools are several pieces of software developed at NASA. As of 2024, several space startups have begun planning missions with Continuum’s NASA-inspired software, as well as established operators of satellite constellations. From Continuum to several startups, NASA technologies continue to prove a valuable foundation for the nation’s space economy.
Read More Share
Details
Last Updated Mar 25, 2025 Related Terms
Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
2 min read NASA Expertise Helps Record all the Buzz
Article 2 weeks ago 2 min read What is a NASA Spinoff? We Asked a NASA Expert: Episode 53
Article 3 weeks ago 3 min read NASA Partners with US Patent and Trademark Office to Advance Technology Transfer
Article 3 months ago Keep Exploring Discover Related Topics
Planetary Defense – DART
NASA’s Double Asteroid Redirection Test (DART), built and managed by the Johns Hopkins Applied Physics Laboratory (APL) for NASA’s Planetary…
Jet Propulsion Laboratory – News
Science Missions
Solar System
View the full article
-
By NASA
Thomas Ozoroski, a researcher at NASA’s Glenn Research Center in Cleveland, takes icing accretion measurements in October 2024 as part of transonic truss-braced wing concept research. Researchers at NASA Glenn conducted another test campaign in March 2025.Credit: NASA/Jordan Cochran In the future, aircraft with long, thin wings supported by aerodynamic braces could help airlines save on fuel costs. But those same wings could be susceptible to ice buildup. NASA researchers are currently working to determine if such an issue exists, and how it could be addressed.
In the historic Icing Research Tunnel at NASA’s Glenn Research Center in Cleveland, scientists and engineers are testing a concept for a transonic truss-braced wing. Their goal: to collect important data to inform the design of these potential efficient aircraft of the future.
This artist’s concept shows the transonic truss-braced wing concept. NASA’s Advanced Air Transport Technology project is exploring the design, which involves a longer, thinner wing structure with struts to enhance aerodynamic efficiency and reduce fuel consumption.Credit: NASA A transonic truss-braced wing generates less drag in flight compared to today’s aircraft wings, requiring an aircraft to burn less fuel. This revolutionary design could make the wing more prone to ice buildup, so it must undergo a series of rigorous tests to predict its safety and performance. The data the research team has collected so far suggests large sections of the frontmost part of the wing (also known as the leading edge) will require an ice protection system, similar to those found on some commercial aircraft.
NASA Glenn can simulate icing conditions in its Icing Research Tunnel to identify potential challenges for new aircraft designs. These tests provide important information about how ice builds up on wings and can help identify the most critical icing conditions for safety. All commercial aircraft must be approved by the Federal Aviation Administration to operate in all kinds of weather.
Because of the thinness of transonic truss-braced wing design, ice tends to build up during cold conditions, as seen during a test in October 2024. Researchers at NASA’s Glenn Research Center in Cleveland conducted another test campaign in March 2025, collecting important data to ensure safety. Credit: NASA/Jordan Cochran This research is part of NASA’s work to mature transonic truss-braced technology by looking at issues including safety and how future aircraft could be integrated into U.S. aviation infrastructure. Boeing is also working with NASA to build, test, and fly the X-66, a full-sized demonstrator aircraft with transonic truss-braced wings. Because the experimental aircraft will not be flown in icy conditions, tests in the Icing Research Tunnel are providing answers to questions about ice buildup.
This work advances NASA’s role in developing ultra-efficient airliner technologies that are economically, operationally, and environmentally sustainable. For about two decades, NASA has invested in research aimed at advancing transonic truss-braced wing technology to the point where private sector aeronautics companies can integrate it into commercial aircraft configurations. NASA invests in this research through initiatives including its Advanced Air Transport Technology project, which investigates specific performance aspects of transonic truss-braced wing concepts, such as icing. The Advanced Air Transport Technology project is part of NASA’s Advanced Air Vehicles Program.
Explore More
3 min read Finalists Selected in NASA Aeronautics Agriculture-Themed Competition
Article 2 weeks ago 5 min read NASA’s Chevron Technology Quiets the Skies
Article 2 weeks ago 3 min read NASA Selects Three University Teams to Participate in Flight Research
Article 2 weeks ago View the full article
-
By NASA
3 Min Read Career Spotlight: Engineer (Ages 14-18)
What does an engineer do?
An engineer applies scientific principles to design, build, and test machines, systems, or structures to meet specific needs. They follow the steps of the engineering design process to ensure their designs work as planned while meeting a variety of requirements, including size, weight, safety, and cost.
NASA hires several types of engineers to help tackle a range of missions. Whether it’s creating quieter supersonic aircraft, building powerful space telescopes to study the cosmos, or developing spacecraft to take humanity to the Moon, Mars, and beyond, NASA pushes the boundaries of engineering, giving us greater knowledge of our universe and a better quality of life here on Earth.
What are the different types of engineering?
Aerospace engineer: Applies engineering principles to design hardware and software specific to flight systems for use in Earth’s atmosphere or in space. Chemical engineer: Uses chemistry to conduct research or develop new materials. Civil engineer: Designs human-made structures, such as launch pads, test stands, or a future lunar base. Electrical engineer: Specializes in the design and testing of electronics such as computers, motors, and navigation systems. Mechanical engineer: Designs and tests mechanical equipment and systems, such as rocket engines, aircraft frames, and astronaut tools. How can I become an engineer?
High school is the perfect time to build a solid foundation of science and math skills through challenging academic courses as well as extracurricular activities, such as science clubs, robotics teams, or STEM camps in your area. You can also start researching what type of engineering is right for you, what colleges offer those engineering programs, and what you need to do to apply to those colleges.
Engineering roles typically require at least a bachelor’s degree.
How can I start preparing today to become an engineer?
Looking for some engineering experiences you can try right away? NASA STEM offers hands-on activities for a variety of ages and skill levels. Engineering includes iteration – repeating something and making changes in an effort to learn more and improve the process or the design. When you try these activities, make a small change each time you repeat the process, and see whether your design improves.
NASA’s student challenges and competitions give teams the opportunity to gain authentic experience by taking on some of the technological challenges of spaceflight and aviation.
NASA also offers paid internships for U.S. citizens aged 16 and up. Interns work on real projects with the guidance of a NASA mentor. Internship sessions are held each year in spring, summer, and fall; visit NASA’s Internships website to learn about important deadlines and current opportunities.
Advice from NASA engineers
“A lot of people think that just because they are more artistic or more creative, that they’re not cut out for STEM fields. But in all honesty, engineers and scientists have to be creative and have to be somewhat artistic to be able to come up with new ideas and see how they can solve the problems in the world around them.” – Sam Zauber, wind tunnel test engineer
“Students today have so many opportunities in the STEM area that are available to them. See what you like. See what you're good at. See what you don't like. Learn all there is to learn, and then you can really choose your own path. As long as you have the aptitude and the willingness to learn, you're already there.”
Heather Oravec
Aerospace and Geotechnical Research Engineer
“Joining clubs and participating in activities that pique your interests is a great way to develop soft skills – like leadership, communication, and the ability to work with others – which will prepare you for future career opportunities.” – Estela Buchmann, navigation, guidance, and control systems engineer
Additional Resources
Explore NASA+ Engineering Resources Learner Opportunities – NASA Science Career Aspirations with Hubble Keep Exploring Discover More Topics From NASA
Careers in Engineering
Join Artemis
NASA App
For Students Grades 9-12
View the full article
-
By NASA
The National Society of Professional Engineers recently named Debbie Korth, Orion deputy program manager at Johnson Space Center, as NASA’s 2025 Engineer of the Year. Korth was recognized during an award ceremony at the National Press Club in Washington, D.C., on Feb. 21, alongside honorees from 17 other federal agencies. The annual awards program honors the impactful contributions of federal engineers and their commitment to public service.
Debbie Korth received the NASA 2025 Engineer of the Year Award from the National Society of Professional Engineers at the National Press Club in Washington, D.C. Image courtesy of Debbie Korth Korth said she was shocked to receive the award. “At NASA there are so many brilliant, talented engineers who I get to work with every day who are so specialized and know so much about a certain area,” she said. “It was very surprising, but very appreciated.”
Korth has dedicated more than 30 years of her career to NASA, supporting human spaceflight development, integration, and operations across the Space Shuttle, International Space Station, and Orion Programs. Her earliest roles involved extravehicular and mission operations planning, as well as managing spaceflight hardware for shuttle missions and space station crews. Working on hardware such as the Crew Health Care System in the early days of space station planning and development was a unique experience for Korth.
After spending significant time in Russia collaborating with Russian counterparts to integrate equipment such as a treadmill, cycle ergometer, and blood pressure monitor into their module, Korth recalled, “When we finally got that all delivered and integrated, it was a huge step because we had to have all of that on board before we could put crew members on the station for the first time. I remember feeling a huge sense of accomplishment and happiness that we were able to work through this international partnership and forge those relationships to get that hardware integrated.”
Korth transitioned to the Orion Program in 2008 and has since served in a variety of leadership roles. In her current role, Korth assists the program manager in the design, development, testing, verification, and certification of Orion, NASA’s next-generation, human-rated spacecraft for Artemis missions. The spacecraft’s first flight test around the Moon during the Artemis I mission was a standout experience for Korth and a major accomplishment for the Orion team.
“It was a long mission and every day we were learning more and more about the spacecraft and pushing boundaries,” she said. “We really wrung out some of the core systems – systems that were developed individually and for the first time we got to see them work together.”
Korth said that understanding how different systems interact with each other is what she loves most about engineering. “In systems engineering, you really look at how changes to and the performance of one system affects everything else,” she said. “I like looking across the entire spacecraft and saying, if I have to strengthen this structure to take some additional landing loads, that’s going to add mass to the vehicle, which means I have to look at my parachutes and the thermal protection system to make sure they can handle that increased load.”
The Orion team is working to achieve two major milestones in 2025 – delivery of the Artemis II Orion spacecraft to the Exploration Ground Systems team that will fuel and integrate Orion with its launch abort system at NASA’s Kennedy Space Center, and the spacecraft’s integration with the Space Launch System rocket, which is currently being stacked. These milestones will support the launch of the first crewed mission on NASA’s path to establishing a long-term presence at the Moon for science and exploration, with liftoff targeted no earlier than April 2026.
“It’s going to be a big year,” said Korth.
View the full article
-
By NASA
4 Min Read What is an Engineer? (Grades K-4)
This article is for students grades K-4.
Engineers solve problems. They use science and math to create new things or make things work better. There are different kinds of engineers. They work on different kinds of projects. Some engineers design buildings or machines. Others find ways to move heat, power, or water from one place to another. Some create new tools.
NASA needs engineers. They design the things humans need to fly in space or on airplanes. Engineers make great ideas become real.
What do NASA engineers work on?
NASA has many missions. These missions need different kinds of engineers. Here are some of the ways engineers help NASA get the job done.
Spacecraft: These are vehicles that fly in space. NASA engineers decide how a spacecraft should be built and what it should do. They also make sure it will keep astronauts safe. Airplanes: NASA engineers work on airplanes. They design how the plane will look, how fast it will fly, and how much fuel it will use. Telescopes: Telescopes help us see space objects like stars and planets. Some telescopes are placed in orbit for the best view. NASA engineers design them to work in space. Computers: Computers can do complex tasks faster than people. NASA engineers write code that tells computers what to do. Anthony Vareha, NASA flight director Why is it fun to be a NASA engineer?
At NASA, engineers get to work on cool projects. They use science and creativity to find new ways to reach big goals. Here are some of the reasons they like their work.
“Being an engineer is like solving a huge puzzle or building something cool with building blocks. The difference is that the things we make help make the world better and improve people’s lives.” – Othmane Benefan, materials research engineer “I like being an engineer because I get to learn new things almost every day. Most of the engineering projects at NASA are super unique because we are building satellites that study new places all over the solar system (planets, asteroids, even the Sun), and it’s really fun to learn all the ways that we can use robots to explore.” – Phillip Hargrove, launch mission integration engineer “I love to build and create things. At NASA, there’s always something to do, and I get to work with people I enjoy.” – Jenna Sayler, aerospace engineer “I love being an engineer because I love trying to understand how things work. There’s a lot of stuff in our universe. Engineering is the tool I’ve chosen to help make sense of it all.” – Brian Kusnick, mechanical engineer Elaine Stewart, contamination control engineer What are some things I can do to help me become an engineer?
Be curious and excited to learn new things. Learn more about how different types of machines work. Practice making, building, or tinkering with things. Work hard in math and science classes. When you get to middle school or high school, try a NASA student challenge or apply to be a NASA intern. Students over age 16 can apply for NASA internships. Interns work on real projects. NASA team members help guide interns as they learn. Wendy Okolo, Ph.D., aerospace research engineer How can I try engineering today?
NASA has fun engineering activities that you can do at home. Here are a few to try:
Make and color a paper airplane. Let your imagination fly! Build a tower with pasta! How tall can you build it? Make a paper Mars helicopter. See which design works best! Build a new spacecraft using items in your house! A CubeSat is a small satellite. Try to build a CubeSat in this online game. When you do these projects, try them more than once. Make a small change each time. See if it makes your design work better. Engineering is all about testing ideas!
Learn More
JPL Education: Student Projects (Grades K-4) NASA Space Place Explore More for Students Grades K-4 View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.