Jump to content

Engaging Students at Gallery Opening


NASA

Recommended Posts

  • Publishers

1 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Two representatives from NASA stand in front of a table surrounded by students who are asking questions. Information on the eclipse and NASA Connect is on the table.
Event Coordinator Wyatt Clark, left, and NASA Glenn NextGen Ambassador Emily Armbrust, right, talk with students about internships and the upcoming total solar eclipse.
Credit: NASA/Kelly DiFrancesco

On Feb. 23, NASA’s Glenn Research Center representatives were on hand to help celebrate the ribbon cutting and opening of Great Lakes Science Center’s Cleveland Creates Gallery. The gallery highlights the extraordinary breakthroughs being made by the city of Cleveland’s diverse industries.  

During the opening, several hundred middle and high school students and museum visitors stopped by a NASA Glenn information table to learn more about NASA’s internship programs and the agency’s upcoming presence at the Total Eclipse Fest 2024, April 6–8.  

A NASA employee sits on the edge of a table with hardware behind her. A video of her work is on a screen, and her photo and credentials are displayed.
NASA’s Glenn Research Center engineer Erin Rezich was featured in Great Lakes Science Center’s Cleveland Creates Gallery and Emerging Tech Expo for her work with NASA’s Volatiles Investigating Polar Exploration Rover, or VIPER.
Credit: Ken Blaze/Great Lakes Science Center 

Glenn aerospace engineer Erin Rezich, who is featured in the gallery, participated in an afternoon panel discussion with other contributors. She shared insights on her career at NASA, mentors who inspired her, and words of advice for the several hundred middle and high school students in attendance.  

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      During Aviation Day at NASA’s Glenn Research Center, researcher Will Banks, right, assists a student with the installation of his test article into a demonstration wind tunnel to gain a drag force measurement. Credit: NASA/Sara Lowthian-Hanna  For students considering careers in STEM, the field of aviation offers diverse and abundant opportunities they may never have realized.  
      During Aviation Day on Aug. 27, NASA Glenn Research Center’s Office of STEM Engagement welcomed middle and high school students to the research center in Cleveland. The one-day event enabled students to learn more about the field of aviation and advancements in technology related to the aviation industry.  
      Test engineer Cecila Otero, left, explains factors to consider when testing inside the 1×1 Supersonic Wind Tunnel facility at NASA’s Glenn Research Center.  Credit: NASA/Sara Lowthian-Hanna  An aerodynamic drag challenge, virtual reality cockpit, and tours of icing and wind tunnel facilities were among the activities that connected students with NASA scientists and engineers working in aeronautics.  


      Return to Newsletter Explore More
      1 min read Ohio State Fairgoers Learn About NASA Technologies
      Article 4 mins ago 1 min read Dr. Kenyon Makes Calls, On and Off the Field
      Article 4 mins ago 1 min read NASA Glenn Attends Air Shows in Cleveland and Michigan
      Article 4 mins ago View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Students take a tour of NASA Glenn’s Telescience Support Center, where researchers operate International Space Station experiments. Credit: NASA/Jef Janis School is back in session, and the joy of learning is back on students’ minds. Teachers and parents seeking ways to extend students’ academic excitement outside of the classroom should know NASA’s Glenn Research Center in Cleveland offers various opportunities to engage with NASA.
      NASA educators encourage Ohio students and teachers to take part in the incredible space and aeronautics research happening right in their backyards.

      “We have lofty goals to send the first woman and first person of color to the Moon, on to Mars, and beyond. To get there, we’ll need all the creativity and talent available to us,” said Darlene Walker, Glenn’s Office of STEM Engagement director. “We offer programs, events, and experiences at Glenn to inspire and attract students to NASA careers.”
      Throughout the year, NASA Glenn offers in-person and virtual events for students and schools.
      6 Ways Students Can Engage With NASA Glenn
      One-day events are open to students and teachers who are U.S. citizens as well as Ohio schools or other youth-serving organizations. Registration generally opens one to two months prior to the event. “Event dates may be subject to change. Check the Glenn STEM Engagement webpage for the most up-to-date information.”
      Events are designed to inspire students and spark their interest in STEM fields. These events feature NASA experts, engaging STEM activities, and tours of Glenn facilities.
      1. High School Shadowing Days | High school students

      Offered in fall and spring, this one-day event allows high school students to explore career opportunities in STEM, as well as business.
      Fall Event Date – Nov. 14, 2024
      Registration Opens – Sept. 16, 2024
      Spring Event Date – May 15, 2025
      Registration Opens – March 14, 2025
      2. Girls in STEM | 5-8th grade students

      To inspire an interest in STEM fields among middle school students, Girls in STEM features female Glenn employees, STEM activities, and tours of center facilities.
      Event Date – April 10, 2025
      Registration Opens – Feb. 10, 2025
      3. Aviation Day | Middle and high school students

      This one-day event celebrates advancements in aviation and encourages middle and high school students’ interest in aeronautics.
      Event Date – Aug. 28, 2025
      Registration Opens – June 27, 2025
      4. TECH Day | Middle school students

      TECH is short for Tours of NASA, Engineering challenge, Career exploration, and Hands-on activity. This event includes tours of center facilities, a student engineering design challenge, and career exploration opportunities.
      Event Date – May 1, 2025
      Registration Opens – Feb. 28, 2025
      5. Manufacturing Day | High school students

      Manufacturing Day aims to educate high school students about careers in the manufacturing field while encouraging an interest in STEM. Students will see how teams of engineers, researchers, and technicians work together to design and prototype aeronautics and space hardware.
      Event Date – Sept. 18, 2025
      Registration Opens – July 18, 2025
      6. NASA STEM Kids Virtual Events | K-4th grade students

      These virtual events are designed to engage kindergarten through fourth grade students by sharing the excitement of NASA’s missions of exploration and discovery through virtual tours, conversations with NASA experts, and hands-on activities.
      Event Dates – Dec. 5, 2024; March 8, 2025; June 7, 2025; and Sept. 13, 2025
      Registration Opens – 60 days prior to each event
      “Through these opportunities, we want students to see astronauts, scientists, engineers, and role models who look like them and grew up like them work toward NASA’s missions and goals,” Walker said. “We hope they see themselves achieving these things too. We have all kinds of careers at NASA. Any career you can find outside of NASA, you can find here as well.”

      Additional programs and projects
      Glenn offers additional programs and projects for schools, teachers, and students looking for other ways to engage with NASA:
      High School Capstones Glenn Engineering Design Challenges MUREP Precollege Summer Institute MUREP Aerospace Academy For more information about these opportunities, reach out the NASA contact listed on the correlating web page.
      Learn more about NASA’s Office of STEM Engagement.

      Jacqueline Minerd 
      NASA’s Glenn Research Center 
      View the full article
    • By NASA
      7 Min Read NASA Project in Puerto Rico Trains Students in Marine Biology
      A forested green peninsula of Culebra Island juts into the blue waters of the Caribbean as a rain storm hits in the distance. The teal blue surrounding the island indicates shallow waters, home to the island's famous coral reefs. Credits: NASA Ames/Milan Loiacono Tainaliz Marie Rodríguez Lugo took a deep breath, adjusted her snorkel mask, and plunged into the ocean, fins first. Three weeks earlier, Rodríguez Lugo couldn’t swim. Now the college student was gathering data on water quality and coral reefs for a NASA-led marine biology project in Puerto Rico, where she lives.  

      “There is so much life down there that I never knew about,” Rodríguez Lugo said. “And it’s beautiful.”  

      “There is so much life down there that I never knew about, and it’s beautiful.”
      Tainaliz Marie Rodríguez Lugo
      OCEANOS 2024 Intern
      The sea whip and purple sea fans in the photo above are found off the coast of Playa Melones, Culebra, a small island off the east cost of Puerto Rico and a popular destination for snorkelers.

      Puerto Rico is home to more than 1,300 square miles of coral reefs, which play a vital role in protecting the island from storms, waves, and hurricanes. Reef-related tourism provides nearly $2 billion in annual income for the island.
      But coral reefs in Puerto Rico and around the world are experiencing more frequent and severe bleaching events. High ocean temperatures in regions around the globe have led to coral bleaching, which is when corals expel zooxanthellae – the colorful, symbiotic microscopic algae that live inside coral tissues and provide 80-90% of its nutrients. When stressors persist, the corals eventually starve and turn bone-white.

      In April 2024, NOAA (National Oceanic and Atmospheric Administration) announced that the world was experiencing a global bleaching event, the fourth on record. You can see bleached spots in the lobed star coral pictured above, which is also colonized by Ramicrusta, an invasive, burnt orange algae that poses an additional threat to reefs. 

      Students Are Given Ocean Research Tools

      Beginning in June, the month-long program that Rodriguez and 29 other local students participated in is called the Ocean Community Engagement and Awareness using NASA Earth Observations and Science for Hispanic/Latino Students (OCEANOS).  The goal of OCEANOS is twofold: to teach Puerto Rican students about marine ecology and conservation, and to train students through hands-on fieldwork how to use marine science tools to monitor the health of coral reefs.

      The course included classroom instruction, scientific fieldwork, collecting and analyzing ocean data from La Parguera and Culebra Island, and a final presentation. 

      In the photo, OCEANOS instructor Samuel Suleiman shows a 3D-printed clump of staghorn coral to a group of students off the coast of Culebra. In areas where coral habitats have been damaged, conservationists use 3D-printed corals to attract and protect fish, algae, and other wildlife. 


      To practice coral surveying techniques and evaluate biodiversity,students used compact cameras to snap a photo every half second, recording seven-meter by seven-meter quadrants of the ocean floor. Back on land, the students stitched these images – roughly 600 images per quadrant – into high-resolution mosaics, which they then used to catalog the types and distributions of various coral species.  


      Low Light, Poor Water Quality, and Invasive Species Threaten Coral Reefs
      Students also built their own low-cost instruments, with sensors on each end to measure temperature and light, to help assess water quality and characteristics.  

      The ideal temperature range for coral falls between 77- 82 degrees Fahrenheit (25-28 degrees Celsius). Water above or below this range is considered a potential stressor for coral and can impair growth. It can also increase the risk of disease, bleaching, and reproductive issues.    

      Coral relies on light for growth. Less light means less photosynthesis for the zooxanthellae that live inside the coral, which in turn means less food for the coral itself. Cloudy water due to excessive sediment or phytoplankton can dim or block sunlight.


      Additional threats to coral include fishing equipment, boat groundings, chemical runoff, and invasive species.  

      In the photo above, OCEANOS instructor Juan Torres-Pérez holds two clumps of cyanobacteria, a type of bacteria that has choked a section of reef near Playa Melones. The exact cause of this excessive cyanobacteria growth is unclear, but it is likely due to land-based pollution leaching into nearby waters, he said. In the background, dark brown piles of cyanobacteria littering the ocean floor are visible. 

      Students Help Grow and Plant New Coral

      Suleiman walked students through the process of planting new coral, which involved tying loose staghorn and elkhorn corals into a square frame. Each frame holds about 100 individual pieces of coral.  Suleiman leads a group called Sociedad Ambiente Marino (SAM), which has been working for more than 20 years to cultivate and plant more than 160,000 corals around Puerto Rico.

      Divers anchored these frames to the ocean floor. Under ideal conditions, branching species like elkhorn and staghorn coral grow one centimeter per month, or about 12-13 centimeters per year, making them ideal candidates for coral reef restoration. By comparison, mountainous and boulder coral, also prevalent in the Caribbean Sea, grow an average of just one centimeter per year. 

      The frames will remain on the ocean floor for 10 to 14 months, until the corals have quadrupled in size. At any given time, SAM has about 45 of these frames in coral ‘farms’ around Culebra, totaling almost 4,500 corals. 

      Once the corals are ready to be planted, they will be added to various reefs to replace damaged or bleached corals, and shore up vulnerable habitats.

      In the photo above, Suleiman gathers loose corals to place around an endangered coral species Dendrogyra cylindrus, more commonly referred to as Pillar Coral (front left). This underwater “garden,” as he called it, should attract fish and wildlife such as sea urchins, which will give the endangered coral — and the other species in this small reef — a better chance of survival.

      A New Generation of Marine Scientists

      From the 2023 OCEANOS class, roughly half of the undergraduate students went on to pursue marine science degrees, and many hope to continue with a post-graduate program. For a scientific field historically lacking diverse voices, this is a promising step.

      Among the high school students in the 2023 class, three went on to change their degree plans to oceanography after participating in the OCEANOS program, while others are finding ways to incorporate marine science into their studies.

      Francisco Méndez Negrón, a 2023 OCEANOS graduate, is now a computer science student at the University of Puerto Rico at Rio Piedras and wants to apply robotics to marine ecology. “My goal is to integrate computer science and oceanography to make something that can contribute to the problems marine ecosystems are facing, mostly originated by us humans,” Méndez Negrón said. He returned to the OCEANOS program to serve as a mentor for the 2024 class. 

      As for Tainaliz Marie Rodriguez Lugo, she managed to overcome her swim anxiety while discovering a love of the ocean. She credited the instructors who were patient, encouraging, and never left her side in the water. 

      “I was really scared going into this internship,” Rodríguez Lugo said. “I didn’t know how to swim, and I was starting a program literally called ‘Oceans.’ But now I love it: I could spend all day in the ocean.”

      I was really scared going into this internship. I didn’t know how to swim, and I was starting a program literally called ‘Oceans.’ But now I love it: I could spend all day in the ocean.
      Tainaliz Marie Rodríguez Lugo
      OCEANOS 2024 Intern
      When asked how she would describe coral to someone who has never seen one, Rodríguez Lugo just laughed. “I can’t. There are no words for it. I would just take them to the reefs.” 


      For more information about OCEANOS, visit:
      https://www.nasa.gov/oceanos
      The OCEANOS program’s final session will take place next year. Applications for the 2025 OCEANOS program will open in March. To apply, visit:
      https://nasa.gov/oceanos-application


      Photographs and story by Milan Loiacono, NASA’s Ames Research Center

      About the Author
      Milan Loiacono
      Science Communication SpecialistMilan Loiacono is a science communication specialist for the Earth Science Division at NASA Ames Research Center.
      Share
      Details
      Last Updated Aug 28, 2024 Related Terms
      General Ames Research Center Ames Research Center's Science Directorate Climate Change Earth Earth Science Division Opportunities For Students to Get Involved Science Activation Science Mission Directorate Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Idaho State University class of 2025 poses with their new hands-on learning tool, the DC-8 aircraft, after it was retired from NASA in May 2024 and arrived in Pocatello, Idaho. The university will use the aircraft to provide a hands-on learning experience for students in the university’s aircraft maintenance technology program.Idaho State University In May 2024, Idaho State University’s class of 2025 received a new learning tool from NASA. The DC-8 aircraft served the world’s scientific community for decades as a platform under NASA’s Airborne Science Program before retiring to Idaho State University (ISU) to provide a hands-on learning experience for students in the university’s aircraft maintenance technology program. 
      “The DC-8 has quickly become a cornerstone of our Aircraft Maintenance Technology program at ISU,” said Jake Dixon, Director of Marketing and Recruitment at the ISU College of Technology. “It has already enhanced our summer classes ahead of its full integration with the start of the new school year this fall.” 
      The DC-8 flew its final flight from NASA’s Armstrong Flight Research Center in Edwards, California to Idaho State University in Pocatello, Idaho in May 2024. That flight represented the retirement of the aircraft after 37 years of supporting airborne science missions as a NASA aircraft. 
      “The opportunity for students to interact firsthand with the aircraft’s systems and features significantly extends their learning beyond what theory or textbooks can provide,” Dixon said.
      The DC-8 flies low for the last time over NASA’s Armstrong Flight Research Center in Edwards, California, before it retires to Idaho State University in Pocatello, Idaho. The DC-8 is providing real-world experience to train future aircraft technicians at the college’s Aircraft Maintenance Technology Program.NASA/Genaro Vavuris The DC-8 served as an educational platform for years. Beginning in 2009, the DC-8 functioned as an airborne science laboratory for NASA’s Student Airborne Research Program (SARP), where rising-senior undergraduates were selected to participate in a real science campaign and acquire hands-on research experience. The educational impact of the DC-8 is evident in the professional growth of scientists who have experienced it. 
      “Almost everything I’ve learned about using an airplane to collect scientific data can be linked back to my time flying projects on the DC-8.” says Jonathan Zawislak, Flight Director with the Aircraft Operations Center at the National Oceanic and Atmospheric Administration (NOAA). “It has left an indelible mark on the Earth science community and no doubt paved the way for a new generation of scientists, as it did for me and my career as a science aviator.”
      NASA Armstrong’s Student Airborne Research Program celebrated 15 years of success in 2023. An eight-week summer internship program, SARP offered upper-level undergraduate students the opportunity to acquire hands-on research experience as part of a scientific campaign using NASA Airborne Science Program flying science laboratories – aircraft outfitted specifically for research projects. NASA/Carla Thomas Real-life platforms like the DC-8 are an exciting and meaningful learning tool that enable college students to go beyond the textbook, and they make a lasting impact on communities adjacent to its activities. 
      “We have seen so much enthusiasm surrounding the DC-8’s arrival that we are organizing an open house in the future to allow the community and aviation enthusiasts alike to explore this historic aircraft,” said Dixon. “Doing so will help preserve the remarkable legacy of the DC-8, ensuring it continues to inspire and educate for years to come.” 
      Whether as a science platform or as a unique aircraft, the DC-8 has a legacy that continues to inspire and educate generations of scientists, engineers, and aviators. 
      Learn more about NASA’s SARP program 
      Learn more about the retired DC-8 aircraft Learn more about NASA’s Armstrong Flight Research Center
      Share
      Details
      Last Updated Aug 22, 2024 Related Terms
      Armstrong Flight Research Center Science in the Air Science Mission Directorate Explore More
      4 min read Into The Field With NASA: Valley Of Ten Thousand Smokes
      To better understand Mars, NASA’s Goddard Instrument Field Team headed deep into the backcountry of…
      Article 2 hours ago 2 min read NASA’s DART Team Earns AIAA Space Systems Award for Pioneering Mission
      NASA’s DART (Double​ Asteroid Redirection Test) mission continues to yield scientific discoveries and garner accolades for its groundbreaking…
      Article 1 day ago 2 min read Hubble Spots Billowing Bubbles of Stellar Floss
      A bubbling region of stars both old and new lies some 160,000 light-years away in…
      Article 3 days ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Armstrong Programs & Projects
      Armstrong Technologies
      Armstrong Flight Research Center History
      View the full article
    • By NASA
      5 min read
      How Students Learn to Fly NASA’s IXPE Spacecraft
      Amelia “Mia” De Herrera-Schnering is an undergraduate student at the University of Colorado, Boulder, and command controller for NASA’s IXPE mission at LASP. The large wall monitor displaying a countdown shows 17 seconds when Amelia “Mia” De Herrera-Schnering tells her teammates “We have AOS,” meaning “acquisition of signal.”
      “Copy that, thank you,” Alexander Pichler replies. The two are now in contact with NASA’s IXPE (Imaging X-Ray Polarimeter Explorer) spacecraft, transmitting science data from IXPE to a ground station and making sure the download goes smoothly. That data will then go to the science team for further analysis.
      At LASP, the Laboratory for Atmospheric and Space Physics, students at the University of Colorado, Boulder, can train to become command controllers, working directly with spacecraft on pointing the satellites, calibrating instruments, and collecting data. De Herrera-Schnering recently completed her sophomore year, while Pichler had trained as a student and now, having graduated, works as a full-time professional at LASP.
      “The students are a key part in what we do,” said Stephanie Ruswick, IXPE flight director at LASP. “We professionals monitor the health and safety of the spacecraft, but so do the students, and they do a lot of analysis for us.”
      Students also put into motion IXPE’s instrument activity plans, which are provided by the Science Operations Center at NASA’s Marshall Space Flight Center in Huntsville, Alabama. The LASP student team schedules contacts with ground stations to downlink data, schedules observations of scientific and calibration targets, and generates the files necessary to translate the scientific operations into spacecraft actions. If IXPE experiences an anomaly, the LASP team will implement plans to remediate and resume normal operations as soon as possible.
      Exploring the high-energy universe
      The students take part in IXPE’s exploration of a wide variety of celestial targets. In October, for example, students monitored the transmission of data from IXPE’s observations of Swift J1727.8-1613, a bright black hole X-ray binary system. This cosmic object had been recently discovered in September 2023, when NASA’s Neil Gehrels Swift Observatory detected a gamma-ray burst. IXPE’s specialized instruments allow scientists to measure the polarization of X-rays, which contains information about the source of the X-rays as well as the organization of surrounding magnetic fields. IXPE’s follow-up of the Swift object exemplifies how multiple space missions often combine their individual strengths to paint a fuller scientific picture of distant phenomena.
      Team members also conduct individual projects. For example, students analyzed how IXPE would fare during both the annular eclipse on Oct. 14, 2023, and the total eclipse that moved across North America on April 8, to make sure that the spacecraft would have adequate power while the Moon partially blocked the Sun.
      While most of the students working on IXPE at LASP are engineering majors, some are physics or astrophysics majors. Some didn’t initially start their careers in STEM such as flight controller Kacie Davis, who previously studied art.
      Prospective command controllers go through a rigorous 12-week summer training program working 40 hours per week, learning “everything there is to know about mission operations and how to fly a spacecraft,” Ruswick said.
      Cole Writer, an aerospace engineering student, remembers this training as “nerve-wracking” because he felt intimidated by the flight controllers. But after practicing procedures on his own laptop, he felt more confident, and completed the program to become a command controller.
      “It’s nice to be trained by other students who are in the same boat as you and have gone through the same process,” said Adrienne Pickerill, a flight controller who started with the team as a student and earned a Master’s in aerospace engineering at the university in May .
      Sam Lippincott, right, a graduate student lead at LASP, trained as a command controller for NASA’s IXPE spacecraft as an undergraduate. In the background are flight controllers Adrienne Pickerill, left, and Alexander Pichler, who also trained as students. How they got here
      As a teenager Writer’s interests focused on flying planes, and he saved money to train for a pilot’s license, earning it the summer after high school graduation. Surprisingly, he has found many overlaps in skills for both activities – following checklists and preventing mistakes. “Definitely high stakes in both cases,” he said.
      Sam Lippincott, now a graduate student lead after serving as a command controller as an undergraduate, has been a lifelong sci-fi fan, but took a career in space more seriously his sophomore year of college. “For people that want to go into the aerospace or space operations industry, it’s always important to remember that you’ll never stop learning, and it’s important to remain humble in your abilities, and always be excited to learn more,” he said.
      De Herrera-Schnering got hooked on the idea of becoming a scientist the first time she saw the Milky Way. On a camping trip when she was 10 years old, she spotted the galaxy as she went to use the outhouse in the middle of the night. “I woke up my parents, and we just laid outside and we were just stargazing,” she said. “After that I knew I was set on what I wanted to do.”
      Rithik Gangopadhyay, who trained as an undergraduate command controller and continued at LASP as a graduate student lead, had been interested in puzzles and problem-solving as a kid and had a book about planets that fascinated him.. “There’s so much out there and so much we don’t know, and I think that’s what really pushed me to do aerospace and do this opportunity of being a command controller,” he said.
      Coding is key to mission operations, and much of it is done in the Python language. Sometimes the work of flying a spacecraft feels like any other kind of programming — but occasionally, team members step back and consider that they are part of the grand mission of exploring the universe.
      “If it’s your job for a couple of years, it starts to be like, ‘oh, let’s go ahead and do that, it’s just another Tuesday.’ But if you step back and think about it on a high-level basis, it’s really something special,” Pichler said. “It’s definitely profound.”
      Media Contact
      Elizabeth Landau
      Headquarters, Washington
      202-358-0845
      elandau@nasa.gov
      View the full article
  • Check out these Videos

×
×
  • Create New...