Jump to content

Tech Today: Suspended Solar Panels See the Light


NASA

Recommended Posts

  • Publishers

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

The Ivanpah Solar Electric Generating system, a field of mirrors with large towers in the background.
The Ivanpah Solar Electric Generating System is an example of a concentrated solar power plant, which works by having hundreds of reflective panels heating up a central tower. The problem of keeping sunlight directed at the receiver throughout the day brought Jim Clair to request NASA’s help in validating the suspended design now used in Skysun solar power systems.
Credit: Cliff Ho/U.S. Department of Energy

In the 80 years since the shocking collapse of the Tacoma Narrows Bridge in Washington, engineers have designed suspended structures to minimize their universal weakness: resonance. If not designed to deal with oscillations caused by forces like wind, the frequency of these forces would cause tensions to build and inevitably break the structure.

When Jim Clair examined how to focus mirrors at a concentrated solar energy power plant, he thought about suspending the mirrors on cables but remembered the images of the Tacoma Narrows Bridge shaking itself apart. To determine how well these suspended solar panels would hold up to potentially destructive oscillations, Clair, and his company Skysun LLC in Cleveland, Ohio, sought the help of NASA’s Glenn Research Center in 2016 to verify his design was safe from dangerous resonance.

A solar panel suspended between two poles in a yard.
The Skysun Solar Pollinator is designed to be suspended above plants that thrive in partial shade, and it can generate up to two kilowatts of power. The suspended design was validated by Glenn Research Center dynamicists under the Adopt-A-City program.
Credit: Skysun LLC

Trevor Jones, a dynamicist at Glenn, went to nearby Lorain County Community College to work with a prototype of the system. Jones induced vibrations in the cables with hammers and took measurements of the resulting oscillations. Based on this data, Jones designed a program that could accurately model the design’s tensile strength against wind-induced oscillations at any scale. With the dimensions plugged in, the program did the math and proved that Clair’s idea would work without shaking apart.

Today, Skysun builds various suspended solar energy generation systems, ranging from the hammock-like Skysun Solar Pollinator to full-sized solar pergolas that provide both electricity and shade.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      NASA, ESA Missions Help Scientists Uncover How Solar Wind Gets Energy
      Since the 1960s, astronomers have wondered how the Sun’s supersonic “solar wind,” a stream of energetic particles that flows out into the solar system, continues to receive energy once it leaves the Sun. Now, thanks to a lucky lineup of a NASA and an ESA (European Space Agency)/NASA spacecraft both currently studying the Sun, they may have discovered the answer — knowledge that is a crucial piece of the puzzle to help scientists better forecast solar activity between the Sun and Earth.
      A paper published in the Aug. 30, 2024, issue of the journal Science provides persuasive evidence that the fastest solar winds are powered by magnetic “switchbacks,” or large kinks in the magnetic field, near the Sun.
      “Our study addresses a huge open question about how the solar wind is energized and helps us understand how the Sun affects its environment and, ultimately, the Earth,” said Yeimy Rivera, co-leader of the study and a postdoctoral fellow at the Smithsonian Astrophysical Observatory, part of Center for Astrophysics | Harvard & Smithsonian. “If this process happens in our local star, it’s highly likely that this powers winds from other stars across the Milky Way galaxy and beyond and could have implications for the habitability of exoplanets.”
      This artist’s concept shows switchbacks, or large kinks in the Sun’s magnetic field. NASA’s Goddard Space Flight Center/Conceptual Image Lab/Adriana Manrique Gutierrez Previously, NASA’s Parker Solar Probe found that these switchbacks were common throughout the solar wind. Parker, which became the first craft to enter the Sun’s magnetic atmosphere in 2021, allowed scientists to determine that switchbacks become more distinct and more powerful close to the Sun. Up to now, however, scientists lacked experimental evidence that this interesting phenomenon actually deposits enough energy to be important in the solar wind.
      “About three years ago, I was giving a talk about how fascinating these waves are,” said co-author Mike Stevens, astrophysicist at the Center for Astrophysics. “At the end, an astronomy professor stood up and said, ‘that’s neat, but do they actually matter?’”
      To answer this, the team of scientists had to use two different spacecraft. Parker is built to fly through the Sun’s atmosphere, or “corona.” ESA’s and NASA’s Solar Orbiter mission is also on an orbit that takes it relatively close to the Sun, and it measures solar wind at larger distances. 
      The discovery was made possible because of a coincidental alignment in February 2022 that allowed both Parker Solar Probe and Solar Orbiter to measure the same solar wind stream within two days of each other. Solar Orbiter was almost halfway to the Sun while Parker was skirting the edge of the Sun’s magnetic atmosphere.
      This conceptual image shows Parker Solar Probe about to enter the solar corona. NASA/Johns Hopkins APL/Ben Smith An artist’s concept shows Solar Orbiter near the Sun. NASA’s Goddard Space Flight Center Conceptual Image Lab




      “We didn’t initially realize that Parker and Solar Orbiter were measuring the same thing at all. Parker saw this slower plasma near the Sun that was full of switchback waves, and then Solar Orbiter recorded a fast stream which had received heat and with very little wave activity,” said Samuel Badman, astrophysicist at the Center for Astrophysics and the other co-lead of the study. “When we connected the two, that was a real eureka moment.”
      Scientists have long known that energy is moved throughout the Sun‘s corona and the solar wind, at least in part, through what are known as “Alfvén waves.” These waves transport energy through a plasma, the superheated state of matter that makes up the solar wind.
      However, how much the Alfvén waves evolve and interact with the solar wind between the Sun and Earth couldn’t be measured — until these two missions were sent closer to the Sun than ever before, at the same time. Now, scientists can directly determine how much energy is stored in the magnetic and velocity fluctuations of these waves near the corona, and how much less energy is carried by the waves farther from the Sun.
      The new research shows that the Alfvén waves in the form of switchbacks provide enough energy to account for the heating and acceleration documented in the faster stream of the solar wind as it flows away from the Sun. 
      “It took over half a century to confirm that Alfvenic wave acceleration and heating are important processes, and they happen in approximately the way we think they do,” said John Belcher, emeritus professor from the Massachusetts Institute of Technology who co-discovered Alfvén waves in the solar wind but was not involved in this study.
      In addition to helping scientists better forecast solar activity and space weather, such information helps us understand mysteries of the universe elsewhere and how Sun-like stars and stellar winds operate everywhere.
      “This discovery is one of the key puzzle pieces to answer the 50-year-old question of how the solar wind is accelerated and heated in the innermost portions of the heliosphere, bringing us closer to closure to one of the main science objectives of the Parker Solar Probe mission,” said Adam Szabo, Parker Solar Probe mission science lead at NASA.
      By Megan Watzke
      Center for Astrophysics | Harvard & Smithsonian
      Share








      Details
      Last Updated Aug 30, 2024 Related Terms
      Goddard Space Flight Center Heliophysics Heliophysics Division Parker Solar Probe (PSP) Science & Research Science Mission Directorate Solar Flares Solar Orbiter Solar Science Solar Wind Space Weather The Sun The Sun & Solar Physics Explore More
      2 min read Hubble Zooms into the Rosy Tendrils of Andromeda


      Article


      2 hours ago
      2 min read Hubble Observes An Oddly Organized Satellite


      Article


      1 day ago
      6 min read NASA Discovers a Long-Sought Global Electric Field on Earth
      An international team of scientists has successfully measured a planet-wide electric field thought to be…


      Article


      2 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Europa Clipper is seen here on Aug. 21 at the agency’s Kennedy Space Center in Florida. Engineers and technicians deployed and tested the giant solar arrays to be sure they will operate in flight.NASA/Frank Michaux The largest spacecraft NASA has ever built for planetary exploration just got its ‘wings’ — massive solar arrays to power it on the journey to Jupiter’s icy moon Europa.
      NASA’s Europa Clipper spacecraft recently got outfitted with a set of enormous solar arrays at the agency’s Kennedy Space Center in Florida. Each measuring about 46½ feet (14.2 meters) long and about 13½ feet (4.1 meters) high, the arrays are the biggest NASA has ever developed for a planetary mission. They have to be large so they can soak up as much sunlight as possible during the spacecraft’s investigation of Jupiter’s moon Europa, which is five times farther from the Sun than Earth is.
      The arrays have been folded up and secured against the spacecraft’s main body for launch, but when they’re deployed in space, Europa Clipper will span more than 100 feet (30.5 meters) — a few feet longer than a professional basketball court. The “wings,” as the engineers call them, are so big that they could only be opened one at a time in the clean room of Kennedy’s Payload Hazardous Servicing Facility, where teams are readying the spacecraft for its launch period, which opens Oct. 10. 
      Watch as engineers and technicians deploy and test Europa Clipper’s massive solar arrays in a clean room at Kennedy Space Center in Florida.
      Credit: NASA/JPL-Caltech/KSC/APL/Airbus Flying in Deep Space
      Meanwhile, engineers continue to assess tests conducted on the radiation hardiness of transistors on the spacecraft. Longevity is key, because the spacecraft will journey more than five years to arrive at the Jupiter system in 2030. As it orbits the gas giant, the probe will fly by Europa multiple times, using a suite of science instruments to find out whether the ocean underneath its ice shell has conditions that could support life.
      Powering those flybys in a region of the solar system that receives only 3% to 4% of the sunlight Earth gets, each solar array is composed of five panels. Designed and built at the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, and Airbus in Leiden, Netherlands, they are much more sensitive than the type of solar arrays used on homes, and the highly efficient spacecraft will make the most of the power they generate.
      At Jupiter, Europa Clipper’s arrays will together provide roughly 700 watts of electricity, about what a small microwave oven or a coffee maker needs to operate. On the spacecraft, batteries will store the power to run all of the electronics, a full payload of science instruments, communications equipment, the computer, and an entire propulsion system that includes 24 engines.
      NASA’s Europa Clipper is seen here on Aug. 21 in a clean room at Kennedy Space Center after engineers and technicians tested and stowed the spacecraft’s giant solar arrays.NASA/Frank Michaux While doing all of that, the arrays must operate in extreme cold. The hardware’s temperature will plunge to minus 400 degrees Fahrenheit (minus 240 degrees Celsius) when in Jupiter’s shadow. To ensure that the panels can operate in those extremes, engineers tested them in a specialized cryogenic chamber at Liège Space Center in Belgium.
      “The spacecraft is cozy. It has heaters and an active thermal loop, which keep it in a much more normal temperature range,” said APL’s Taejoo Lee, the solar array product delivery manager. “But the solar arrays are exposed to the vacuum of space without any heaters. They’re completely passive, so whatever the environment is, those are the temperatures they get.”
      About 90 minutes after launch, the arrays will unfurl from their folded position over the course of about 40 minutes. About two weeks later, six antennas affixed to the arrays will also deploy to their full size. The antennas belong to the radar instrument, which will search for water within and beneath the moon’s thick ice shell, and they are enormous, unfolding to a length of 57.7 feet (17.6 meters), perpendicular to the arrays.
      This artist’s concept depicts NASA’s Europa Clipper spacecraft in orbit around Jupiter. The mission’s launch period opens Oct. 10. NASA/JPL-Caltech “At the beginning of the project, we really thought it would be nearly impossible to develop a solar array strong enough to hold these gigantic antennas,” Lee said. “It was difficult, but the team brought a lot of creativity to the challenge, and we figured it out.”
      More About the Mission
      Europa Clipper’s three main science objectives are to determine the thickness of the moon’s icy shell and its interactions with the ocean below, to investigate its composition, and to characterize its geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet.
      Managed by Caltech in Pasadena, California, NASA’s Jet Propulsion Laboratory leads the development of the Europa Clipper mission in partnership with APL for NASA’s Science Mission Directorate in Washington. APL designed the main spacecraft body in collaboration with JPL and NASA’s Goddard Space Flight Center in Greenbelt, Maryland, NASA’s Marshall Space Flight Center in Huntsville, Alabama, and Langley Research Center in Hampton, Virginia. The Planetary Missions Program Office at Marshall executes program management of the Europa Clipper mission.
      NASA’s Launch Services Program, based at Kennedy, manages the launch service for the Europa Clipper spacecraft, which will launch on a SpaceX Falcon Heavy rocket from Launch Complex 39A at Kennedy.
      Find more information about Europa here:
      europa.nasa.gov
      News Media Contacts
      Gretchen McCartney
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-6215
      gretchen.p.mccartney@jpl.nasa.gov
      Karen Fox / Alana Johnson
      NASA Headquarters, Washington
      202-358-1600 / 202-358-1501
      karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov
      2024-112
      Share
      Details
      Last Updated Aug 27, 2024 Related Terms
      Europa Clipper Europa Jet Propulsion Laboratory Jupiter Jupiter Moons The Solar System Explore More
      14 min read The Making of Our Alien Earth: The Undersea Volcanoes of Santorini, Greece
      The following expedition marks the third installment of NASA Astrobiology’s fieldwork series, the newly rebranded…
      Article 3 days ago 5 min read NASA Shares Asteroid Bennu Sample in Exchange with JAXA
      Article 4 days ago 2 min read Gateway: Energizing Exploration
      Discover the cutting-edge technology powering Gateway, humanity's first lunar space station.
      Article 5 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      /wp-content/plugins/nasa-blocks/assets/images/media/media-example-01.jpgThis landscape of “mountains” and “valleys” speckled with glittering stars is actually the edge of a nearby, young, star-forming region called NGC 3324 in the Carina Nebula. Captured in infrared light by NASA’s new James Webb Space Telescope, this image reveals for the first time previously invisible areas of star birth.NASA, ESA, CSA, and STScI /wp-content/plugins/nasa-blocks/assets/images/media/media-example-01.jpgThis landscape of “mountains” and “valleys” speckled with glittering stars is actually the edge of a nearby, young, star-forming region called NGC 3324 in the Carina Nebula. Captured in infrared light by NASA’s new James Webb Space Telescope, this image reveals for the first time previously invisible areas of star birth.NASA, ESA, CSA, and STScI /wp-content/plugins/nasa-blocks/assets/images/media/media-example-01.jpgThis landscape of “mountains” and “valleys” speckled with glittering stars is actually the edge of a nearby, young, star-forming region called NGC 3324 in the Carina Nebula. Captured in infrared light by NASA’s new James Webb Space Telescope, this image reveals for the first time previously invisible areas of star birth.NASA, ESA, CSA, and STScIView the full article
    • By NASA
      Both versions of the Solar Array Sun Shield for NASA’s Nancy Grace Roman Space Telescope appear in this photo, taken in the largest clean room at NASA’s Goddard Space Flight Center. The flight version lies flat in the foreground, while the qualification assembly stands upright in the background. The flight panels will shade the mission’s instruments and power the observatory. NASA/Chris Gunn NASA’s Nancy Grace Roman Space Telescope’s Solar Array Sun Shield has successfully completed recent tests, signaling that the assembly is on track to be completed on schedule. The panels are designed to power and shade the observatory, enabling all the mission’s observations and helping keep the instruments cool.
      The Roman team has two sets of these panels –– one that will fly aboard the observatory and another as a test structure, used specifically for preliminary assessments.
      Engineers at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, evaluated the test version in a thermal vacuum chamber, which simulates the hot and cold temperatures and low-pressure environment the flight panels will experience in space. Since the panels will be stowed for launch, the team practiced deploying them in space-like conditions.
      The solar panels for NASA’s Nancy Grace Roman Space Telescope are undergoing assessment in a test chamber at the agency’s Goddard Space Flight Center in this photo.NASA/Chris Gunn Meanwhile, a vendor built up the flight version by fitting the panels with solar cells. After delivery to Goddard, technicians tested the solar cells by flashing the panels with a bright light that simulates the Sun.
      “We save a significant amount of time and money by using two versions of the panels, because we can do a lot of preliminary tests on a spare while moving further in the process with the flight version,” said Jack Marshall, the Solar Array Sun Shield lead at NASA Goddard. “It streamlines the process and also avoids risking damage to the panels that will go on the observatory, should testing reveal a flaw.”
      Next spring, the flight version of the Solar Array Sun Shield will be installed on the Roman spacecraft. Then, the whole spacecraft will go through thorough testing to ensure it will hold up during launch and perform as expected in space.
      To virtually tour an interactive version of the telescope, visit:
      https://roman.gsfc.nasa.gov/interactive
      By Ashley Balzer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media contact:
      Claire Andreoli
      claire.andreoli@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      301-286-1940
      Explore More
      5 min read NASA Tests Deployment of Roman Space Telescope’s ‘Visor’
      Article 2 weeks ago 6 min read How NASA’s Roman Space Telescope Will Illuminate Cosmic Dawn
      Article 1 month ago 3 min read NASA’s Roman Space Telescope’s ‘Eyes’ Pass First Vision Test
      Article 4 months ago Share
      Details
      Last Updated Aug 26, 2024 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
      Nancy Grace Roman Space Telescope Goddard Space Flight Center Science-enabling Technology Space Communications Technology View the full article
    • By European Space Agency
      ESA’s Solar Orbiter spacecraft has provided crucial data to answer the decades-long question of where the energy comes from to heat and accelerate the solar wind. Working in tandem with NASA’s Parker Solar Probe, Solar Orbiter reveals that the energy needed to help power this outflow is coming from large fluctuations in the Sun’s magnetic field.
      View the full article
    • By NASA
      2 min read
      Hubble Reaches a Lonely Light in the Dark
      NASA, ESA, C. Gallart (Instituto de Astrofisica de Canarias), A. del Pino Molina (Centro de Estudios de Fisica del Cosmos de Aragon), and R. van der Marel (Space Telescope Science Institute); Image Processing: Gladys Kober (NASA/Catholic University of America) A splatter of stars glows faintly at almost 3 million light-years away in this new image from NASA’s Hubble Space Telescope. Known as the Tucana Dwarf for lying in the constellation Tucana, this dwarf galaxy contains a loose bundle of aging stars at the far edge of the Local Group, an aggregation of galaxies including our Milky Way, bound together by gravity. The Tucana Dwarf was discovered in 1990 by R.J. Lavery, the same year Hubble launched.
      What makes the Tucana Dwarf distinct from other dwarf galaxies comes in two parts: its classification, and its isolation. As a dwarf spheroidal galaxy, it is much smaller and less luminous than most other dwarf galaxies. Dust is sparse and the stellar population skews towards the older range, giving them a dimmer look. Additionally, the Tucana Dwarf lies about 3.6 million light-years from the Local Group’s center of mass, far from the Milky Way and other galaxies. It is only one of two dwarf spheroidal galaxies in the Local Group to be this remote, making astronomers theorize that a close encounter with a larger galactic neighbor called Andromeda slingshotted it into the distance about 11 billion years ago.
      Having such pristine properties enables scientists to use the Tucana Dwarf as a cosmic fossil. Dwarf galaxies could be the early ingredients for larger galaxies, and with older stars residing in such an isolated environment, analyzing them can help trace galaxy formation back to the dawn of time. For that reason, Hubble reached far across the Local Group using the capabilities of the Advanced Camera for Surveys and Wide Field and Planetary Camera 2 to meet this distant, lonely galaxy. Examining its structure, composition, and star formation history sheds light on the epoch of reionization, when the first stars and galaxies arose from the dark billions of years ago.

      Download Image

      Explore More

      Hubble’s Galaxies

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Aug 23, 2024 Editor Michelle Belleville Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Galaxies Goddard Space Flight Center Hubble Space Telescope Stars Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Science



      Hubble’s Galaxies



      Stars


      View the full article
  • Check out these Videos

×
×
  • Create New...