Jump to content

Zero-Boil-Off Tank Experiments to Enable Long-Duration Space Exploration


Recommended Posts

  • Publishers
Posted
10 Min Read

Zero-Boil-Off Tank Experiments to Enable Long-Duration Space Exploration

A grey space vehicle consisting of several attached sections; purple solar panels protrude from several of the sections.
Figure 1. The Gateway space station—humanity’s first space station around the Moon—will be capable of being refueled in space.
Credits:
NASA

Do we have enough fuel to get to our destination? This is probably one of the first questions that comes to mind whenever your family gets ready to embark on a road trip. If the trip is long, you will need to visit gas stations along your route to refuel during your travel. NASA is grappling with similar issues as it gets ready to embark on a sustainable mission back to the Moon and plans future missions to Mars. But while your car’s fuel is gasoline, which can be safely and indefinitely stored as a liquid in the car’s gas tank, spacecraft fuels are volatile cryogenic liquid propellants that must be maintained at extremely low temperatures and guarded from environmental heat leaks into the spacecraft’s propellant tank. And while there is already an established network of commercial gas stations in place to make refueling your car a cinch, there are no cryogenic refueling stations or depots at the Moon or on the way to Mars. Furthermore, storing volatile propellant for a long time and transferring it from an in-space depot tank to a spacecraft’s fuel tank under microgravity conditions will not be easy since the underlying microgravity fluid physics affecting such operations is not well understood. Even with today’s technology, preserving cryogenic fuels in space beyond several days is not possible and tank-to-tank fuel transfer has never been previously performed or tested in space.

Heat conducted through support structures or from the radiative space environment can penetrate even the formidable Multi-Layer Insulation (MLI) systems of in-space propellant tanks, leading to boil-off or vaporization of the propellant and causing tank self-pressurization. The current practice is to guard against over-pressurizing the tank and endangering its structural integrity by venting the boil-off vapor into space. Onboard propellants are also used to cool down the hot transfer lines and the walls of an empty spacecraft tank before a fuel transfer and filling operation can take place.  Thus, precious fuel is continuously wasted during both storage and transfer operations, rendering long-duration expeditions—especially a human Mars mission—infeasible using current passive propellant tank pressure control methods.

Zero-Boil-Off (ZBO) or Reduced Boil-Off (RBO) technologies provide an innovative and effective means to replace the current passive tank pressure control design. This method relies on a complex combination of active, gravity-dependent mixing and energy removal processes that allow maintenance of safe tank pressure with zero or significantly reduced fuel loss.

Zero Boil-off Storage and Transfer: A Transformative Space Technology

At the heart of the ZBO pressure control system are two proposed active mixing and cooling mechanisms to counter tank self-pressurization.  The first is based on intermittent, forced, subcooled jet mixing of the propellantand involves complex, dynamic, gravity-dependent interaction between the jet and the ullage (vapor volume) to control the condensation and evaporation phase change at the liquid-vapor interface. The second mechanism uses subcooled droplet injection via a spraybar in the ullage to control tank pressure and temperature. While the latter option is promising and gaining prominence, it is more complex and has never been tested in microgravity where the phase change and transport behavior of droplet populations can be very different and nonintuitive compared to those on Earth.

Although the dynamic ZBO approach is technologically complex, it promises an impressive advantage over the currently used passive methods. An assessment of one nuclear propulsion concept for Mars transport estimated that the passive boil-off losses for a large liquid hydrogen tank carrying 38 tons of fuel for a three-year mission to Mars would be approximately 16 tons/year. The proposed ZBO system would provide a 42% saving of propellant mass per year. These numbers also imply that with a passive system, all the fuel carried for a three-year Mars mission would be lost to boil-off, rendering such a mission infeasible without resorting to the transformative ZBO technology.

The ZBO approach provides a promising method, but before such a complex technological and operational transformation can be fully developed, implemented, and demonstrated in space, important and decisive scientific questions that impact its engineering implementation and microgravity performance must be clarified and resolved.

The Zero-Boil-Off Tank (ZBOT) Microgravity Science Experiments

The Zero Boil-off Tank (ZBOT) Experiments are being undertaken to form a scientific foundation for the development of the transformative ZBO propellant preservation method. Following the recommendation of a ZBOT science review panel comprised of members from aerospace industries, academia, and NASA, it was decided to perform the proposed investigation as a series of three small-scale science experiments to be conducted onboard the International Space Station. The three experiments outlined below build upon each other to address key science questions related to ZBO cryogenic fluid management of propellants in space.

Astronaut Joseph Acaba wearing glasses and a black T-shirt is half standing, suspended in microgravity next to the ZBOT experiment in the Microgravity Science Glovebox (MSG) Unit aboard the station. The MSG is a rectangular compartment tightly fitted with various components including the test tank, enclosed in a cylindrical metallic vacuum jacket, sitting on top of a close Fluid Supply Unit (FSU) that is used for fluid thermal conditioning. The space in MSG is further crowded by a reservoir, various entangled hoses and wiring system, a camera and a small laser unit used for Particle Imaging Velocimetry (PIV) diagnostics that measures and visualizes fluid motion in the tank.
Figure 3. Astronaut Joseph M. Acaba installing ZBOT Hardware in the Microgravity Science Glovebox aboard the International Space Station.
Credit: NASA

The ZBOT-1 Experiment: Self-Pressurization & Jet Mixing

The first experiment in the series was carried out on the station in the 2017-2018 timeframe. Figure 3 shows the ZBOT-1 hardware in the Microgravity Science Glovebox (MSG) unit of the station. The main focus of this experiment was to investigate the self-pressurization and boiling that occurs in a sealed tank due to local and global heating, and the feasibility of tank pressure control via subcooled axial jet mixing. In this experiment, the complicated interaction of the jet flow with the ullage (vapor volume) in microgravity was carefully studied. Microgravity jet mixing data was also collected across a wide range of scaled flow and heat transfer parameters to characterize the time constants for tank pressure reduction, and the thresholds for geyser (liquid fountain) formation, including its stability, and penetration depth through the ullage volume. Along with very accurate pressure and local temperature sensor measurements, Particle Image Velocimetry (PIV) was performed to obtain whole-field flow velocity measurements to validate a Computational Fluid Dynamics (CFD) model.

Four pictures side-by-side showing the results of a ZBOT pressure control jet mixing experiment in microgravity. The first picture shows a jet flow distinguished by blue, yellow, and red colored flow pathlines emanating from a flow nozzle in the bottom of the tank. The jet flow impinges on the ullage from below and deforms the ullage that was initially spherical into a shape that resembles the head of a bird with a pointed beak projected to the right. The second picture an experimental image captured by the Particle Imaging Velocimetry diagnostics. Tiny micron-sized particles illuminated by a laser sheet form shiny steak lines against a black background that displays the path of the fluid motion. The experimental pathlines resemble closely the CFD flow pathlines predicted by the CFD simulation as shown in the left-hand side picture. The third image shows a white-light image that captures the shape of the ullage positioned at the top left-hand side of the tank. This experimental image also shows the deformation of the ullage by the jet into a bird-head shaped figure confirming the shape and position of the ullage predicted by the CFD model. The last image shows the CFD prediction of the vortexed thermal structures that are created by the jet flow and represented by blue, yellow, and red temperature contours.
Figure 4. Validation of ZBOT CFD Model Predictions for fluid flow and deformation of a spherical ullage in microgravity by a subcooled liquid jet mixing against ZBOT experimental results: (a) Model prediction of ullage position and deformation and flow vortex structures during subcooled jet mixing; (b) PIV image capture of flow vortex structures during jet mixing; (c) Ullage deformation captured by white light imaging; and (d) CFD model depiction of temperature contours during subcooled jet mixing. (ZBOT-1 Experiment, 2018)
Credit: Dr. Mohammad Kassemi, Case Western Reserve University

Some of the interesting findings of the ZBOT-1experiment are as follows:

  1. Provided the first tank self-pressurization rate data in microgravity under controlled conditions that can be used for estimating the tank insulation requirements. Results also showed that classical self-pressurization is quite fragile in microgravity and nucleate boiling can occur at hotspots on the tank wall even at moderate heat fluxes that do not induce boiling on Earth. 
  2. Proved that ZBO pressure control is feasible and effective in microgravity using subcooled jet mixing, but also demonstrated that microgravity ullage-jet interaction does not follow the expected classical regime patterns (see Figure 4).
  3. Enabled observation of unexpected cavitation during subcooled jet mixing, leading to massive phase change at both sides of the screened Liquid Acquisition Device (LAD) (see Figure 5). If this type of phase change occurs in a propellant tank, it can lead to vapor ingestion through the LAD and disruption of liquid flow in the transfer line, potentially leading to engine failure.
  4. Developed a state-of-the-art two-phase CFD model validated by over 30 microgravity case studies (an example of which is shown in Figure 4). ZBOT CFD models are currently used as an effective tool for propellant tank scaleup design by several aerospace companies participating in the NASA tipping point opportunity and the NASA Human Landing System (HLS) program.
The left-hand picture shows an intact large hemispherical bubble (vapor ullage) at the top of the tank before the jet mixing starts. The right-hand picture shows the tank filled by numerous small sized bubbles that were created by an unexpected cavitation phase change phenomena when the pressure in the tank suddenly dropped due to the subcooled jet mixing operation.
Figure 5. White light image captures of the intact single hemispherical ullage in ZBOT tank before depressurization by the subcooled jet (left) and after subcooled jet mixing pressure collapse that led to massive phase change bubble generation due to cavitation at the LAD (right). (ZBOT-1 Experiment, 2018).
Credit: Dr. Mohammad Kassemi, Case Western Reserve University

The ZBOT-NC Experiment: Non-Condensable Gas Effects

Non-condensable gases (NCGs) are used as pressurants to extract liquid for engine operations and tank-to-tank transfer. The second experiment, ZBOT-NC will investigate the effect of NCGs on the sealed tank self-pressurization and on pressure control by axial jet mixing. Two inert gases with quite different molecular sizes, Xenon, and Neon, will be used as the non-condensable pressurants. To achieve pressure control or reduction, vapor molecules must reach the liquid-vapor interface that is being cooled by the mixing jet and then cross the interface to the liquid side to condense.

This study will focus on how in microgravity the non-condensable gases can slow down or resist the transport of vapor molecules to the liquid-vapor interface (transport resistance) and will clarify to what extent they may form a barrier at the interface and impede the passage of the vapor molecules across the interface to the liquid side (kinetic resistance). By affecting the interface conditions, the NCGs can also change the flow and thermal structures in the liquid.

ZBOT-NC will use both local temperature sensor data and uniquely developed Quantum Dot Thermometry (QDT) diagnostics to collect nonintrusive whole-field temperature measurements to assess the effect of the non-condensable gases during both self-pressurization heating and jet mixing/cooling of the tank under weightlessness conditions. This experiment is scheduled to fly to the International Space Station in early 2025, and more than 300 different microgravity tests are planned. Results from these tests will also enable the ZBOT CFD model to be further developed and validated to include the non-condensable gas effects with physical and numerical fidelity.

The ZBOT-DP Experiment: Droplet Phase Change Effects

ZBO active pressure control can also be accomplished via injection of subcooled liquid droplets through an axial spray-bar directly into the ullage or vapor volume. This mechanism is very promising, but its performance has not yet been tested in microgravity. Evaporation of droplets consumes heat that is supplied by the hot vapor surrounding the droplets and produces vapor that is at a much lower saturation temperature. As a result, both the temperature and the pressure of the ullage vapor volume are reduced. Droplet injection can also be used to cool down the hot walls of an empty propellant tank before a tank-to-tank transfer or filling operation. Furthermore, droplets can be created during the propellant sloshing caused by acceleration of the spacecraft, and these droplets then undergo phase change and heat transfer. This heat transfer can cause a pressure collapse that may lead to cavitation or a massive liquid-to-vapor phase change. The behavior of droplet populations in microgravity will be drastically different compared to that on Earth.

The ZBOT-DP experiment will investigate the disintegration, coalescence (droplets merging together), phase change, and transport and trajectory characteristics of droplet populations and their effects on the tank pressure in microgravity. Particular attention will also be devoted to the interaction of the droplets with a heated tank wall, which can lead to flash evaporation subject to complications caused by the Liedenfrost effect (when liquid droplets propel away from a heated surface and thus cannot cool the tank wall). These complicated phenomena have not been scientifically examined in microgravity and must be resolved to assess the feasibility and performance of droplet injection as a pressure and temperature control mechanism in microgravity.

Back to Planet Earth

This NASA-sponsored fundamental research is now helping commercial providers of future landing systems for human explorers. Blue Origin and Lockheed Martin, participants in NASA’s Human Landing Systems program, are using data from the ZBOT experiments to inform future spacecraft designs.

Cryogenic fluid management and use of hydrogen as a fuel are not limited to space applications. Clean green energy provided by hydrogen may one day fuel airplanes, ships, and trucks on Earth, yielding enormous climate and economic benefits. By forming the scientific foundation of ZBO cryogenic fluid management for space exploration, the ZBOT science experiments and CFD model development will also help to reap the benefits of hydrogen as a fuel here on Earth. 

PROJECT LEAD

Dr. Mohammad Kassemi (Dept Mechanical & Aerospace Engineering, Case Western Reserve University)

SPONSORING ORGANIZATION

Biological and Physical Sciences (BPS) Division, NASA Science Mission Directorate (SMD)

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Image: Earth from Space: Zanzibar, Tanzania View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Since launching in 2023, NASA’s Tropospheric Emissions: Monitoring of Pollution mission, or TEMPO, has been measuring the quality of the air we breathe from 22,000 miles above the ground. June 19 marked the successful completion of TEMPO’s 20-month-long initial prime mission, and based on the quality of measurements to date, the mission has been extended through at least September 2026. The TEMPO mission is NASA’s first to use a spectrometer to gather hourly air quality data continuously over North America during daytime hours. It can see details down to just a few square miles, a significant advancement over previous satellites.
      “NASA satellites have a long history of missions lasting well beyond the primary mission timeline. While TEMPO has completed its primary mission, the life for TEMPO is far from over,” said Laura Judd, research physical scientist and TEMPO science team member at NASA’s Langley Research Center in Hampton, Virginia. “It is a big jump going from once-daily images prior to this mission to hourly data. We are continually learning how to use this data to interpret how emissions change over time and how to track anomalous events, such as smoggy days in cities or the transport of wildfire smoke.” 
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      By measuring nitrogen dioxide (NO2) and formaldehyde (HCHO), TEMPO can derive the presence of near-surface ozone. On Aug. 2, 2024 over Houston, TEMPO observed exceptionally high ozone levels in the area. On the left, NO2 builds up in the atmosphere over the city and over the Houston Ship Channel. On the right, formaldehyde levels are seen reaching a peak in the early afternoon. Formaldehyde is largely formed through the oxidation of hydrocarbons, an ingredient of ozone production, such as those that can be emitted by petrochemical facilities found in the Houston Ship Channel. Trent Schindler/NASA's Scientific Visualization Studio When air quality is altered by smog, wildfire smoke, dust, or emissions from vehicle traffic and power plants, TEMPO detects the trace gases that come with those effects. These include nitrogen dioxide, ozone, and formaldehyde in the troposphere, the lowest layer of Earth’s atmosphere.
      “A major breakthrough during the primary mission has been the successful test of data delivery in under three hours with the help of NASA’s Satellite Needs Working Group. This information empowers decision-makers and first responders to issue timely air quality warnings and help the public reduce outdoor exposure during times of higher pollution,” said Hazem Mahmoud, lead data scientist at NASA’s Atmospheric Science Data Center located at Langley Research Center.
      …the substantial demand for TEMPO's data underscores its critical role…
      hazem mahmoud
      NASA Data Scientist
      TEMPO data is archived and distributed freely through the Atmospheric Science Data Center. “The TEMPO mission has set a groundbreaking record as the first mission to surpass two petabytes, or 2 million gigabytes, of data downloads within a single year,” said Mahmoud. “With over 800 unique users, the substantial demand for TEMPO’s data underscores its critical role and the immense value it provides to the scientific community and beyond.” Air quality forecasters, atmospheric scientists, and health researchers make up the bulk of the data users so far.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      On April 14, strong winds triggered the formation of a huge dust storm in the U.S. central plains and fueled the ignition of grassland fires in Oklahoma. On the left, the NO2 plumes originating from the grassland fires are tracked hour-by-hour by TEMPO. Smoke can be discerned from dust as a source since dust is not a source of NO2. The animation on the right shows the ultraviolet (UV) aerosol index, which indicates particulates in the atmosphere that absorb UV light, such as dust and smoke. Trent Schindler/NASA's Scientific Visualization Studio The TEMPO mission is a collaboration between NASA and the Smithsonian Astrophysical Observatory, whose Center for Astrophysics Harvard & Smithsonian oversees daily operations of the TEMPO instrument and produces data products through its Instrument Operations Center.
      Datasets from TEMPO will be expanded through collaborations with partner agencies like the National Oceanic and Atmospheric Administration (NOAA), which is deriving aerosol products that can distinguish between smoke and dust particles and offer insights into their altitude and concentration.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      On May 5, TEMPO measured NO2 emissions over the Twin Cities in the center of Minnesota during morning rush hour. The NO2 increases seen mid-day through the early evening hours are illustrated by the red and black shaded areas at the Red River Valley along the North Dakota state line. These levels are driven by emissions from the soils in agriculturally rich areas. Agricultural soil emissions are influenced by environmental factors like temperature and moisture as well as fertilizer application. Small fires and enhancements from mining activities can also be seen popping up across the region through the afternoon.Trent Schindler/NASA's Scientific Visualization Studio “These datasets are being used to inform the public of rush-hour pollution, air quality alerts, and the movement of smoke from forest fires,” said Xiong Liu, TEMPO’s principal investigator at the Center for Astrophysics Harvard & Smithsonian. “The library will soon grow with the important addition of aerosol products. Users will be able to use these expanded TEMPO products for air quality monitoring, improving forecast models, deriving pollutant amounts in emissions and many other science applications.”
      The TEMPO mission detects and highlights movement of smoke originating from fires burning in Manitoba on June 2. Seen in purple hues are observations made by TEMPO in the ultraviolet spectrum compared to Advanced Baseline Imagers (ABIs) on NOAA’s GOES-R series of weather satellites that do not have the needed spectral coverage. The NOAA GOES-R data paired with NASA’s TEMPO data enhance state and local agencies’ ability to provide near-real-time smoke and dust impacts in local air quality forecasts.NOAA/NESDIS/Center for Satellite Applications and Research “The TEMPO data validation has truly been a community effort with over 20 agencies at the federal and international level, as well as a community of over 200 scientists at research and academic institutions,” Judd added. “I look forward to seeing how TEMPO data will help close knowledge gaps about the timing, sources, and evolution of air pollution from this unprecedented space-based view.”
      An agency review will take place in the fall to assess TEMPO’s achievements and extended mission goals and identify lessons learned that can be applied to future missions.
      The TEMPO mission is part of NASA’s Earth Venture Instrument program, which includes small, targeted science investigations designed to complement NASA’s larger research missions. The instrument also forms part of a virtual constellation of air quality monitors for the Northern Hemisphere which includes South Korea’s Geostationary Environment Monitoring Spectrometer and ESA’s (European Space Agency) Sentinel-4 satellite. TEMPO was built by BAE Systems Inc., Space & Mission Systems (formerly Ball Aerospace). It flies onboard the Intelsat 40e satellite built by Maxar Technologies. The TEMPO Instrument Operations Center and the Science Data Processing Center are operated by the Smithsonian Astrophysical Observatory, part of the Center for Astrophysics | Harvard & Smithsonian in Cambridge.


      For more information about the TEMPO instrument and mission, visit:
      https://science.nasa.gov/mission/tempo/

      About the Author
      Charles G. Hatfield
      Science Public Affairs Officer, NASA Langley Research Center
      Share
      Details
      Last Updated Jul 03, 2025 LocationNASA Langley Research Center Related Terms
      Tropospheric Emissions: Monitoring of Pollution (TEMPO) Earth Earth Science Earth Science Division General Langley Research Center Missions Science Mission Directorate Explore More
      2 min read Hubble Observations Give “Missing” Globular Cluster Time to Shine
      A previously unexplored globular cluster glitters with multicolored stars in this NASA Hubble Space Telescope…
      Article 15 minutes ago 5 min read NASA Advances Pressure Sensitive Paint Research Capability
      Article 1 hour ago 5 min read How NASA’s SPHEREx Mission Will Share Its All-Sky Map With the World 
      NASA’s newest astrophysics space telescope launched in March on a mission to create an all-sky…
      Article 1 day ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA Astronauts Send Fourth of July Wishes From the International Space Station
    • By Space Force
      Space Systems Command laid the groundwork for enhanced weather, research, development and prototyping capabilities with the USSF-178 National Security Space Launch Phase 3 Lane 1 task order.
      View the full article
    • By NASA
      The four crew members of NASA’s SpaceX Crew-11 mission to the International Space Station train inside a SpaceX Dragon spacecraft in Hawthorne, California. From left to right: Roscosmos cosmonaut Oleg Platonov, NASA astronauts Mike Fincke and Zena Cardman, and JAXA astronaut Kimiya Yui.Credit: SpaceX NASA and its partners will discuss the upcoming crew rotation to the International Space Station during a pair of news conferences on Thursday, July 10, from the agency’s Johnson Space Center in Houston.

      First is an overview news conference at 12 p.m. EDT with mission leadership discussing final launch and mission preparations on the agency’s YouTube channel.
      Next, crew will participate in a news conference at 2 p.m. on NASA’s YouTube channel, followed by individual astronaut interviews at 3 p.m. This is the final media opportunity with Crew-11 before they travel to NASA’s Kennedy Space Center in Florida for launch.

      The Crew-11 mission, targeted to launch in late July/early August, will carry NASA astronauts Zena Cardman and Mike Fincke, JAXA (Japan Aerospace Exploration Agency) astronaut Kimiya Yui, and Roscosmos cosmonaut Oleg Platonov to the orbiting laboratory. The crew will launch aboard a SpaceX Dragon spacecraft on the company’s Falcon 9 rocket from Launch Complex 39A.

      United States-based media seeking to attend in person must contact the NASA Johnson newsroom no later than 5 p.m. on Monday, July 7, at 281-483-5111 or jsccommu@mail.nasa.gov. A copy of NASA’s media accreditation policy is available online.
      Any media interested in participating in the news conferences by phone must contact the Johnson newsroom by 9:45 a.m. the day of the event. Media seeking virtual interviews with the crew must submit requests to the Johnson newsroom by 5 p.m. on Monday, July 7.

      Briefing participants are as follows (all times Eastern and subject to change based on real-time operations):

      12 p.m.: Mission Overview News Conference
      Steve Stich, manager, Commercial Crew Program, NASA Kennedy Bill Spetch, operations integration manager, International Space Station Program, NASA Johnson NASA’s Space Operations Mission Directorate representative Sarah Walker, director, Dragon Mission Management, SpaceX Mayumi Matsuura, vice president and director general, Human Spaceflight Technology Directorate, JAXA 2 p.m.: Crew News Conference
      Zena Cardman, Crew-11 commander, NASA Mike Fincke, Crew-11 pilot, NASA Kimiya Yui, Crew-11 mission specialist, JAXA Oleg Platonov, Crew-11 mission specialist, Roscosmos 3 p.m.: Crew Individual Interview Opportunities
      Crew-11 members available for a limited number of interviews
      Selected as a NASA astronaut in 2017, Cardman will conduct her first spaceflight. The Williamsburg, Virginia, native holds a bachelor’s degree in Biology and a master’s in Marine Sciences from the University of North Carolina at Chapel Hill. At the time of selection, she was pursuing a doctorate in geosciences. Cardman’s geobiology and geochemical cycling research focused on subsurface environments, from caves to deep sea sediments. Since completing initial training, Cardman has supported real-time station operations and lunar surface exploration planning. Follow @zenanaut on X and @zenanaut on Instagram.

      This will be Fincke’s fourth trip to the space station, having logged 382 days in space and nine spacewalks during Expedition 9 in 2004, Expedition 18 in 2008, and STS-134 in 2011, the final flight of space shuttle Endeavour. Throughout the past decade, Fincke has applied his expertise to NASA’s Commercial Crew Program, advancing the development and testing of the SpaceX Dragon spacecraft and Boeing Starliner spacecraft toward operational certification. The Emsworth, Pennsylvania, native is a graduate of the United States Air Force Test Pilot School and holds bachelors’ degrees from the Massachusetts Institute of Technology, Cambridge, in both aeronautics and astronautics, as well as Earth, atmospheric and planetary sciences. He also has a master’s degree in aeronautics and astronautics from Stanford University in California. Fincke is a retired U.S. Air Force colonel with more than 2,000 flight hours in over 30 different aircraft. Follow @AstroIronMike on X and Instagram.

      With 142 days in space, this will be Yui’s second trip to the space station. After his selection as a JAXA astronaut in 2009, Yui flew as a flight engineer for Expedition 44/45 and became the first Japanese astronaut to capture JAXA’s H-II Transfer Vehicle using the station’s robotic arm. In addition to constructing a new experimental environment aboard Kibo, he conducted a total of 21 experiments for JAXA. In November 2016, Yui was assigned as chief of the JAXA Astronaut Group. He graduated from the School of Science and Engineering at the National Defense Academy of Japan in 1992. He later joined the Air Self-Defense Force at the Japan Defense Agency (currently the Ministry of Defense). In 2008, Yui joined the Air Staff Office at the Ministry of Defense as a lieutenant colonel. Follow @astro_kimiya on X.

      The Crew-11 mission also will be Platonov’s first spaceflight. Before his selection as a cosmonaut in 2018, Platonov earned a degree in engineering from Krasnodar Air Force Academy in aircraft operations and air traffic management. He also earned a bachelor’s degree in state and municipal management in 2016 from the Far Eastern Federal University in Vladivostok, Russia. Assigned as a test cosmonaut in 2021, he has experience in piloting aircraft, zero gravity training, scuba diving, and wilderness survival.
      For more information about the mission, visit:
      https://www.nasa.gov/commercialcrew
      -end-
      Claire O’Shea / Joshua Finch
      Headquarters, Washington
      202-358-1100
      claire.a.o’shea@nasa.gov / joshua.a.finch@nasa.gov
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / Joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Jul 02, 2025 LocationNASA Headquarters Related Terms
      Humans in Space ISS Research Opportunities For International Participants to Get Involved View the full article
  • Check out these Videos

×
×
  • Create New...