Jump to content

Zero-Boil-Off Tank Experiments to Enable Long-Duration Space Exploration


NASA

Recommended Posts

  • Publishers
10 Min Read

Zero-Boil-Off Tank Experiments to Enable Long-Duration Space Exploration

A grey space vehicle consisting of several attached sections; purple solar panels protrude from several of the sections.
Figure 1. The Gateway space station—humanity’s first space station around the Moon—will be capable of being refueled in space.
Credits:
NASA

Do we have enough fuel to get to our destination? This is probably one of the first questions that comes to mind whenever your family gets ready to embark on a road trip. If the trip is long, you will need to visit gas stations along your route to refuel during your travel. NASA is grappling with similar issues as it gets ready to embark on a sustainable mission back to the Moon and plans future missions to Mars. But while your car’s fuel is gasoline, which can be safely and indefinitely stored as a liquid in the car’s gas tank, spacecraft fuels are volatile cryogenic liquid propellants that must be maintained at extremely low temperatures and guarded from environmental heat leaks into the spacecraft’s propellant tank. And while there is already an established network of commercial gas stations in place to make refueling your car a cinch, there are no cryogenic refueling stations or depots at the Moon or on the way to Mars. Furthermore, storing volatile propellant for a long time and transferring it from an in-space depot tank to a spacecraft’s fuel tank under microgravity conditions will not be easy since the underlying microgravity fluid physics affecting such operations is not well understood. Even with today’s technology, preserving cryogenic fuels in space beyond several days is not possible and tank-to-tank fuel transfer has never been previously performed or tested in space.

Heat conducted through support structures or from the radiative space environment can penetrate even the formidable Multi-Layer Insulation (MLI) systems of in-space propellant tanks, leading to boil-off or vaporization of the propellant and causing tank self-pressurization. The current practice is to guard against over-pressurizing the tank and endangering its structural integrity by venting the boil-off vapor into space. Onboard propellants are also used to cool down the hot transfer lines and the walls of an empty spacecraft tank before a fuel transfer and filling operation can take place.  Thus, precious fuel is continuously wasted during both storage and transfer operations, rendering long-duration expeditions—especially a human Mars mission—infeasible using current passive propellant tank pressure control methods.

Zero-Boil-Off (ZBO) or Reduced Boil-Off (RBO) technologies provide an innovative and effective means to replace the current passive tank pressure control design. This method relies on a complex combination of active, gravity-dependent mixing and energy removal processes that allow maintenance of safe tank pressure with zero or significantly reduced fuel loss.

Zero Boil-off Storage and Transfer: A Transformative Space Technology

At the heart of the ZBO pressure control system are two proposed active mixing and cooling mechanisms to counter tank self-pressurization.  The first is based on intermittent, forced, subcooled jet mixing of the propellantand involves complex, dynamic, gravity-dependent interaction between the jet and the ullage (vapor volume) to control the condensation and evaporation phase change at the liquid-vapor interface. The second mechanism uses subcooled droplet injection via a spraybar in the ullage to control tank pressure and temperature. While the latter option is promising and gaining prominence, it is more complex and has never been tested in microgravity where the phase change and transport behavior of droplet populations can be very different and nonintuitive compared to those on Earth.

Although the dynamic ZBO approach is technologically complex, it promises an impressive advantage over the currently used passive methods. An assessment of one nuclear propulsion concept for Mars transport estimated that the passive boil-off losses for a large liquid hydrogen tank carrying 38 tons of fuel for a three-year mission to Mars would be approximately 16 tons/year. The proposed ZBO system would provide a 42% saving of propellant mass per year. These numbers also imply that with a passive system, all the fuel carried for a three-year Mars mission would be lost to boil-off, rendering such a mission infeasible without resorting to the transformative ZBO technology.

The ZBO approach provides a promising method, but before such a complex technological and operational transformation can be fully developed, implemented, and demonstrated in space, important and decisive scientific questions that impact its engineering implementation and microgravity performance must be clarified and resolved.

The Zero-Boil-Off Tank (ZBOT) Microgravity Science Experiments

The Zero Boil-off Tank (ZBOT) Experiments are being undertaken to form a scientific foundation for the development of the transformative ZBO propellant preservation method. Following the recommendation of a ZBOT science review panel comprised of members from aerospace industries, academia, and NASA, it was decided to perform the proposed investigation as a series of three small-scale science experiments to be conducted onboard the International Space Station. The three experiments outlined below build upon each other to address key science questions related to ZBO cryogenic fluid management of propellants in space.

Astronaut Joseph Acaba wearing glasses and a black T-shirt is half standing, suspended in microgravity next to the ZBOT experiment in the Microgravity Science Glovebox (MSG) Unit aboard the station. The MSG is a rectangular compartment tightly fitted with various components including the test tank, enclosed in a cylindrical metallic vacuum jacket, sitting on top of a close Fluid Supply Unit (FSU) that is used for fluid thermal conditioning. The space in MSG is further crowded by a reservoir, various entangled hoses and wiring system, a camera and a small laser unit used for Particle Imaging Velocimetry (PIV) diagnostics that measures and visualizes fluid motion in the tank.
Figure 3. Astronaut Joseph M. Acaba installing ZBOT Hardware in the Microgravity Science Glovebox aboard the International Space Station.
Credit: NASA

The ZBOT-1 Experiment: Self-Pressurization & Jet Mixing

The first experiment in the series was carried out on the station in the 2017-2018 timeframe. Figure 3 shows the ZBOT-1 hardware in the Microgravity Science Glovebox (MSG) unit of the station. The main focus of this experiment was to investigate the self-pressurization and boiling that occurs in a sealed tank due to local and global heating, and the feasibility of tank pressure control via subcooled axial jet mixing. In this experiment, the complicated interaction of the jet flow with the ullage (vapor volume) in microgravity was carefully studied. Microgravity jet mixing data was also collected across a wide range of scaled flow and heat transfer parameters to characterize the time constants for tank pressure reduction, and the thresholds for geyser (liquid fountain) formation, including its stability, and penetration depth through the ullage volume. Along with very accurate pressure and local temperature sensor measurements, Particle Image Velocimetry (PIV) was performed to obtain whole-field flow velocity measurements to validate a Computational Fluid Dynamics (CFD) model.

Four pictures side-by-side showing the results of a ZBOT pressure control jet mixing experiment in microgravity. The first picture shows a jet flow distinguished by blue, yellow, and red colored flow pathlines emanating from a flow nozzle in the bottom of the tank. The jet flow impinges on the ullage from below and deforms the ullage that was initially spherical into a shape that resembles the head of a bird with a pointed beak projected to the right. The second picture an experimental image captured by the Particle Imaging Velocimetry diagnostics. Tiny micron-sized particles illuminated by a laser sheet form shiny steak lines against a black background that displays the path of the fluid motion. The experimental pathlines resemble closely the CFD flow pathlines predicted by the CFD simulation as shown in the left-hand side picture. The third image shows a white-light image that captures the shape of the ullage positioned at the top left-hand side of the tank. This experimental image also shows the deformation of the ullage by the jet into a bird-head shaped figure confirming the shape and position of the ullage predicted by the CFD model. The last image shows the CFD prediction of the vortexed thermal structures that are created by the jet flow and represented by blue, yellow, and red temperature contours.
Figure 4. Validation of ZBOT CFD Model Predictions for fluid flow and deformation of a spherical ullage in microgravity by a subcooled liquid jet mixing against ZBOT experimental results: (a) Model prediction of ullage position and deformation and flow vortex structures during subcooled jet mixing; (b) PIV image capture of flow vortex structures during jet mixing; (c) Ullage deformation captured by white light imaging; and (d) CFD model depiction of temperature contours during subcooled jet mixing. (ZBOT-1 Experiment, 2018)
Credit: Dr. Mohammad Kassemi, Case Western Reserve University

Some of the interesting findings of the ZBOT-1experiment are as follows:

  1. Provided the first tank self-pressurization rate data in microgravity under controlled conditions that can be used for estimating the tank insulation requirements. Results also showed that classical self-pressurization is quite fragile in microgravity and nucleate boiling can occur at hotspots on the tank wall even at moderate heat fluxes that do not induce boiling on Earth. 
  2. Proved that ZBO pressure control is feasible and effective in microgravity using subcooled jet mixing, but also demonstrated that microgravity ullage-jet interaction does not follow the expected classical regime patterns (see Figure 4).
  3. Enabled observation of unexpected cavitation during subcooled jet mixing, leading to massive phase change at both sides of the screened Liquid Acquisition Device (LAD) (see Figure 5). If this type of phase change occurs in a propellant tank, it can lead to vapor ingestion through the LAD and disruption of liquid flow in the transfer line, potentially leading to engine failure.
  4. Developed a state-of-the-art two-phase CFD model validated by over 30 microgravity case studies (an example of which is shown in Figure 4). ZBOT CFD models are currently used as an effective tool for propellant tank scaleup design by several aerospace companies participating in the NASA tipping point opportunity and the NASA Human Landing System (HLS) program.
The left-hand picture shows an intact large hemispherical bubble (vapor ullage) at the top of the tank before the jet mixing starts. The right-hand picture shows the tank filled by numerous small sized bubbles that were created by an unexpected cavitation phase change phenomena when the pressure in the tank suddenly dropped due to the subcooled jet mixing operation.
Figure 5. White light image captures of the intact single hemispherical ullage in ZBOT tank before depressurization by the subcooled jet (left) and after subcooled jet mixing pressure collapse that led to massive phase change bubble generation due to cavitation at the LAD (right). (ZBOT-1 Experiment, 2018).
Credit: Dr. Mohammad Kassemi, Case Western Reserve University

The ZBOT-NC Experiment: Non-Condensable Gas Effects

Non-condensable gases (NCGs) are used as pressurants to extract liquid for engine operations and tank-to-tank transfer. The second experiment, ZBOT-NC will investigate the effect of NCGs on the sealed tank self-pressurization and on pressure control by axial jet mixing. Two inert gases with quite different molecular sizes, Xenon, and Neon, will be used as the non-condensable pressurants. To achieve pressure control or reduction, vapor molecules must reach the liquid-vapor interface that is being cooled by the mixing jet and then cross the interface to the liquid side to condense.

This study will focus on how in microgravity the non-condensable gases can slow down or resist the transport of vapor molecules to the liquid-vapor interface (transport resistance) and will clarify to what extent they may form a barrier at the interface and impede the passage of the vapor molecules across the interface to the liquid side (kinetic resistance). By affecting the interface conditions, the NCGs can also change the flow and thermal structures in the liquid.

ZBOT-NC will use both local temperature sensor data and uniquely developed Quantum Dot Thermometry (QDT) diagnostics to collect nonintrusive whole-field temperature measurements to assess the effect of the non-condensable gases during both self-pressurization heating and jet mixing/cooling of the tank under weightlessness conditions. This experiment is scheduled to fly to the International Space Station in early 2025, and more than 300 different microgravity tests are planned. Results from these tests will also enable the ZBOT CFD model to be further developed and validated to include the non-condensable gas effects with physical and numerical fidelity.

The ZBOT-DP Experiment: Droplet Phase Change Effects

ZBO active pressure control can also be accomplished via injection of subcooled liquid droplets through an axial spray-bar directly into the ullage or vapor volume. This mechanism is very promising, but its performance has not yet been tested in microgravity. Evaporation of droplets consumes heat that is supplied by the hot vapor surrounding the droplets and produces vapor that is at a much lower saturation temperature. As a result, both the temperature and the pressure of the ullage vapor volume are reduced. Droplet injection can also be used to cool down the hot walls of an empty propellant tank before a tank-to-tank transfer or filling operation. Furthermore, droplets can be created during the propellant sloshing caused by acceleration of the spacecraft, and these droplets then undergo phase change and heat transfer. This heat transfer can cause a pressure collapse that may lead to cavitation or a massive liquid-to-vapor phase change. The behavior of droplet populations in microgravity will be drastically different compared to that on Earth.

The ZBOT-DP experiment will investigate the disintegration, coalescence (droplets merging together), phase change, and transport and trajectory characteristics of droplet populations and their effects on the tank pressure in microgravity. Particular attention will also be devoted to the interaction of the droplets with a heated tank wall, which can lead to flash evaporation subject to complications caused by the Liedenfrost effect (when liquid droplets propel away from a heated surface and thus cannot cool the tank wall). These complicated phenomena have not been scientifically examined in microgravity and must be resolved to assess the feasibility and performance of droplet injection as a pressure and temperature control mechanism in microgravity.

Back to Planet Earth

This NASA-sponsored fundamental research is now helping commercial providers of future landing systems for human explorers. Blue Origin and Lockheed Martin, participants in NASA’s Human Landing Systems program, are using data from the ZBOT experiments to inform future spacecraft designs.

Cryogenic fluid management and use of hydrogen as a fuel are not limited to space applications. Clean green energy provided by hydrogen may one day fuel airplanes, ships, and trucks on Earth, yielding enormous climate and economic benefits. By forming the scientific foundation of ZBO cryogenic fluid management for space exploration, the ZBOT science experiments and CFD model development will also help to reap the benefits of hydrogen as a fuel here on Earth. 

PROJECT LEAD

Dr. Mohammad Kassemi (Dept Mechanical & Aerospace Engineering, Case Western Reserve University)

SPONSORING ORGANIZATION

Biological and Physical Sciences (BPS) Division, NASA Science Mission Directorate (SMD)

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      Over the past two years, the first U.S. space service component has tripled in size, established a 24/7 space watch cell and executed three Tier 1 Combatant Command exercises.

      View the full article
    • By NASA
      The future of human space exploration took a bold step forward at NASA’s Johnson Space Center in Houston on Nov. 15, 2024, as Texas A&M University leaders’ broke ground for the Texas A&M University Space Institute.

      Texas state officials, NASA leaders, and distinguished guests participated in the ceremony, held near the future development site of Johnson’s new Exploration Park, marking an important milestone in a transformative partnership to advance research, innovation, and human spaceflight.
      NASA’s Johnson Space Center Director Vanessa Wyche gives remarks at the Texas A&M University Space Institute groundbreaking ceremony in Houston on Nov. 15, 2024. NASA/Robert Markowitz “This groundbreaking is not just a physical act of breaking ground or planting a flag,” said Johnson Director Vanessa Wyche. “This is the moment our vision—to dare to expand frontiers and unite with our partners to explore for the benefit of all humanity—will be manifested.”

      The Texas A&M University Space Institute will be the first tenant at NASA’s 240-acre Exploration Park to support facilities that enhance commercial access, foster a collaborative development environment, and strengthen the United States’ competitiveness in the space and aerospace industries.
      Chairman Bill Mahomes Jr. of the Texas A&M University System Board of Regents, left, Chancellor John Sharp of the Texas A&M University System, and Johnson Director Vanessa Wyche hold a commemorative plaque celebrating the establishment of the Texas A&M University Space Institute at Exploration Park. NASA/Robert Markowitz Exploration Park aims to foster research, technology transfer, and a sustainable pipeline of career development for the Artemis Generation and Texas workers transitioning to the space economy. The park represents a key achievement of Johnson’s 2024 Dare | Unite | Explore commitments, emphasizing its role as the hub of human spaceflight, developing strategic partnerships, and paving the way for a thriving space economy.

      Research conducted at the Space Institute is expected to accelerate human spaceflight by providing opportunities for the brightest minds worldwide to address the challenges of living in low Earth orbit, on the Moon, and on Mars.
      Senior leadership from Johnson Space Center gathers for the groundbreaking ceremony of the Texas A&M University Space Institute. NASA/Robert Markowitz Industry leaders and Johnson executives stood alongside NASA’s Lunar Terrain Vehicle and Space Exploration Vehicle, symbolizing their commitment to fostering innovation and collaboration.

      Texas A&M University Space Institute director and retired NASA astronaut Dr. Nancy Currie-Gregg and Dr. Rob Ambrose, Space Institute associate director, served as the masters of ceremony for the event. Johnson leaders present included Deputy Director Stephen Koerner; Associate Director Donna Shafer; Associate Director for Vision and Strategy Douglas Terrier; Director of External Relations Office Arturo Sanchez; and Chief Technologist and Director of the Business Development and Technology Integration Office Nick Skytland.

      Also in attendance were Texas State Rep. Greg Bonnen; Texas A&M University System Board of Regents Chairman William Mahomes Jr.; Texas A&M University System Chancellor John Sharp; Texas A&M University President and Retired Air Force Gen. Mark Welsh III; and Texas A&M Engineering Vice Chancellor and Dean Robert Bishop.
      Texas A&M University Space Institute Director and retired NASA astronaut Nancy Currie-Gregg plants a Texas A&M University Space Institute flag at Johnson Space Center, symbolizing the partnership between the institute and NASA.NASA/Robert Markowitz The institute, expected to open in September 2026, will feature the world’s largest indoor simulation spaces for lunar and Martian surface operations, high-bay laboratories, and multifunctional project rooms.

      “The future of Texas’ legacy in aerospace is brighter than ever as the Texas A&M Space Institute in Exploration Park will create an unparalleled aerospace, economic, business development, research, and innovation region across the state,” Wyche said. “Humanity’s next giant leap starts here!”
      View the full article
    • By European Space Agency
      Image: This Copernicus Sentinel-2 image from 13 November 2024 shows the Lewotobi Laki Laki volcano eruption on the island of Flores in southern Indonesia. View the full article
    • By NASA
      NASA astronaut and Expedition 72 Flight Engineer Nick Hague pedals on the Cycle Ergometer with Vibration Isolation and Stabilization (CEVIS), an exercise cycle located aboard the International Space Station’s Destiny laboratory module. CEVIS provides aerobic and cardiovascular conditioning through recumbent (leaning back position) or upright cycling activities.NASA Lee esta historia en español aquí.
      The International Space Station is humanity’s home in space and a research station orbiting about 250 miles above the Earth. NASA and its international partners have maintained a continuous human presence aboard the space station for more than 24 years, conducting research that is not possible on Earth.
      The people living and working aboard the microgravity laboratory also are part of the research being conducted, helping to address complex human health issues on Earth and prepare humanity for travel farther than ever before, including the Moon and Mars.
      Here are a few frequently asked questions about how NASA and its team of medical physicians, psychologists, nutritionists, exercise scientists, and other specialized caretakers ensure astronauts’ health and fitness aboard the orbiting laboratory. 
      How long is a typical stay aboard the International Space Station?
      A typical mission to the International Space Station lasts about six months, but can vary based on visiting spacecraft schedules, mission priorities, and other factors. NASA astronauts also have remained aboard the space station for longer periods of time. These are known as long-duration missions, and previous missions have given NASA volumes of data about long-term spaceflight and its effects on the human body, which the agency applies to any crewed mission. 
      During long-duration missions, NASA’s team of medical professionals focus on optimizing astronauts’ physical and behavioral health and their performance to help ensure mission success. These efforts also are helping NASA prepare for future human missions to the Moon, Mars, and beyond.
      How does NASA keep astronauts healthy while in space?
      NASA has a team of medical doctors, psychologists, and others on the ground dedicated to supporting the health and well-being of astronauts before, during, and after each space mission. NASA assigns physicians with specialized training in space medicine, called flight surgeons, to each crew once named to a mission. Flight surgeons oversee the health care and medical training as crew members prepare for their mission, and they monitor the crew’s health before, during, and after their mission to the space station.
      How does NASA support its astronauts’ mental and emotional well-being while in space?
      The NASA behavioral health team provides individually determined psychological support services for crew members and their families during each mission. Ensuring astronauts can thrive in extreme environments starts as early as the astronaut selection process, in which applicants are evaluated on competencies such as adaptability and resilience. Astronauts receive extensive training to help them use self-assessment tools and treatments to manage their behavioral health. NASA also provides training in expeditionary skills to prepare every astronaut for missions on important competencies, such as self-care and team care, communication, and leadership and followership skills.
      To help maintain motivation and morale aboard the space station, astronauts can email, call, and video conference with their family and friends, receive crew care packages aboard NASA’s cargo resupply missions, and teleconference with a psychologist, if needed.
      How does microgravity affect astronaut physical health?
      In microgravity, without the continuous load of Earth’s gravity, there are many changes to the human body. NASA understands many of the human system responses to the space environment, including adaptations to bone density, muscle, sensory-motor, and cardiovascular health, but there is still much to learn. These spaceflight effects vary from astronaut to astronaut, so NASA flight surgeons regularly monitor each crew member’s health during a mission and individualize diet and fitness routines to prioritize health and fitness while in space.
      Why do astronauts exercise in space?
      Each astronaut aboard the orbiting laboratory engages in specifically designed, Earth-like exercise plans. To maintain their strength and endurance, crew members are scheduled for two and a half hours of daily exercise to support muscle, bone, aerobic, and sensorimotor health. Current equipment onboard the space station includes the ARED (Advanced Resistive Exercise Device), which mimics weightlifting; a treadmill, called T2; and the CEVIS (Cycle Ergometer with Vibration Isolation and Stabilization System) for cardiovascular exercise.
      What roles do food and nutrition play in supporting astronaut health?
      Nutrition plays a critical role in maintaining an astronaut’s health and optimal performance before, during, and after their mission. Food also plays a psychosocial role during an astronaut’s long-duration stay aboard the space station. Experts working in NASA’s Space Food Systems Laboratory at the agency’s Johnson Space Center in Houston develop foods that are nutritious and appetizing. Crew members also have the opportunity to supplement the menu with personal favorites and off-the-shelf items, which can provide a taste of home.
      NASA astronaut and Expedition 71 Flight Engineer Tracy C. Dyson is pictured in the galley aboard the International Space Station’s Unity module showing off food packets from JAXA (Japan Aerospace Exploration Agency).NASA How does NASA know whether astronauts are getting the proper nutrients?
      NASA’s nutritional biochemistry dietitians and scientists determine the nutrients (vitamins, minerals, calories) the astronauts require while in space. This team tracks what each crew member eats through a tablet-based tracking program, which each astronaut completes daily. The data from the app is sent to the dietitians weekly to monitor dietary intake. Analyzing astronaut blood and urine samples taken before, during, and after space missions is a crucial part of studying how their bodies respond to the unique conditions of spaceflight. These samples provide valuable insight into how each astronaut adapts to microgravity, radiation, and other factors that affect human physiology in space.
      How do astronauts train to work together while in space?
      In addition to technical training, astronauts participate in team skills training. They learn effective group living skills and how to look out for and support one another. Due to its remote and isolated nature, long-duration spaceflight can make teamwork difficult. Astronauts must maintain situational awareness and implement the flight program in an ever-changing environment. Therefore, effective communication is critical when working as a team aboard station and with multiple support teams on the ground. Astronauts also need to be able to communicate complex information to people with different professional backgrounds. Ultimately, astronauts are people living and working together aboard the station and must be able to do a highly technical job and resolve any interpersonal issues that might arise.
      What happens if there is a medical emergency on the space station?
      All astronauts undergo medical training and have regular contact with a team of doctors closely monitoring their health on the ground. NASA also maintains a robust pharmacy and a suite of medical equipment onboard the space station to treat various conditions and injuries. If a medical emergency requires a return to Earth, the crew will return in the spacecraft they launched aboard to receive urgent medical care on the ground.
      Expedition 69 NASA astronaut Frank Rubio is seen resting and talking with NASA ISS Program Manager Joel Montalbano, kneeling left, NASA Flight Surgeon Josef Schmid, red hat, and NASA Chief of the Astronaut Office Joe Acaba, outside the Soyuz MS-23 spacecraft after he landed with Roscosmos cosmonauts Sergey Prokopyev and Dmitri Petelin in a remote area near the town of Zhezkazgan, Kazakhstan on Wednesday, Sept. 27, 2023.NASA/Bill Ingalls Learn more about NASA’s Human Health and Performance Directorate at:
      www.nasa.gov/hhp
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      ESI24 Haghighi Quadchart
      Azadeh Haghighi
      University of Illinois, Chicago
      In-space manufacturing and assembly are vital to NASA’s long-term exploration goals, especially for the Moon and Mars missions. Deploying welding technology in space enables the assembly and repair of structures, reducing logistical burdens and supply needs from Earth. The unique challenges and extreme conditions of space–high thermal variations, microgravity, and vacuum–require advanced welding techniques and computational tools to ensure reliability, repeatability, safety, and structural integrity in one-shot weld scenarios. For the first time, this project investigates these challenges by focusing on three key factors: (1) Very low temperatures in space degrade the weldability of high thermal conductivity materials, like aluminum alloys, making it harder to achieve strong, defect-free welds. (2) The extreme vacuum in space lowers the boiling points of alloying elements, altering the keyhole geometry during welding. This selective vaporization changes the weld’s final chemical composition, affecting its microstructure and properties. (3) Microgravity nearly eliminates buoyancy-driven flow of liquid metal inside the molten pool, preventing gas bubbles from escaping, which leads to porosity and defects in the welds. By examining these critical factors using multi-scale multi-physics models integrated with physics-informed machine learning, and forward/inverse uncertainty quantification techniques, this project provides the first-ever real-time digital twin platform to evaluate welding processes under extreme space/lunar conditions. The models are validated through Earth-based experiments, parabolic flight tests, and publicly available data from different databases and agencies worldwide. Moreover, the established models will facilitate extendibility to support in-situ resource utilization on the Moon, including construction and repair using locally sourced materials like regolith. The established fundamental scientific knowledge will minimize trial-and-error, enable high-quality one-shot welds in space, and reduce the need for reworks, significantly reducing the costs and time needed for space missions.
      Back to ESI 2024
      Keep Exploring Discover More Topics From STRG
      Space Technology Mission Directorate
      STMD Solicitations and Opportunities
      Space Technology Research Grants
      About STRG
      View the full article
  • Check out these Videos

×
×
  • Create New...