Jump to content

Total Solar Eclipse 2024: The Moon’s Moment in the Sun


Recommended Posts

  • Publishers
Posted

5 min read

Total Solar Eclipse 2024: The Moon’s Moment in the Sun

This stylized illustration, created for the 2024 total solar eclipse, shows Earth’s Moon blocking the Sun from view and revealing the Sun’s corona, or outermost atmosphere. The Sun’s magnetic field affects charged particles in the corona, causing elaborate streamers and plumes that are depicted in this artist’s interpretation.
Artist’s representation of a total solar eclipse, with a new moon in the foreground and the Sun’s corona visible in the background. Download the Poster
NASA/Vi Nguyen

On April 8, 2024, much of North America will experience a solar eclipse: a cosmic alignment of Sun, Moon, and Earth, in that order. The Moon’s shadow path will make landfall on Mexico’s Pacific coast, cross the United States from Texas to Maine, and exit North America via Newfoundland, Canada, continuing into the Atlantic Ocean. 

Learn how to safely observe the 2024 Solar Eclipse

It’s All About Perspective

Solar eclipses on Earth are a convenient coincidence. The Sun’s diameter is about 400 times larger than the Moon’s, and the Sun is almost 400 times farther away from us than the Moon is. This combination makes the Sun and Moon appear nearly the same size in our sky, setting up a spectacular show when they align. Try experimenting with apparent size for yourself by holding up a small item, like your thumb, and moving it closer and farther away to block different-sized objects from your view. 

The Moon’s distance from Earth varies, though only slightly. The Moon’s orbit is not a perfect circle, and it is not quite centered on our planet. At its closest, the Moon is about twenty-eight Earth diameters away; at its farthest, about thirty-two. As a result, the Moon’s apparent size changes over time, and eclipses are not all alike

A total solar eclipse is only possible when the Moon is closer to Earth than average. When the Moon is farther away, its apparent size is smaller than the Sun’s, so it does not completely block the Sun’s bright disk. In this configuration, when the Moon passes between Earth and the Sun, a “ring of fire” remains visible – that’s an annular solar eclipse.

An Orbital Dance

Video tutorial describing the 2024 total solar eclipse and explaining the Moon’s role in creating it. Credit: NASA’s Goddard Space Flight Center

Ever wonder why solar eclipses don’t happen more often? Earth, Moon, and Sun don’t line up perfectly every month because the Moon’s orbit is tilted by about 5 degrees compared to Earth’s orbit around the Sun. Most of the time, the Moon’s shadow misses our planet

When all three celestial bodies do align, views of the eclipse depend not just on our position in the solar system, but also on our location on Earth. The Moon’s shadow has two parts, the umbra and the penumbra. Observers in the umbra (or “path of totality”) will experience a total solar eclipse. For those in the penumbra, the eclipse will be partial.

A map of the contiguous U.S. shows the path of the 2024 total solar eclipse stretching on a narrow band from Texas to Maine.
2024 Total Solar Eclipse shadow path map, built using datasets from several NASA missions. For more information, visit NASA’s Scientific Visualization Studio: The 2024 Total Solar Eclipse.
NASA’s Scientific Visualization Studio

If you are planning to observe the eclipse, you’ve probably consulted a shadow path map like this one. But how do we know exactly where and when the Moon will cast its shadow? Eclipse prediction depends, first and foremost, on understanding the positions and movements of the Moon, Sun, and Earth. Modern maps build on a long human history of eclipse forecasting. And since 2009, NASA’s Lunar Reconnaissance Orbiter (LRO) has been mapping the Moon in unprecedented detail. LRO’s lunar topography data enables us to make more accurate eclipse predictions than ever before.

Moonshadow: The Making of a Map

The Moon is a rugged world of peaks, craters, basins, and valleys. Since the lunar horizon is bumpy and jagged, the shadow it casts is not quite round. Knowing the precise shape of the Moon helps us understand exactly where its shadow will darken Earth’s surface. Of course, our own planet is not perfectly round, either. Today’s eclipse maps account not only for the lunar landscape, but also for the contours of Earth’s mountain ranges, lowlands, and other features.

Composite image showing a detailed, fully lit Moon moving across a the Sun's swirling yellow surface.
Uneven lunar terrain partially blocks the Sun in this composite image of a partial solar eclipse, showing the Moon (visualization based on Lunar Reconnaissance Orbiter data) passing between Earth and the Sun (as imaged from space by the Solar Dynamics Observatory spacecraft on October 7, 2010).
NASA’s Scientific Visualization Studio

Bursts of Light: Baily’s Beads and the Diamond Ring Effect

Casual observers don’t usually notice that the Moon’s silhouette is rough around the edges. At a distance of 239,000 miles (that’s the average gap between Earth and the Moon), our nearest neighbor in space looks round – even mountains appear too small for the human eye to distinguish. But, for two brief moments during a solar eclipse, craggy lunar terrain commands the spotlight.

On the brink of totality, as the Moon moves into full Sun-blocking position, the Sun’s edge doesn’t go dark all at once. Last rays of sunlight peek through valleys on the lunar horizon. These isolated areas of intense brightness can resemble a string of glowing beads or a single dramatic burst of light like the gem on a ring. The same phenomena, sometimes called Baily’s Beads and the Diamond Ring Effect, can also occur as the Moon edges out of totality (or annularity). Since we know the shape and position of the Moon so well, we can predict where the first and last bits of sunlight will appear.

A close-up photograph of a solar eclipse, showing a bright cluster of orbs from the Sun on the lower left edge where sunlight peaks around the Moon.
Baily’s Beads as seen during the August 21, 2017 total solar eclipse.
NASA/Aubrey Gemignani

NASA Eclipse Science and You

NASA scientists take full advantage of the unusual atmospheric and environmental conditions the Moon’s passing shadow creates, and you can too. Here are just a few places to start.

Science Advisor: Ernie Wright, NASA’s Goddard Space Flight Center

About the Author

Caela Barry

Caela Barry

Share

Details

Last Updated
Mar 11, 2024
Editor
Molly Wasser

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      The latest analysis from the European Space Agency (ESA) Planetary Defence Office has reduced the probability that asteroid 2024 YR4 might impact Earth in 2032 to 0.001%.
      View the full article
    • By NASA
      NASA Expert Answers Your Questions About Asteroid 2024 YR4
    • By NASA
      SPHEREx & PUNCH: Studying the Universe and Sun (NASA Mission Trailer)
    • By NASA
      6 Min Read NASA’s PUNCH Mission to Revolutionize Our View of Solar Wind 
      Earth is immersed in material streaming from the Sun. This stream, called the solar wind, is washing over our planet, causing breathtaking auroras, impacting satellites and astronauts in space, and even affecting ground-based infrastructure. 
      NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) mission will be the first to image the Sun’s corona, or outer atmosphere, and solar wind together to better understand the Sun, solar wind, and Earth as a single connected system.  
      Launching no earlier than Feb. 28, 2025, aboard a SpaceX Falcon 9 rocket from Vandenberg Space Force Base in California, PUNCH will provide scientists with new information about how potentially disruptive solar events form and evolve. This could lead to more accurate predictions about the arrival of space weather events at Earth and impact on humanity’s robotic explorers in space. 
      “What we hope PUNCH will bring to humanity is the ability to really see, for the first time, where we live inside the solar wind itself,” said Craig DeForest, principal investigator for PUNCH at Southwest Research Institute’s Solar System Science and Exploration Division in Boulder, Colorado. 
      This video can be freely shared and downloaded at https://svs.gsfc.nasa.gov/14773.
      Video credit: NASA’s Goddard Space Flight Center Seeing Solar Wind in 3D 
      The PUNCH mission’s four suitcase-sized satellites have overlapping fields of view that combine to cover a larger swath of sky than any previous mission focused on the corona and solar wind. The satellites will spread out in low Earth orbit to construct a global view of the solar corona and its transition to the solar wind. They will also track solar storms like coronal mass ejections (CMEs). Their Sun-synchronous orbit will enable them to see the Sun 24/7, with their view only occasionally blocked by Earth.  
      Typical camera images are two dimensional, compressing the 3D subject into a flat plane and losing information. But PUNCH takes advantage of a property of light called polarization to reconstruct its images in 3D. As the Sun’s light bounces off material in the corona and solar wind, it becomes polarized — meaning the light waves oscillate in a particular way that can be filtered, much like how polarized sunglasses filter out glare off of water or metal. Each PUNCH spacecraft is equipped with a polarimeter that uses three distinct polarizing filters to capture information about the direction that material is moving that would be lost in typical images.  
      “This new perspective will allow scientists to discern the exact trajectory and speed of coronal mass ejections as they move through the inner solar system,” said DeForest. “This improves on current instruments in two ways: with three-dimensional imaging that lets us locate and track CMEs which are coming directly toward us; and with a broad field of view, which lets us track those CMEs all the way from the Sun to Earth.” 
      All four spacecraft are synchronized to serve as a single “virtual instrument” that spans the whole PUNCH constellation. 
      Crews conduct additional solar array deployment testing for NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) satellites at Astrotech Space Operations located on Vandenberg Space Force Base in California on Wednesday, Jan. 22, 2025. USSF 30th Space Wing/Alex Valdez The PUNCH satellites include one Narrow Field Imager and three Wide Field Imagers. The Narrow Field Imager (NFI) is a coronagraph, which blocks out the bright light from the Sun to better see details in the Sun’s corona, recreating what viewers on Earth see during a total solar eclipse when the Moon blocks the face of the Sun — a narrower view that sees the solar wind closer to the Sun. The Wide Field Imagers (WFI) are heliospheric imagers that view the very faint, outermost portion of the solar corona and the solar wind itself — giving a wide view of the solar wind as it spreads out into the solar system.   
      “I’m most excited to see the ‘inbetweeny’ activity in the solar wind,” said Nicholeen Viall, PUNCH mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This means not just the biggest structures, like CMEs, or the smallest interactions, but all the different types of solar wind structures that fill that in between area.” 
      When these solar wind structures from the Sun reach Earth’s magnetic field, they can drive dynamics that affect Earth’s radiation belts. To launch spacecraft through these belts, including ones that will carry astronauts to the Moon and beyond, scientists need to understand the solar wind structure and changes in this region. 
      Building Off Other Missions 
      “The PUNCH mission is built on the shoulders of giants,” said Madhulika Guhathakurta, PUNCH program scientist at NASA Headquarters in Washington. “For decades, heliophysics missions have provided us with glimpses of the Sun’s corona and the solar wind, each offering critical yet partial views of our dynamic star’s influence on the solar system.” 
      When scientists combine data from PUNCH and NASA’s Parker Solar Probe, which flies through the Sun’s corona, they will see both the big picture and the up-close details. Working together, Parker Solar Probe and PUNCH span a field of view from a little more than half a mile (1 kilometer) to over 160 million miles (about 260 million kilometers). 
      Additionally, the PUNCH team will combine their data with diverse observations from other missions, like NASA’s CODEX (Coronal Diagnostic Experiment) technology demonstration, which views the corona even closer to the surface of the Sun from its vantage point on the International Space Station. PUNCH’s data also complements observations from NASA’s EZIE (Electrojet Zeeman Imaging Explorer) — targeted for launch in March 2025 — which investigates the magnetic field perturbations associated with Earth’s high-altitude auroras that PUNCH will also spot in its wide-field view.  
      A conceptual animation showing the heliosphere, the vast bubble that is generated by the Sun’s magnetic field and envelops all the planets.
      NASA’s Goddard Space Flight Center Conceptual Image Lab As the solar wind that PUNCH will observe travels away from the Sun and Earth, it will then be studied by the IMAP (Interstellar Mapping and Acceleration Probe) mission, which is targeting a launch in 2025. 
      “The PUNCH mission will bridge these perspectives, providing an unprecedented continuous view that connects the birthplace of the solar wind in the corona to its evolution across interplanetary space,” said Guhathakurta. 
      The PUNCH mission is scheduled to conduct science for at least two years, following a 90-day commissioning period after launch. The mission is launching as a rideshare with the agency’s next astrophysics observatory, SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer).  
      “PUNCH is the latest heliophysics addition to the NASA fleet that delivers groundbreaking science every second of every day,” said Joe Westlake, heliophysics division director at NASA Headquarters in Washington. “Launching this mission as a rideshare bolsters its value to the nation by optimizing every pound of launch capacity to maximize the scientific return for the cost of a single launch.” 
      The PUNCH mission is led by Southwest Research Institute’s offices in San Antonio, Texas, and Boulder, Colorado. The mission is managed by the Explorers Program Office at NASA Goddard for NASA’s Science Mission Directorate in Washington. 
      By Abbey Interrante 
      NASA’s Goddard Space Flight Center, Greenbelt, Md. 
      Header Image:
      An artist’s concept showing the four PUNCH satellites orbiting Earth.
      Credits: NASA’s Goddard Space Flight Center Conceptual Image Lab
      Share








      Details
      Last Updated Feb 21, 2025 Related Terms
      Heliophysics Coronal Mass Ejections Goddard Space Flight Center Heliophysics Division Polarimeter to Unify the Corona and Heliosphere (PUNCH) Science Mission Directorate Solar Wind Space Weather The Sun Explore More
      2 min read Hubble Spies a Spiral That May Be Hiding an Imposter


      Article


      3 hours ago
      3 min read Eclipses to Auroras: Eclipse Ambassadors Experience Winter Field School in Alaska


      Article


      3 days ago
      2 min read NASA Science: Being Responsive to Executive Orders


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      Explore This SectionEarth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries NewsScience in the News Calendars In Memoriam MoreArchives 3 min read
      In Memoriam: Jeff Dozier [1944–2024]
      Jeff Dozier [1944–2024]Photo credit: Dozier’s family obituary Jeff Dozier, an environmental scientist, snow hydrologist, researcher, academic – and former Earth Observing System Project Scientist – died on November 17, 2024. Jeff’s research focused on snow hydrology and biogeochemistry in mountain environments and addressed the role of stored and melting snow in the hydrologic cycle as well as the economic and social impact on water resources. In these efforts, he embraced remote sensing with satellites to measure snow properties and energy balance. He was a Project Scientist with the Earth Observing System (EOS) Data and Information System, contributing to the design and management of very large information systems that would impact spatial modeling and environmental informatics.
      Jeff served as the second EOS Project Scientist from 1990–1992. During that time, he worked with the NASA science community to – in his own words – “accomplish the goals of EOS, the most important of which is to develop the capability to predict or assess plausible environmental changes – both natural and human-induced – that will occur in the future. Meeting this challenge for the next decade to century requires the integration of knowledge from the traditional disciplines and information from many different sources into a coherent view of the Earth system. EOS is the largest project in the history of NASA and arguably the most important national and international scientific mission of the next two decades.”
      Jeff’s work alongside Michael Matson, was featured in a 2019 NASA Earth Science news article: “NASA Tracks Wildfires From Above to Aid Firefighters Below.” While working at NOAA’s National Environmental Satellite, Data, and Information Service building in Camp Springs, MD, the pair detected methane fires in the Persian Gulf using the Advanced Very High Resolution Radiometer (AVHRR) instrument on the NOAA-6 satellite – marking the first time that such a small fire had been seen from space. Jeff went on to develop a mathematical method to distinguish small fires from other sources of heat, which become the foundation for nearly all subsequent satellite fire-detection algorithms. 
      At the time of his death, Jeff was Principal Investigator of a NASA-funded project with the objective of testing whether data from the Earth Surface Mineral Dust Source Investigation (EMIT) mission could be used to help refine the estimate for the snowpack melting rate. In the 2024 Earth Science news article, “NASA’s EMIT Will Explore Diverse Science Questions on Extended Mission,” Jeff indicated that EMIT’s ability to ‘see’ well into the infrared (IR) spectrum of light is key to his group’s efforts because ice is “pretty absorptive at near-IR and shortwave-IR wavelengths.” The results from this research will help inform water management decisions in states, such as California, where meltwater makes up the majority of the agricultural water supply.
      Jeff earned a Bachelor’s of Science degree from California State University, Hayward (now California State University, East Bay) and a Master’s of Science degree and Ph.D. from the University of Michigan. He spent his career teaching at the University of California, Santa Barbara (UCSB), where he was named the founding Dean of the Bren School of Environmental Science and Management at UCSB in 1994. As the Dean, he recruited renowned faculty and developed one of the top environmental programs in the country. After his role as Dean, Jeff returned as a professor at Bren, educating the next generation of Earth scientists.
      Jeff Dozier [1944–2024]Photo credit: Dozier’s family obituaryView the full article
  • Check out these Videos

×
×
  • Create New...