Jump to content

Recommended Posts

  • Publishers
Posted
release-crew-7.jpg?w=2048
NASA’s SpaceX Crew-7 poses for a photo before their mission to the International Space Station. From left to right: Mission Specialist Konstantin Borisov, Pilot Andreas Mogensen, Commander Jasmin Moghbeli, and Mission Specialist Satoshi Furukawa.
Credits: SpaceX

NASA will provide live coverage of the agency’s SpaceX Crew-7 return to Earth from the International Space Station, beginning with a change-of-command ceremony at 11:55 a.m. EDT on Sunday, March 10.

NASA astronaut Jasmin Moghbeli, ESA (European Space Agency) astronaut Andreas Mogensen, JAXA (Japan Aerospace Exploration Agency) astronaut Satoshi Furukawa, and Roscosmos cosmonaut Konstantin Borisov are preparing to wrap up their nearly six-month science mission, and bring home time-sensitive research to Earth.

Pending weather conditions off the coast of Florida, the SpaceX Dragon spacecraft is scheduled to undock from the space station at 11:05 a.m. Monday, March 11, to begin the journey home, with NASA coverage beginning at 10:45 a.m. NASA and SpaceX are targeting as early as 5:35 a.m. Tuesday, March 12, for splashdown off the Florida coast.

The return and related activities will air live on NASA+, NASA Television, the NASA app, and the agency’s website. Learn how to stream NASA TV through a variety of platforms including social media.

NASA’s coverage is as follows (all times Eastern and subject to change based on real-time operations):

Sunday, March 10

11:55 a.m.: Crew-7 farewell remarks and change of command ceremony aboard the space station

Monday, March 11

9 a.m.: Hatch closure coverage begins

9:15 a.m.: Hatch closing

10:45 a.m.: Undocking coverage begins

11:05 a.m.: Undocking

Following conclusion of Dragon departure from station, NASA coverage will continue with audio only, with full coverage resuming ahead of the deorbit burn and splashdown.

Tuesday, March 12

4:30 a.m.: Coverage begins as the spacecraft leaves low Earth orbit, completes re-entry, and prepares for splashdown

5:35 a.m.: Splashdown

7 a.m.: Return to Earth media teleconference call with the following participants:

  • Steve Stich, manager, NASA’s Commercial Crew Program
  • Jeff Arend, manager for systems engineering and integration, NASA’s International Space Station Office
  • SpaceX representative
  • Eric Van Der Wal, Houston office team leader, ESA
  • Hiroshi Sasaki, vice president for human space flight and space exploration, JAXA

Media may ask questions via phone. For the dial-in number and passcode, media should contact the Kennedy newsroom no later than 6 a.m. Tuesday, March 11, at ksc-newsroom@mail.nasa.gov.

See full mission coverage, NASA’s commercial crew blog, and more information about the mission at:

https://www.nasa.gov/commercialcrew

-end-

Joshua Finch
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov

Steve Siceloff
Kennedy Space Center, Fla.
321-867-2468
steven.p.sieceloff@nasa.gov

Leah Cheshier
Johnson Space Center, Houston
281-483-5111
leah.d.cheshier@nasa.gov

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The NESC Mechanical Systems TDT provides broad support across NASA’s mission directorates. We are a diverse group representing a variety of sub-disciplines including bearings, gears, metrology, lubrication and tribology, mechanism design, analysis and testing, fastening systems, valve engineering, actuator engineering, pyrotechnics, mechatronics, and motor controls. In addition to providing technical support, the
      TDT owns and maintains NASA-STD-5017, “Design and Development Requirements for Space Mechanisms.”

      Mentoring the Next Generation
      The NESC Mechanical Systems TDT actively participates in the Structures, Loads & Dynamics, Materials, and Mechanical Systems (SLAMS) Early Career Forum that mentors early-career engineers. The TDT sent three members to this year’s forum at WSTF, where early-career engineers networked with peers and NESC mentors, gave presentations on tasks they worked on at their home centers, and attended splinter sessions where they collaborated with mentors.

      New NASA Valve Standard to Reduce Risk and Improve Design and Reliability
      Valve issues have been encountered across NASA’s programs and continue to compromise mission performance and increase risk, in many cases because the valve hardware was not qualified in the environment as specified in NASA-STD-5017. To help address these issues, the Mechanical Systems TDT is developing a NASA standard for valves. The TDT assembled a team of subject matter experts from across the Agency representing several disciplines including mechanisms, propulsion, environmental control and life support systems, spacesuits, active thermal control systems, and materials and processes. The team has started their effort by reviewing lessons learned and best practices for valve design and hope to have a draft standard ready by the end of 2025.

      Bearing Life Testing for Reaction Wheel Assemblies
      The Mechanical Systems TDT just concluded a multiyear bearing life test on 40 motors, each containing a pair of all steel bearings of two different conformities or a pair of hybrid bearings containing silicon nitride balls. The testing confirmed that hybrid bearings outperformed their steel counterparts, and bearings with higher conformity (54%) outperformed bearings with lower conformity (52%). The team is disassembling and inspecting the bearings, and initial results have been surprising. The TDT was able to “recover” some of the bearings that failed during the life test and get them running as well as they did when testing began. Some bearings survived over five billion revolutions and appeared like new when they were disassembled and inspected. These results will be published once analysis is complete.
       
      X-57 Design Assessment
       The Mechanical Systems TDT was asked by the Aeronautics Mission Directorate to assess the design of the electric cruise motors installed on X-57. The team responded quickly to meet the Project’s schedule, making an onsite visit and attending numerous technical interchange meetings. After careful review of the design, the TDT identified areas for higher-level consideration and risk assessment and attended follow-on reviews to provide additional comments and advice.
      CLARREO Pathfinder Inner Radial Bearing Anomaly
      The Climate Absolute Radiance and Refractivity Observatory (CLARREO) Pathfinder was designed to take highly accurate measurements of reflected solar radiation to better-understand Earth’s climate. During payload functional testing, engineers detected a noise as the HySICS pointing system was rotated from its normal storage orientation. Mechanical Systems TDT members reviewed the design and inspection reports after disassembly of the inner bearing unit, noticing contact marks on the bore of the inner ring and the shaft that confirmed that the inner ring of the bearing was moving on the shaft with respect to the outer ring. Lubricant applied to this interface resolved the noise problem and allowed the project to maintain schedule without any additional costs.
      JPL Wheel Drive Actuator Extended Life Test Independent Review Team
      A consequence of changes to its mission on Mars will require the Perseverance Rover to travel farther than originally planned. Designed to drive 20 km, the rover will now need to drive ~91 km to rendezvous and support Mars sample tube transfer to the Sample Retrieval Lander. The wheel drive actuators with integral brakes had only been life tested to 40 km, so a review was scheduled to discuss an extended life test. The OCE Science Mission Directorate Chief Engineer assembled an independent review team (IRT) that included NESC Mechanical Systems TDT members. This IRT issued findings and guidance that questioned details of the JPL assumptions and plan. Several important recommendations were made that improved the life test plan and led to the identification of brake software issues that were reducing brake life. The life test has achieved 40 km of its 137 km goal and is ongoing. In addition, software updates were sent to the rover to improve brake life.

      Orion Crew Module Hydrazine Valve
      When an Orion crew module hydrazine valve failed to close, the production team asked the Mechanical Systems TDT for help. A TDT member attended two meetings and then visited the valve manufacturer, where it was determined this valve was a scaled-down version of the 12-inch SLS prevalve that was the subject of a previous NESC assessment and shared similar issues. The Orion Program requested NESC materials and mechanical systems support. The Mechanical Systems TDT member then worked closely with a Lockheed Martin (LM) Fellow for Mechanisms to review all the valve vendor’s detailed drawings and assembly procedures and document any issues. A follow-on meeting was held to brief both the LM and NASA Technical Fellows for Propulsion that a redesign and requalification was recommended. These recommendations have now been elevated to the LM Vice President for Mission Success and the LM Chief Engineer for Orion.
      NASA’s Perseverance Mars rover selfie taken in July 2024.
      View the full article
    • By Amazing Space
      NASA's Parker Solar Probe Reaches Unprecedented 435000 mph Touching The Sun
    • By Amazing Space
      LIVE SANTA TRACKER and SANTA SHOUT-OUTS! Wish Merry Christmas To Loved Ones Here!
    • By NASA
      Ken Freeman (center) receives the ATCA Award for ATM-X Digital Information Platform (DIP) from Rachel Jackson, Chair ATCA Board of Directors (left) and Carey Fagan, President and CEO ATCA (right).NASA Air Traffic Control Association (ATCA) Award to the NASA ATM-X Digital Information Platform (DIP) Team
      In November 2024, the Digital Information Platform (DIP) team received the prestigious Industry Award from the Air Traffic Control Association (ATCA) at the annual ATCA Connect Conference in Washington, DC. The award recognized the team’s efforts in supporting NASA’s Sustainable Flight National Partnership (SFNP), which aims for net-zero carbon emissions from aviation by 2050.  The DIP sub-project focuses on increasing access to digital aviation information to enable efficient and sustainable airspace operations.  DIP team has been conducting live operational demonstrations in North Texas Metroplex environment since 2022 with commercial airlines on the Collaborative Digital Departure Reroute (CDDR) tool that applies machine learning to make predictions on runway availability, departure times, and arrival times. DIP has signed Space Act Agreements with five major US airlines to carryout operational evaluation of CDDR in complex metroplex environments and is now deploying the CDDR capability to Houston. CDDR machine learning algorithm intelligently provides re-routing options to the operators by using real time weather and operational data reducing delays, fuel burn and carbon emissions. DIP is part of the Air Traffic Management – eXploration (ATM-X) project, which is focused on transforming the air traffic management system to accommodate new air vehicles.  More information on the ATCA award is at: https://www.atca.org/detail-pages/news/2024/11/15/atca-presents-annual-awards-at-atca-connect-recognizing-exceptional-efforts-made-to-the-worldwide-air-traffic-control-and-airspace-system.

      View the full article
    • By European Space Agency
      In a world first, ESA and Telesat have successfully connected a Low Earth Orbit (LEO) satellite to the ground using 5G Non-Terrestrial Network (NTN) technology in the Ka-band frequency range, marking a crucial step towards making space-based connections as simple as using a mobile phone.
      View the full article
  • Check out these Videos

×
×
  • Create New...